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Lifetime and Decay of Unstable Particles in 8-Matrix Theory
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An investigation is made of the possible time dependence of decay laws for unstable particles. The prob-
ability P(l) that an unstable particle has not decayed at time t is expressed in terms of 8-matrix quantities.
It is concluded that, contrary to popular belief, the exponential decay law P=e ~~ is only one of a discrete
set of possible decay laws.

INTRODUCTION

" 'T is generally accepted that the intuitive notions of
~ ~ stable particles {or bound states) and unstable
particles {or resonances in scattering reactions) make
their appearance in 5-matrix theory as singularities of
5-matrix elements when the latter are regarded as
functions of a complex energy variable. ' Thus, poles of
the S matrix on the real energy axis correspond to
stable particles, while those occurring near the real axis

on so-called unphysical sheets are resonances, or if you
prefer, unstable particles. These concepts, which are
carried over into the relativistic regime, are based
largely on experience gained in the laboratory of non-
relativistic quantum theory and direct examination of
solutions of the time-dependent Schrodinger equation.
There are in addition some rather convincing discus-

sions based on approximations in quantum electro-
dynamics' and simple 6eld-theoretical models. ' Finally,
there are a number of papers which attempt to relate
unstable particle decays to properties of propagators in
quantum field theory. 4 A very complete discussion of
the general decay problem may be found in Chap. 8 of
our book. '

One might conclude from the above remarks that
there is not much motivation for the present work. In
spite of the fact that one understands quite well the
connection between 5-matrix element singularities and
resonant states on the one hand and the general features
of the time decay of unstable states on the basis of the
Schrodinger equation, on the other hand, the relation-

ship between these two aspects of the same physical
situation is less transparent than might be desired. One
of the purposes of this paper is to clarify this, and in so

' See, for example, R. Blankenbecler, M. L. Goldberger, S. W.
MacDowell, and S. 3. Treiman, Phys. Rev. 123, 692 (1961).

'K. P. Wigner and V. F. Weisskopf, Z. Physik 63, 54 (1930).
' G. Kallen and V. Glaser, Nucl. Phys. 2, 706 (1956); M. Levy,

Nuovo Cimento 13, 115 (1959); 14, 274 (1960).
' R. Peierls, Proceeding of the 7954 Glasgoro Conference on Nuclear

and 3IIeson Physics (Pergamon Press, Inc. , New York, 1955). A.
Salam and P. T. Matthews, Phys. Rev. 112, 283 (1958).R. Jacob
and R. G. Sachs, Phys. Rev. 121, 350 (1961).

~ M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc., New York, 1964).

doing we find a remarkably simple and physically
satisfying connection between the two approaches.
Another purpose is to continue our study of the role of
familiar space-time concepts of quantum theory {and
common sense) in what is generally called S-matrix
theory where such concepts a,re rather obscure. {It is
perhaps worth remarking that in approaching these
questions we have neither the zeal of a true S-matrix
fanatic nor the rigidness of the axiomatic field theoreti-
cian; we are completely dedicated to integration and
will not hesitate to use any convenient technique at our
disposal. ) Finally, we address ourselves to the question
of the exponential decay law. We are not concerned
with the frequently discussed but essentially trivial and
uninteresting fact that in reality, for very long tim. es,
one has to do with a power dependence on time. Rather,
we are interested in exploring the kinds of decay laws
that could be expected on the basis of either provable
or possible singularities of 5-matrix elements. As we
shall see, the conventional association of simple poles
of the 5 matrix on unphysical sheets is not required by
any known physical principle and the possibility of the
consequent deviations from simple exponential decay
laws is worth studying.

Ordinarily one produces resonances or unstable
particles in reactions and observes the subsequent
decay products as a function of time measured more or
less from the time of production. It is, of course,
meaningful and useful to speak of an unstable particle
only if it lives for a time long compared to the produc-
tion reaction time. For only then can one reasonably
regard the production and decay as a two-step process,
an obvious idealization in which the 5-matrix element
factors into a product, to a very good approximation.

Our interest in the question of the exponential decay
law arose directly from discussions with Professor V. L.
Fitch. He pointed out that the supporting evidence for
such a law was far from convincing in unstable particle
decays. Since we had already been led to considering
S-matrix element singularities which naturally give a
more complex time behavior, we were stimulated to
explore this question in more detail. We would like to
suggest that the time-honored study of decay curves
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(rather than the simple determination of mean life-
times) might be worthwhile.

We describe in Sec. II a simple and straightforward
treatment of the decay of unstable states within the
framework of conventional nonrelativistic quantum
theory. The result of these considerations is such that
a more general formulation is attempted in Sec. III
which would seem to have validity in the relativistic
regime. In Sec. IV a specific calculation is presented and
the possibility of nonexponential decays is discussed in
detail. A highly idealized experiment for the detection
of unstable particle decays is described in Sec. V and a
short summary given in Sec. VI.

m according to 8=h'/2m (with l't = 1).Quite speci6cally

sin(hr ——,'br+hi)
P.+~ (2/m) 't'i' exp (i8i)

Kt'

for large r; b~ is the phase shift corresponding to the
scattering of the decay products. The factors are chosen
to correspond to the continuum normalization

(2.3)

We shall assume that the f„+ form a complete set so
that the prepared decaying state may be expressed as

II. DECAY OIi' UNSTABLE STATES ACCORDING TO
NONRELATIVISTIC QUANTUM MECHANICS

+(0)= h'dh c(hg„+(r), (2.4a)

1/P((vent,

(2 1)

where ~ is the velocity of the decay products and lU is a
measure of the "lifetime" of the state %(0).

The meaning of the condition (2.1) is, of course, the
requirement that the initial packet be small in spatial
extent compared with the distance which the decay
products can travel during the characteristic time dt.
Were this not the case a detailed study of the decay as
a function of time would not appear possible.

The wave function describing the relative motion of
the deca, y products is 4„+(r), where r is the relative
coordinate and the superscript + carries the usual
connotation of outgoing spherical waves, and a is the
wave number related to the energy E and reduced mass

The problem of the decay of a radioactive nucleus is
an old one and its description is properly regarded as
one of the important successes of quantum theory. One
imagines that at time zero the unstable system is
spatially confined and one asks for the probability that
after a certain time the system will be found in the
initial state. The simplicity of this physical situation is
unfortunately frequently obscured by the detailed
considerations of barrier penetration, introduction of
complex eigenvalues, etc. We shall attempt to formulate
the problem in such a simple way that the extension of
the description to the relativistic regime of unstable
particle production and decay is almost immediate.

We imagine that we are dea]ing with a system which
decays into two particles and work in the barycentric
coordinate system of the decaying state. The wave
function at t=0 is called %'(0) and is taken to have a
definite angular momentum /. It is important for our
purposes to think of 0'(0) as being localized in space
within a distance characterized by a parameter 1/P.
[For example, P might represent an exponential falloff
rate for @(0)j.We shall later discuss in more detail the
significance of the choice for p; for the present it will be
convenient to assume the restriction that

ol

c(h) = (P„+,4(0))= dr r'Pi„+( h)$*%'(0). (2.4b)

At any time t) 0, the state 4(t) is given by

+(t) = e '~%'(0) = hd ch( )he
*e'p+('r), (2.5)

where II is the complete Hamiltonian for the system.
The quantity of interest is the probability amplitude
A (t) for finding the system, at time t, in the state %(0)
given by

A(t) = (+(0),@(t))= h'chic(h) ~'e 's' (2.6)

P 00

A(t) =-
273 0

e
—iEt

dR
(P.—E,)2+r'/4

—exp( —iEDt)exp( —I' t/2), (2.7)

where I' is the so-called width of the resonance. In this

It is clear that the c(h) must have some special
properties which reflect the fact that %(0) corresponds
to a, more or less localized state [that is, that 4(0) is
square integrable) and further that we are dealing with
a long-lived system which has a reasonably well-
defined energy. The latter feature implies that c(h) will
be particularly large in the neighborhood of some energy
8=ED. We must evidently exhibit explicitly this energy
dependence of c(h) if we are to have any hope of de-
scribing A(t) in a general way. Of course, from the
standpoint of the preparation of 4'(0) in a collision
between the decay products one cannot entirely dis-
entangle the confined character of %(0) from the
relatively sharp energy E0 and the assumed long life-
time of the state. We shall see below the connection
between these aspects of the problem. Just to set the
stage we remark that for a very narrow Breit-Wigner
resonance one has'
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example

I c(s) I'= . (2.8)
2ggs (E—E )s+I"s/4 Si——f(K)/f( —s). (2.15)

from which it follows by comparison with Eq. (2.2)
that the S-matrix element S&=exp(2i5&) is given by

Our problem is to isolate this typical resonance structure
in a general way.

The method we first describe leans heavily on well-

known properties of solutions of the Schrodinger equa-
tion in nonrelativistic quantum mechanics. ' ' The
form of the result suggests, however, that it has much
greater generality and in Sec. III we present arguments
in support of this contention. There is a very close and
scarcely surprising connection between the theory of
final state interaction described in Chap. 9 of Ref. 5,
and the decay problem.

We begin by remarking that lt„+ may be written as

(' )' v (, )0'()=( / )'", ( )
r f(—s)

where &p(s,r) is a real solution (for real s) of the
Schrodinger equation corresponding to angular momen-
tum l and the boundary condition

I see, for example,
Eq. (6-259) of Ref. 5]

lim (21+1)!!r-'—'q (s,r) = 1, (2.10)
r~0

and f(—s) is the so-called Jost function. It is in turn
defined in terms of y and a solution of the same
Schrodinger equation satisfying the boundary condition

lim s'"'f (s,r) = it (2.11)

according to
B(p(s,r)

f(s) =s ' f(s,r)

The function y(s, r) is an entire function of s' and, of
course, f(s,r) is defined by the boundary condition
(2.11) only in the half-plane Ims(0. For real s, we can
define another solution f'( —s,r) according to

f(—s,r) = (—1)'f*(s,r). (2.13)

The function y(s, r) may be expressed in terms of

f(s,r) and f(—K,r) by

1
V(&,r) = L f( &)f(&,r—)—

2'~+~

+(- )'f( (- )]
2)Kl+1

( . t'
X —f(—a)expl —il «—f-

I I

2i i

The important feature of this expression for Sg for
our purpose is that the singularities of S~ are associated
with the vanishing of the denominator, f( s). —Bound
states make their appea, rance at points Ir =+is, s )0
such that f(—is„) = 0; provided f(is„)&0 this leads to
a simple pole in the S-matrix element. On the other
hand, poles of S& in the lower half K plane, say at
K= —K„—ip, p&0, are evidently associated with zeros
of f(s) in the upper half s plane, and it is not possible,
in general, to say anything about the multiplicity of
these. 7 It can be shown that f(~) is an analytic function
in the lower half K plane. Under certain circumstances
this domain of analyticity may be extended to the upper
half-plane Lfor example, for potentials which fall off
like exp( —pr), one has a strip of analyticity, Ims(p/2].
In such a case we have f*(—s*)=f(~), so that if

f( s„+i&—) =0, so is f(+s„+i&) Similar. ly if there is a
pole of Si at ir„iy there —is a—lso one at +s„i7.The-
singularity structure of S& in the neighborhood of a pole
then is

(s s„iy) (-a+I'-, iy)—
s)=

(s s,+iy) (~+s,+—iy)
(2.16)

It is conventional to consider the function f( s) which-
is analytic in the upper half K plane as a function of the
energy, E, called D(E), defined in the whole E plane cut
along the positive real axis, the physical values being
obtained as the limit on rl~(0+) of D(E+irl). The
following things are important':

argD (E+irj) = —8i (E),
lim D(E+irl)=1,

D(E irl)—
expl 2iS,(E)]=

D(E+irl)
(2.17)

where the E~ are bound-state energies. We shall assume
hereafter that there are no bound states and as already
instituted in the last of (2.17) interpret D(E) to be the
limit as tl ~ 0 of D(E+irl).

We may now express the expansion coefficients c(a)
in terms of y(s, r) and D(E). We write

E,y 1 8,(E')
D(E)=III 1— lexp

E 1 s p
E'—E iri—

+f(s)expl il «—f—
I I, (2 14)

2))
(—is)'(Lp (s,r)]/rP(0))= (2/~)'"

*( )
(2.18)

An excellent review of this subject is given by R. Newton,
J. Math. Phys. 1, 319 (1963).We shall follow the notation of this
article reasonably closely and record below some of the principal
results which we need.

~ We are indebted to Professor Bargmann and Professor Wigner
for a discussion of this point.

s See, for example, Eq. (6-281) of ref S. .
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can hold.

A(0}= «'d. )c(.) ~'=1 (2.19)

This is, of course, just what we are looking for. The
zeros of D*$=f(«)j near the real axis are just the
resonances anticipated in Eq. (2.8) and this structure
of D* will give the important long-time dependence of
A(t) defined by Eq. (2.6). This is not an exact state-
ment since as t ~~, as is well known, A(t) shows a
power dependence on t whereas we are interested in the
essentially exponential regime (see Chap. 8 of Ref. 5 for
a complete discussion). The numerator of c(«) will in
general have singularities in the E or I{. plane far from
the real axis. The reason is that p(lr, r) is an entire
function of I(.

' so that the only singularities of the
numerator can arise from a failure of the integral over
r, implied in the scalar product, to converge for complex
sc. Such singularities are related to the detailed falloR of
the localized state %(0). If the latter be expressed by
exp( —Pr) we expect in general a branch line extending
from E=—~ to E= —P'/2m (or in the K plane from
K=iP to «=i~); hence the larger the P (and thus the
greater the localization), the farther are these singu-
larities from the physical region E&0.It is furthermore
clear that (—i«)'(q/rP(0)) must approach zero for
large Ir su%ciently fast Lsince D(E)—+Ij that the
normalization condition

On the basis of the above disscussion we write

where

c(«) = (—i«)'(g(E)/D*(E)),

a(E) = (p(«r)/r P (o))(2/~)'"

(2.20)

(2.21)

is regarded as a function of E, since p depends only on
«'. We anticipate that g(E) is a slowly varying function
of E in the neighborhood of the real E axis. It is, of
course, g(E) which contains the detailed information
about %(0) which would be required for an exact
evaluation of A(t). However, the factor LD*(E)j ' is
the thing which expresses the fact that % (0) is supposed
to be nearly an eigenstate of II; that is, we are dealing
with a long-lived resonance, one for which 4'(0) con-
tains components with energies all in the neighborhood
of some Eo. As long as we are in neither the very short
nor very long time period for A(t), we can expect that
the most important effects are contained in D*(E) and
that our predictions will be largely independent of
%(0) and hence of the production mechanism.

It is perhaps worthwhile to show the manner in which
the recognition of the singular behavior of c(«) indeed
allows for a description of the localized 4'(0) and,
further, how if this feature is not recognized no such
localization would be possible. Using our explicit
expressions for c(«) and for the wave function It „+ in
terms of Jost functions we have Lwriting D*(E)=f(«)]

(—i«) ' (i«) ' f(«)
e(0) = (2/~)'12 «'de g(E) —f(«,r)+ (—1)' f( «,r)—

f(«) 2i r«'+' f(—«)

(2/7r)'"

22r 0

i(2/m)'I'

2r

K,r —z,r
«d«g (E)«' — + (—1)'

f(«) f( «) ——
f(«,r)

Kd«g(E)K
f(r)

(2.22)

In the last line we have used the fact that g(E) is an even function of «'. Now we look at %(0) for large r, in the
region where f(lr, r)~i exp{—i«r). Since f(«) by hypothesis has no zeros in the lower half-plane (these of necessity
being bound states) and g(E) has no singularities until we reach «= iP where—1/P is associated with the "size" of
%(0), we may lower the contour to this point and it is clear that %(0) will indeed go, as it should, like exp( —Pr).

Now suppose we had been so naive to expect the expansion coef5cients c(lr) to be just any old smoothly varying
function of a. Then

00 j—1-
4'(0) = (2/vr)'I' «'d«c(lr)

0 2Kr—

f(«)
— il—1 w

—f(K,r)+ (—1)' f( t& r):(2/—7r)'I'

f( «)
' """ — 2r o

KdKC (K)

&(P—exp( —i«(r ——,'hr))+exp(2i8~(«))exp(i«(r ——,'hr)) j. (2.23)

If we are concerned with a sharp resonance, so that
S~= exp{2i5~) has the structure (2.16), a simple station-
ary phase argument shows that 4(0) exp( —2'yr)
which is ordinarily much too "fat" a wave packet to

correspond to physically sensible, initial conditions.
Since y= (vent) ', this choice for c(«) would violate our
fundamental condition (2.1).

We are now prepared to complete our discussion of
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where

ca g (p)
e
—iEt

ID(E) I'
(2.24)

g'(E). +'d.=—a(E)dE. (2.25)

The probability that at time t the unstable system has
not decayed is

P(i)= ~a(t)(' (2.26)

and the probability that the decay takes place during
the interval dt is clearly

p(t)dk= —(dE(t)/dt)dt. (2.27)

Our expression for A(t) involving ~D(E)
~

—', Eq.
(2.24) would seem to express the decay amplitude so
far as possible in terms of S-matrix quantities. It should
be noted that whereas a knowledge of D(E) implies a
knowledge of S~, the converse is not true, since S~
involves only argD(E) = —5&(E), and

S&(E)=D*(E)/D(E). (2.28)

In many ways, D(E) can be regarded as a "more
fundamental" quantity than S&(E). It enters quite
naturally into a variety of problems such as the electro-
rnagnetic structure of particles and in the theory of
multichannel scattering processes, just to name two.
One might even conjecture that the formulation of a
D-matrix theory rather than an S-matrix theory might
be very worthwhile. This is not the purpose of the
present paper so we shall not pursue the question fur-
ther. [Another reason for not doing so is that we don' t
know precisely how to do it. Needless to say, D(E) is
the same quantity that occurs in the so-called X/D
method of solving partial wave dispersion rela, tions. ]
We shall return in Sec. IV to the explicit evaluation of
J'(t) after we address ourselves to the general validity
of our expression for the decay probability given by
Eqs. (2.24) and (2.26).

III. A MORE GENERAL PORMULAYION OF
THE DECAY PROBLEM

Our treatment of the decay problem would appear
superficially to depend rather heavily on detailed
properties of solutions of the Schrodinger equation. In
fact we feel that this is not at all the case and that the
same conclusions can be drawn without explicitly
mentioning things which might be unpalatable for a
pure S-matrix theorist. The point is simply that our
principal problem was the isolation of the factor
[f(«)] ' = [D*(E)] ' in the expression for the amplitude
of the decaying state. The latter in turn necessarily is
determined, since we are dealing with continuum states

the amplitude 3 (t) for finding the initial state present
at time t. We have

e—iEt

A (t) = «'d««"g'(E)
0 ID(E) I'

largely with the behavior of asymptotic wave functions
which are quite legitimate targets of discussion for
S-matrix theorists. That is, we argue that asymptotic
wave functions must exist in any acceptable physical
theory.

We recall the well-known fact (see, for example,
Sec. 5.2 of Ref. 5) that if one prepares a precollision
packet of asymptotic states for a scattering process
with certain wa, ve-packet amplitudes c(«) then the
interacting state vector at the time of interaction is a
superposition with precisely the same amplitudes c(«)
of the exact eigenfunctions. This implies that a study
of the asymptotic wave functions suffices to determine
the nature of the expansion coeKcients. In our problem
the desire to represent a spatially confined decaying
system requires the presence in the asymptotic wave
packet amplitude of a factor which will permit such a
description. We cannot specify by this argument that
we require exactly [f(«)] ' but this is a sufficient
condition to insure the possibility of describing a local-
ized state. We certainly cannot designate any other
reasonable factor reflecting the presence of a resonance
without disastrous effects on the asymptotic states.

Another way to see the above described behavior is
to consider the following simple example: Consider the
scattering of two particles which can form a long-lived
resonant state and then decay into the initial pair. We
prepare a precollision packet which is so arranged that
the colliding particles reach the origin of coordinates at
a time we agree to call zero. The wave function at any
positive time t after the collision is over is represented by

e(t) = d'«' d'«exp[i'' r —iE(«')i](b(x' —x)

—2mib[E(«') —E(«') T„.}a(v.—xp), (3.1)

where a(tc —vp) describes the initial pre-collision
packet, and T„.„ is the 7-matrix element describing the
scattering. If we imagine a resonance in a particular
angular momentum state, the important part of T„„
will contain a term (N/D)Ei(pp' x) and the resonant
character of the reaction appears in the factor D. Thus
the scattered wave function amplitude has the factor
a(x—xp)[D(E)] ', a(x—vp) knows nothing about the
resonance, but D(E) of course does. The numerator
function X(«) is also expected to be smooth in the
resonance region. We see the natural occurrence of
D(E) in the scattered wave function.

The asymptotic wave packet states may be shown to
be an essentially complete orthonormal set in a well-
defined sense (see Ref. 5, Chaps. 3 and 4). Thus the
asymptotic form of a resonant state may surely be
represented in the form originally suggested, Eq.
(2.4a). The condition (2.1) instructs us to require that,
%(0) vanish in the asymptotic region for dista, nces
greater than P '. That this suggests very strongly the
form (2.20) for c(«) may be seen on repeating the argu-
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ment given in connection with Eqs. (2.22) and (2.23),
but using only the asymptotic form, for large ~ of these
equations.

IV. IMPLICATIONS OF A LONG-LIVED
UNSTABLE STATE

It is apparent from our general expression (2.6) that
any decay time can be achieved for any unstable
physical system. The reason for this is that Eq. (2.6)
involves only the wave packet expansion coefficients
and does not contain any reference to the dynamical
characteristics of the decaying system. In the previous
two sections we have attempted to explain why many
classes of unstable physical systems show similar
characteristics. That is, for considerable variation of
initial boundary conditions such systems exhibit re-
markably uniform properties —so much so, in fact, that
one tends to think of unstable "particles" as having
unique properties. '

The physical conditions required for such uniform
properties seem to require (1) that the decaying system
have a fairly sharply defined energy near, say, Es, (2)
that it have a long-lifetime ht; and (3) that it be con-
fined in space as required by the condition (2.1).

In Chap. 8 of Ref. 5 we investigated the consequence
of a long-lived state in a scattering experiment. For the
case that both incident and final channels contain two
particles, and when the lifetime At is large compared to
the free Qight time of the interacting particles across
their region of mutual interaction, the eigenvalues of
the S matrix were shown to have the unique form

E—Ee—iF/2 '
S(E) . slav e(E)

E Ep+iF/2—
(4 1)

Here r=1, 2, . is a positive integer, and i (E) repre-
sents the "background, " or "potential, "scattering (as
it is sometimes called). The constant I' in Kq. (4.1) is
the level width, or more precisely, A/F is the Wigner
lifetime' of the interacting system. When hf(—ls/F) is
very large (in the sense just described) we may treat
v(E) as a constant and ignore it.

The case r= 1 in Eq. (4.1) corresponds, of course, to
a conventional Breit-signer resonance. It was shown
in Ref. 5, Chap. 8, that r~2 corresponds to a more
general class of resonances.

We return now to our discussion of the decay problem
and ask what are the general characteristics of an
unstable system having a long-lifetime ht and initially
confined in space as required by (2.1).We have just said
that the condition of a long lifetime permits us to write

E—Es—iF(2
S,(E) (4.2)

E Ep+iF/2—
In a strict sense, for example, no two neutrons are quite the

same, since the set of wave packet amplitudes c(z) describing the
set. of "neutron-like" systems is not countable and since (pre-
sumably} the precise conditions of creation of a given "neutron"
cannot be duplicated.

27ri

dE' lnS, .(E')

E' —F—ig
(4 3)

corresponding to a given integer r in Eq. (4.2). Evi-
dently, we have

D„(E)= [Di(E)]", (4 4)

where Di(E) corresponds to a conventional Hreit-
Wigner resonance.

Near the energy Eo we may write"

D, (E)=X(E—E,+iF/2), (4 3)

where X is a constant. From Eq. (4.4) we obtain the
general result

D„(E)=E"(E—Ep+ iF/2) ". (4.6)

The decay characteristics of the system described
may now be obtained from Eq. (2.24):

where

A, (f)=
p(E)e ' '

dE
[(E—Eo)'+F'/4]"

(4.7)

Sirice B(E) is considered to be nearly constant over an
interval comparable to F at E=EO, we may re-write
this in the approximate form [here Ei—=Eo—iF/2)

A„(t)=p, (Eo)
[(E E,) (E E,*)]~

QJf ~
—iEt

=p.(Es)
-- [(E—Ei) (E—Ei*)]"

2irip, (Es) r)" —iEt

(r 1)! c1E' —' (E—Ei*)' E=E

2irp, (Ep)
exp( —iEpf)

(r—1)

Ff ~—i P ' ' (r+l—1)!
Xexp~ ——P (4.8)

2 o-i F'+' (r—l)!l!

On choosing p„(Es) to satisfy the condition (2.19) that

'0 See, for example, Eq. (6-283) of Ref. 5. The integral (4.3) can
be made finite on introducing suitable subtractions.

"This is shown in the Appendix.

where F is "small. " This and the condition (2.1)
permits us to treat B(E) as constant in Eq. (2.24).

We shall restrict ourselves to the case in which there
are no bound states having energies near Eo, within a
range large compared to F. Then we may write"

D, (E)=e a,
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In P, r=4

relatively few measurements of P(t) for the unstable
particles. ]

There is a natural tendency to interpret a pole of the
S matrix of order higher than the erst as an accidental
degeneracy; this implies, however, that the "primeval"
poles are simple and we can find no deep theoretical
basis for such an allegation.

-to

IO

=3

V. A COMMENT ON THE OBSERVATION
OF DECAY J,AWS

For the simple exponential decay corresponding to
r= 1, [see Eqs. (4.10)]

pi(t)=e ri (5.1)
FIG. 1. Decay probability for various values of r, the order of the

S-matrix pole describing the decaying state.

A„(0)=1,we find

I' t) r i-
(t) exp(, i=F.,t —~r. (r&)" ' '

2) i=a

(rent —1)!(r—1)!
X— (49)

(r—t—1)!t!(2r —2)!

Except for small corrections associated with the mode
of formation of the state [that is, with the detailed
properties of B(E) in Eq. (2.24)], the decay laws

P, (t) = ~a„(t) (',

r=1, 2, are believed to represent the most general
allowed-for long-lived systems which are initially
localized in accordance with Eq. (2.1).'2

We list the decay amplitudes for r= 1, 2, ~, 5:

(g i) = c—r & I2

(A2) = e
—r'12(1+ ~~r

(2 3) = e 'I'(1+-'«+I"t'/12) ),
P] P2P PGP

(~ )=c "" 1+—+ +
2 10 120

(I't)' («)4
(Ag) =e r'12 1+—+—(«)'+ + . (4.10)

2 28 84 1680

the choice of k= 0 has no effect on the shape of the decay
law. This is evidently not the case for r~ 2, although the
exponential factor tends to dominate the time depend-
ence of these for «))1 (see Iiig. 1). To compare these
laws with experimental observations one must therefore
discuss the initial conditions with some care. We shall
now illustrate this with a somewhat idealized example.

Referring to Fig. 2, we imagine that the instable
particle is created within a sphere S in a bubble cham-
ber. The size of this sphere is limited by the range of
secondary electrons along the path of charged particles.
We have seen that the actual size of S is not relevant as
long as it is compatible with the condition (2.1), that is
that the region be small compared to eAt. Since we are
studying the decay as a function of time, we assume
that the time of creation (say t=O) of the particle is
known to within an interval small compared with
~t=a/r.

We next suppose that the decaying particle passes
through (and is registered by) counter Ci at time ti and
then is stopped in the block B.Here it decays and the
decay product is counted in C2 at time t2. Errors in

registering the times t» and t2 are again considered small

compared with ht= 5/I'.
The wave function in the interval 0&t&t» then has

the form (2.5) with c(k) given by Eq. (2.20). To take
account of the information provided by C» that an
unstable particle passed through it at time t», we intro-

BUBBLE CHAMBER

In Fig. 1 we show lnP„(t)=in~A, (t) ~2 a,s a function

of I't. The obvious feature of these curves is that the
larger the value of r is, the closer to unity P„(t) tends to
stay as time increases. We know of no examples showing

other than the pure exponential behavior characteristic
of r=1. but a careful study of decay curves may be
worthwhile. [As noted in the Introduction, there are

INCIDENT
BEAM

S Ci

UNSTABLE PARTICLE

Cp

"An exception can occur, however, if two or more "resonances"
happen to be separated by distances comparable to their respective
widths.

F»G. 2. Idealized experiment for measuring unstable particle
decay. The interaction takes place in the sphere S, C& is a counter;
8 is a block of stopping material where decay occurs; and C~ is a
recording counter.
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duce a projection operator"

E(r) = 1 for r within counter
=0 for r outside counter.

Then, immediately following the time tj, the wave
function is'4

e'(0)=IV,E(r)e(I,), (5.2)

where Nz is the normalization constant. We may treat
9'(0) as a new initial wave function and follow the
argument leading to Eq. (2.5) to obtain, for t) ii,

4'(t) = a'dkc'(z) exp L
—iE (t—It)]P„+(r), (5.3)

where

The probability amplitude for decay is then obtained
for t) I& using Eq. (2.6) with the c(~) replaced by c'(z).
The arguments of Secs. II and III would lead us to
expect that the result (4.9) would again be obtained
with I replaced by (t—t&), unless the size of counter C&

is such that the condition (2.1) is poorly satisfied.
We repeat that the example just given is quite

idealized and was presented only to emphasize that
attention to initial and subsequent information may be
important in studying particle decays.

"Strictly speaking, we require that the coordinates of both
decay products lie within the counter. For simplicity of presenta-
tion we are ignoring the center-of-mass coordinate of the unstable
system.

'4 See, for exam le, M. L. Goldberger end K. M. Watson, Phys.
Rev. 134, 3919 1964), where such sequential observations are
discussed.

VI. CONCLUSIONS

We have given a formulation of decay of unstable
states which involves in its essentials only what might
be termed S-matrix quantities. In fact a knowledge of
the S matrix does not sufBce in general since what enters
is really the so-called denominator function D(E) which
contains more information; it is, however, something
which can be legitimately sought in a pure S-matrix
theory. It is obvious that a detailed description of a
decay process requires a precise specification of the
production mechanism. There does not appear in
principle to be any difhculty in formulating the problem,
although one can expect simplicity only under the
circumstance that the overall S-matrix factors into a
production part and a decay part.

We have explored the possibility of finding decay
laws more complicated than a simple exponential,
resulting from resonance poles which are not of first
order. There seem to be no very convincing arguments
to say that there are in nature only first order poles. (If
one were to 6nd experimentally only pure exponential
decays, we would be led to a postulate in S-matrix

theory which could be called the principle of minimal
"policity. ") It is clear that nonexponential decays
might result if the production mechanism had some
wild energy dependence. In general what one might
expect however is something like what happens when
the decay products of a radioactive decay are them-
selves unstable. This gives a mixture of pure exponen-
tials but nothing oscillatory or very spectacular. (See
Ref. 5, Chap. 8 for a complete treatment. ) If there did
happen to be two nearby resonances in the decay
channel one would 6nd an oscillatory time dependence
superimposed on the decaying exponentials.

(L~(E)]'")
!6=—1nS= tan '!

2i E Ep E I—(Al)

where a«(EO)'I'. This corresponds to a p(E) in Eq.
(4.1) which has the value v= —e./2 for E«Eo. Then

1 "dE' tan 'f La(E')]'"/Eo —E')
Di(E) = exp

E —8—zn7i p

(A2)

The evaluation of Di(E) is most easily carried out
noting that it must be analytic in the entire energy
plane except along the real positive axis, must be real
for E&0, must approach unity as E~ ~, and must
have the prescribed phase. The function which has all
of these virtues is

Di(E) = (E—Eo+iLa(E)]'12)/E. (A3)

The approximate form (4.5) follows on setting
P =2)a(EO)]'", and restricting E to values close to Ee.

To argue more generally, we substitute the expression
(4.2) into (4.3), setting r= 1. It is convenient to define
the zero of energy so that E~=O and to introduce a

Oa+

~r
-E0- P

oo-
C=

Fzo. 3. Contours in the z plane for the
evaluation oi the integrais (A6).

APPENDIX

We describe here the evaluation of Eq. (4.3) for r = 1
to obtain the expression (4.5). First, we consider a
model for which Di(E) may be evaluated explicitly and
then give a more general argument.

For the model chosen we write the scattering phase
shift as (here 0(E(~)
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cutoB M for the upper limit. Then we have

6= (1/2zr)[I —I ], (A4)

where
tz~= Z —Rpwir'/2 (A7)

where

The substitution

E'—E—ig

z—=8' —Evair/2

(AS)

The contours C+ are illustrated in Fig. 3.
As ~B Ev

~

—and I' become very small the points a~
approach the branch point. Only I+ becomes singular
in this case. Its singularity may be exhibited by moving
the contour up into the positive imaginary s p1ane and
keeping the residue of the pole at u+. The leading
(singular) term in I+ is

permits us to write or
I+—2' lnu+,

6——lna+. ,
(A6)

from which Eq. (4.5) follows.

(AS)
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An analysis based on dispersion-relation techniques is applied to experimental data for E+-p elastic scat-
tering. Particular reference is made to the "force of longest range" due to the exchange of low-mass pion pairs
with isospin I=O. The effect of this exchange force can be calculated in terms of only one unknown param-
eter X which may essentially be chosen to be a linear combination of the K-2l- scattering lengths. The other
forces of shorter range are described by further undetermined parameters. The E+-p differential cross section

is calculated in terms of these parameters and a 'minimization procedure is used to obtain a fit to the experi-
mental data. A good fit is obtained for a well-defined set of values of the parameters. In particular, 'A is well

determined. A sum rule for E7I scattering is used to calculate a further relation between the E'-7I scattering
lengths so that the value of each of these is obtained.

I. INTRODUCTION

'HE data for the elastic scattering of E+ mesons on
protons' ' indicate that the interaction is domi-

nantly s wave and repulsive up to laboratory momenta
of S00 MeV/ . cTshis may be seen from the phenome-

nological, pure s wave, 6ts which accurately reproduce
the data in this energy region. ' 4 This paper is concerned

z
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with an analysis of the experimental data using dis-
persion relation techniques. Previous analyses' ' of the
EC-E interaction along these lines took explicit account
of. the I= l, J= 1 p-meson exchange force and assumed
that this was the dominant long-range contribution.
However, since the completion of these calculations of
Ferrari et al. ' and Lee, ' the location of the p resonance
has been found to be 750 MeV, rather than the lower
value of 500 MeV that they used, and also the exist-
ence of the co resonance has been established at roughly
the same energy as the p. The EE exchange force arising
from these resonances is thus harder to separate from
other "short-range" forces, for example, those associ-
ated with hyperon and hyperon-resonance exchange.
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