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We construct several bounds on renormalization constants and on the asymptotic behavior of propagation
functions and vertices. The inputs are experimental measurements and/or analyticity properties of vertex
functions. We also discuss the connection between zeros in propagators, poles in vertex functions, and the
values of coupling constants. This is the problem studied by Geshkenbein and Ioffe and by Meiman, and we
discuss the possible physical significance of such zeros in terms of an extended Lee model. In particular we
argue on the basis of this model and the scattering amplitude derived from it that there is no reason to
exclude the existence of zeros in the propagator. This negates the arguments given for bounding the coupling
constants in field theory.

poles in vertex functions and values of coupling con-
stants. This is the problem solved by Geshkenbein and
Ioffe, and we discuss the possible physical signi6cance of
such zeros. An extension of the Lee model to include in
addition an unstable particle field provides a model in
terms of which to illustrate these ideas. In particular
we argue on the basis of this model and the scattering
amplitude derived from it that there is no reason to
exclude the existence of zeros in the propagator. This
negates the arguments given for bounding the coupling
constants in field theory.

I. INTRODUCTION

PECTRAL representations for propagators and form
factors have been constructed in 6eld theory start-

ing either from the general axioms or from a Feynman
graph series. However, their limiting behaviors for large
momenta (subtraction constants) and the Inagnitudes
of the renormalization constants are subjects of con-
siderable conjecture. In this paper we construct several
bounds on renormalization constants and on the asymp-
totic behavior of propagation functions and vertices.
The inputs are experimental measurements and/or
analyticity properties of vertex functions.

The paper is organized as follows: In Sec. II we 6rst
consider the photon propagator and prove that if there
is no subtraction term, then the Pauli form factor of the
proton, F&(q'), must vanish more rapidly than (lnq') It'

for time-like q' —&~. The requirement of no subtrac-
tions is necessary if electrodynamics is to predict the
observed vacuum polarization contribution to the Lamb
shift and other precision measurements without re-

quring the introduction of new parameters. In Sec. III
we extend techniques, developed by Meiman and
Geshkenbein and Io6e in a different but related study,
to construct a lower bound rigorous to all orders of the
strong interactions on the pionic contribution to the
photon's vacuum polarization. Kith these same tech-
niques, a rigorous bound on the nucleon wave function
renormalization due to strong interactions Z2 and on the
nucleon propagator for space-like momenta is con-
structed in Sec. IV. Bounds which can be constructed
only after making assumptions on the continuation of
amplitudes below physical threshoMs are also given
for the pion propagator in Sec. V. Finally in Sec. VI,
we discuss the connection between zeros in propagators,

II. ASYMPTOTIC BEHAVIOR OF NUCLEON
ELECTROMAGNETIC FORM FACTORS

The recently reported experiment' on proton-anti-
proton annihilation to an electron-positron pair focuses
attention on the behavior of the nucleon electromagnetic
form factors FI(q') and Fs(q') for time-like momentum
transfers q'& 4''. Previously, electron scattering experi-
ments havemeasured Ii& and F2 for increasingly large
spacelike momentum transfers q'&0. Analysis of these
form factors with dispersion theory has related the ob-
served structures to resonances in two and three pion sys-
tems (viz. , p, co, y) located in the unphysicalregion0&q'
&4'' below the nucleon-antinucleon threshold. Now
with the success of the experimental study at CERN' and
with the realistic prospect that electron-positron storage
rings in the near future will permit study of F& and Il2
for larger and larger q'& 4M', we look for the possibility
of drawing general conclusions on the behavior of these
form factors from the structure of 6eld theory. One such
result, reported earlier, ' was that a finite value for the
charge renormalization constant Zs ' ——(ee/e)' requires
both the Dirac form factor FI(q') and the Pauli form fac-
tor Fs(q') to vanish at q'= eo . Zs

—' is not a physical ob-
*Supported by the U. S. Atomic Energy Commission and by
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magnetic form factor Fs(q') does not vanish for q' —+ on.

To see this, observe that according to Eq. (2), tr(o') is a
sum of positive contributions tr & "&(o') from each physical
state Its) and is bounded from below, therefore, by the
contribution from any one such state; in particular by
the nucleon-antinucleon pair state (proton or neutron).
For this pair state the matrix element in Eq. (2) is
directly the electromagnetic current of the physical
nucleon for q2&4M2, i.e., in the notation of Ref. 2

before noticeably perturbing the beautiful successes of
quantum electrodynamics, which confirms the Uehling
term to 0.1 Mc/sec out of 27 Mc/sec.

The above results for the nucleon form factors (which
incidentally also apply to any baryon) can be re-
expressed in terms of the "charge" and "magnetic"
form factors emphasized" in recent analyses. Defining
G@(os)=F1(o2) (o s/M)F2(o 2) ~ G@proton(0)

&PP"-'
I i, I0&=

(4E~E~)'"

G~(o') —=Fi(o') —2MFs(o');
Gsr»o«o(0) =e(1+1.79)

we rewrite Eq. (8) as

(9)

&& IFi(q')v. +Fs(q')~"q. l s.' (7)

or i' (o') is readily computed from Eqs. (2) and (7) and is

given in Ref. 2:
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Evidently s.&"(o') is positive and nonvanishing as
o' —+oc in violation of Eq. (3) unless Fs(o') —+0 as
o'~~ more rapidly than (lno') '~'. This establishes
our claim '

This argument against a hard core' occurring in
Fs(q') as q' —& + oc is more of interest in principle than
in practice. This is because the vacuum polarization con-
tribution to Eq. (1) has the dimensions of (mass) '. The
familiar Uehling term corresponds to F~=e and F2——0
in Eq. (8) to lowest order in rx= 1/137, and to M —+ its,

the electron mass. It contributes tr/15m. trt' to the in-

tegral, Eq. (4), whereas a baryon pair contribution with

Fi eand Fs=0 i——s reduced by (tts/Mii)'(3&& 10 r. The
form factor F2 would have to remain finite and compar-
able to its static limit Fs(0) = —(e/4M)x, with a the
static moment in nucleon Bohr magnetons, up to a very
high momentum I' far beyond present or projected
energies and such that

F' r0.1q M&y'

(27i m i
The electron-positron annihilation cross section computed in

first Born approximation in a=1/137 also violates its unitarity
limit of —,'tr)ts unless (o')'Istt (o') is bounded as o' -+~, as shown by
N. Cabibbo and R. Gatto, (Phys. Rev. 124, 1577 (1961)j.

If the electromagnetic vertex is considered not as a function of
photon momentum g', but for a real photon as a function of the
mass p' of one of the virtual nucleon lines, with the other on the
mass shell, it is a direct consequence of Ward's identity that
J"1(p', q'=0)=—1. Thus a subtraction is indeed required for the
sidewise dispersion relations constructed by Bincer LA. M. Bincer,
Phys. Rev. 118, 855 (1960)g. Proof of this assertion is found in
F. E. Low, Phys. Rev. 110, 974 (1958). It corresponds to the
physical fact that the absorptive amplitude for F&(p', q'=0)
vanishes identically because real transverse photons cannot be
radiated or absorbed in zero-zero transitions. The charge thus
appears as a subtraction constant.

Gz and G~ thus require at most one subtraction each in
a dispersion analysis. For a 6nite charge renormaliza-
tion as discussed in Ref. 2, J'm. (o')do' must exist and,
by Eq. (10),

Gir(o )1~0 (tr ) IG&(tr ) l~ () a,s o ~on

This condition assures no subtraction for G~I but still
leaves the possibilitv of one subtraction for Gs(o') in
constructing dispersion relations. These weaker condi-
tions on Gz and G~ result from the multiplying factor
of o' appearing in their definition" in Kq. (9).

A similar conclusion is also true for the pion charge
form factor. For the vacuum polarization contributions
of a pair of the presumed charged vector bosons, "8'+,
s.(a') IFs (o') I' as o'~~, and if Eq. (1) is to be
valid the charge form factor Fs(a') must vanish as
cT2 —+~ with no hard-core or point-charge contribution.

In conclusion we compare this result to the earlier re-
latedpapers ofLehmann, Symanzik, and Zimmermann, "
and of Evans'4 who showed that the irreducible Dyson
vertex, defined as in Eq. (7) (with however the impor-
tant difference that the vacuum polarization contribu-
tion on the photon line is removed) must vanish for

' L. Hand, D. Miller, and R. Wilson, Rev. Mod. Phys. 35, 335
(1963).

"This factor of o' introduces a compensating 1/o' into the
current definition replacing Eq. 7 t see Eq. (5) of Ref. 10$ and
is removed arbitrarily by a diferent normalization such as
G= $1/(1 ot/43P) jG, for—exampl—e."See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 128,
885 (1962).

"H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 2, 425 (1955).

't L. G. Evans, Nucl. Phys. 17, 163 (1960).
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q' —&~. This is proved in Refs. 13 and 14 to be the
necessary condition for the existence of Eq. (1) and
hence, as remarked explicitly by Evans, " the basis of
the vacuum polarization fits. To go from their work to
the conclusion drawn in this paper it is necessary to
assume that Z3 is 6nite. ' "Our present argument avoids
any such reference to an unobservable renormalization
constant.

III. PROPAGATOR BOUNDS WITH APPLICATION TO
PIONIC CONTRIBUTION TO VACUUM

POLARIZATION

We have seen in the previous section that the finite-
ness of the vacuum-polarization calculation and of re-
normalization constants is related to the behavior of
form factors at large momentum transfer. In this sec-
tion we give a concise discussion of the method intro-
duced by Meiman, " and Geshkenbein and Ioffe'~"
for studying the occurrence of zeros in propagators, and
apply it to construct bounds on renormalization con-
stants and propagation functions in general.

Referring back to the photon propagator for con-
creteness and assuming that Eq. (4) converges and the
vacuum polarization is finite, we have from Eq. (1)

which is positive definite for spacelike q'= —Iql'&0
according to Eq. (2). In particular we have the
inequality "sr &"'(a')do'-

e&+ Iqls

1
D~(—I

ql')— (12)

where sr&"&(o') represents the nonnegative contribution
to the positive definite spectral function of an arbitrary
state (tt) in the complete-state sum in Eq. (2). Our aim
in this section is to construct a nonzero lower bound for
the right-hand side of Eq. (12). As we see in Eqs. (8)
and (10), the spectral function can be given as a square
root factor for two-particle phase space multiplied by
form factors if we take a two-particle state for m. We
restrict ourselves to two-body states here since the
analyticity properties of these form factors, as estab-
lished rigorously from formal field theory or to each

'~ N. N. Meiman, Zh. Kksperim. i Teor. Fiz. 44, 1228 (1963)
LEnglish transl. : Soviet Phys. —JETP 17, 830 (1963)g.

'fl B.V. Geshkenbein and B.L. Io6e, Zh. Eksperim. i Teor. Fiz.
44, 1211 (1963) LEnglish transl. : Soviet Phys. —JETP 17, 820
(1963)j;Proceedilgs of the 1962A rtststat Isn't em atio eat Conference oa
High Emergy Physics at -CERE, edited by J. Prentki (CERN,
Geneva, 1962),p. 708; Phys. Rev. Letters 11,55 (1963).A further
application is made by N. N. Meiman and A. A. Slovnov, Phys.
Letters 10, 124 (1964).

'7 B.V. Geshkenbein and B.L. Ioffe, Zh. Eksperim. i Teor. Fiz.
45, 555 (1963) /English transl. : Soviet Phys. —JETP 18, 382
(1964)g.

18 B. V. Geshkenbein and B. L. Ioft'e, Institute of Theoretical
and Experimental Physics, Moscow, Reprint No. 218, 1964
(unpublished).

order of a I'eynman graph expansion, are essential in-
gredients in this development. Suppressing inessential
spin complications by considering the contribution of,
say, a sr+ —sr or E+ K—pair in Eq. (12) we find in
place of Eq. (10)

~(2b) (a2) (48~2os)—1(a2 4~ 2) 3/2

&&
I
Fe(o')

I
'0(o' —4tss') (13)

where tt s is the boson mass and Fb(a') its electromagnetic
form factor. Inserting Eq. (13) into Eq. (12) and intro-
ducing dimensionless units x=a'/4tt&' y= Iql'/4tt&'
we 6nd

4t s'De( 4t e'y)—
y 48m' x'"(x+y)

was first shown by Geshkenbein and Ioffe" and the
present discussion is adapted from Meiman. "A formal
construction is presented in the Appendix. Here we
outline the method to illustrate the class of problems to
which it is applicable and to give the essential ideas.

In Eq. (14) the integrand is a product of a simple
kinematic factor

p(x) =x '"(x—1)'"(x+y)—'

and the squared modulus of a form factor analytic in
the cut x plane with a branch cut extending from, say,
x= xo to x= ~. We write then

x "dx' ImFs(x')
Fs(x) =e+-

7i go X X S Z6

(15)

assuming for simplicity that a once subtracted disper-
sion relation suKces and that normalization is to
F(0)= e. The essential point is that F(x) is specified and
hnite at some point to the left of the branch point at
x= xo. The possibility of a finite minimum is suggested
if we just look at Eqs. (14) and (15). C is clearly larger
than zero in the absence of an absorptive part in Eq.
(15) as Fs(x) -+ e everywhere. In order to decrease the
real part of F&(x) in Eq. (14), there must be a finite
imaginary part present, and the most economical
balance between real and imaginary parts yields C

Evidently if the branch point xo in Eq. (15) lies to the
left of the threshold of the integral in Eq. (14), i.e., if
@0&1, the most economical balance is achieved if we
crowd the contributions to ImFs(x') into the integral
x«x'& j. in such a way that there is neither a real nor
imaginary part of Fs(x) remaining for x)1. This is
possible I

in the sense of a Riemann-Lebesque integral
in Eq. (14)j because the spectral function for the ver-

X(.'—1)s IF,(x)l =——C(&). (14)
12

The possibility of constructing a minimum

C; =min(C))0
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14=-
27r

d8p(8)
~

F(e")~' (17)

where p(8) includes the kinematic factors and. the
Jacobian of the transformation Eq. (16). The behavior
of the kinematic quantities and of the form factors can
be separated by using the inequality of the arithmetic
and geometric means to write

1
C» exp-

27r
d8 1nLp(8)

~

F(e")
~
'j

tex is not positive definite but can oscillate at will. In
this case C;„—& 0 and no useful bound is obtained for
xp&1, as verified formally in the Appendix. Our con-
considerations apply only to problems with xp&1. A
second condition for a finite bound is that Fq(x) be
normalized at a point to the left of the branch point
x= 1. If the normalization point approaches the branch
point, an absorptive part of zero width can cancel
Fs(x) for x) 1 without producing a contribution of finite
weight to the integrand in Eq. (14).This is also verified
explicitly in the Appendix.

A practical deduction from this is that the present
techniques are inadequate for constructing general
bounds in quantum electrodynamics valid to all orders
of the 6ne structure constant. This is a consequence of
the masslessness of a photon which leads to the branch
point at xs ——0 in Eq. (15), arising from many photon
states, which are coincident with the photon pole. Also
in considering the electron propagator, the cut for
e —+ e+y starts at the location of the electron pole.

As an example of a problem for which a bound can be
constructed, we consider the contribution of a ~+a
pair state to the photon spectral function and 6nd its
minimum contribution to Z3 ' and to vacuum polariza-
tion, to all orders of strong coupling but to lowest order
in e'. To this order, the many photon states coupling to
a single photon via the scattering of light by light inter-
action can be ignored. The propagator and vertex branch
points then coincide at xs ——1 (in units of 4ii ') for a
m+x pair state and we can find a minimum.

The technique of Meiman is to map the cut x plane
into a unit circle with center at x=0 Lthe normaliza-
tion point of F (0)=ej and with the two sides of the
cut forming the periphery of the circle as in Fig. 1.The
relevant mapping is

s=e's= —
t (x—1)' '—sj/P(x —1)' '+zj. (16)

YVe then write

8 C
~ ., (t

A

x PLANE z PLANE

Fro. 1. The transformation s= —L(g—1)'~'—ig/L(g —1)'~'+sj.
The lettered points transform as shown.

terms of known functions. Using the known analytic
properties of F and assuming that F(e's) vanishes at
most at a finite number of points on the circle, the
second factor is shown in the Appendix to be )F(0)'=e'.

The general discussion and formal numerical result in
terms of mass parameters is reproduced in the Appendix
and here we simply quote the results. The coefFicient of

1/y in Eq. (14) for y~ae defines the charge renor-
malization Z3 '—1 due to the pionic contribution to
vacuum polarization. I or a point pion F = e and Z3 '

diverges logarithmically. As a lower bound we find

Zs ')1+n/96. (19)

Similarly a lower bound on pionic contribution to the
Lamb shift is obtained by minimizing the integral in
Eq. (4) and the result so obtained is

' n/1536 p'. (20)

This is smaller than the present limit of error by two
orders of magnitude. It is reduced by 5~/64 from the
value obtained for a point pion and by a factor of

1/40 from the enhanced pionic contribution due to
the 2n p-wave resonance (or p meson). "

IV. RIGOROUS BOUND ON NUCLEON
PROPAGATOR AND Z2 '

Kith the techniques discussed in the preceding sec-
tion, it is possible to bound from below the contribu-
tions of strong interactions to the nucleon propagator
and wave function renormalization Z2 '. This result is
rigorous to all orders of the strong interaction.

The spectral representation for the complete re-
norrnalized I'eynman propagator for the nucleon is, in
momentum space, -,t.p"(")+"(-»

Ss'(p) = + do' . (21)
P—M p p2 o2

Since the weight function pi(o') is both real and non-
negative we may analyze its contribution to the
propagator,

1
&exp-

-27r
d8 lnp(8)

—1
S *(p') =T &oS '(p)

1
)&exp —Re d8 lnF(e's) (18)

The first factor in Eq. (18) is integrated directly in

1 " pi(o')
+ dos

11''2 p2 o2 p2

"L.C. Durand, III, Phys. Rev. 128, 441 (1962).

(22)
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and through it

Z2 '=—1+
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pi(o') do',

The contribution of this state to p& is

3Q
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I
~-=
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1 M
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M') =; '/4~ =- 14.4.)gpion-nucleon coupling constant fi ——g;
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extended.
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To each finite order in a perturbation calculation
I&' /v(a2) satisfies a dispersion relation in the variable o'
with the cut starting at o'= 9p'(4M'. The branch point
at o-'= 9p,' comes from the three pion state which is the
lightest strongly interacting one which contributes. No
exact proof of a dispersion relation has been constructed
for this case because of the necessity of analytically con-
tinuing the NcV scattering amplitude below threshold
down into the unphysical region starting at o-'=9p, '.
This same problem stops us here, as the cut in Ii ~
extends below the threshold of p/viv in Eq. (32) and we
can give no exact result.

Although no rigorous conclusions can be drawn, it is
of interest to establish the approximate ones that can
be obtained by keeping only the lightest "two-particle
cuts" including the contributions of unstable vector
resonances. Thus we approximate the 3-pion contribu-
tion to p(o.-') in Eq. (32) and Ii /v(as) in Eq. (33) by a
two-particle p~ resonant state. The spectral weight
function p(o') in Eq. (33) is replaced by

1 o 3 1
p(a') &— — ll'n-(a') I' (34)

2r2 m ' (o'—p, ')'

Fio. 2. A reduced graph for
the process x ~ p7l-.

7l r

with

~pew(a. ) =gpmwG(a )

g p 2/42r 1.8 and G(/22) = 1. (35)

If we neglect all but the lightest two particle px in-
termediate state contribution to the absorptive part of
Pp, it is easy to see that the reduced graph, Fig. 2,"
contributes with branch point at q2= (m, +/2)' and we
can in this case once more apply the method of Meirnan.

We can write then for 8,/;(g2) with spacelike q2

with Q the barycentric three-momentum for the I2rp)
state.

The px7t- form factor is normalized to the observed
p —+ 2x decay width for o-'= p', which gives"

1 p(o')da'
A~(l cl') & +

I v I
'+/ ' a'+

I v I

' (36)

m 27r2
P

g p7r7r) +min
I
el'+/"

do2
(o'—F22) ' o '+

I q I-
(37)

1 g2 ( 1 /t {X+I1—((m, —/2)/(m, +/2))27r/2}2-

I
ql'+/2' 42r km, ' 8 (1+x)2 (m, +/2) 2)

(38)

with

or
I p2/(m +p)27}1/2~0 99

By a similar calculation we may put a lower bound on
the pion self-mass

(41)'/4

)~~(lel') &, ,+
q '+p, ' 4.6

8p' is probably infinite, but again if we assume that the
&&{(m,+/2)+((m, +p)2+ lql2)»2} —2 (39) integral exists then it must be larger than

Zs „., ') 1+(gs/42r)/4. 6= 1.4. (40) min o'p(o') da'

Equation (39) gives a lower limit for the correction to
pion propagator as often introduced in peripheral
analyses of 2r-A interactions. "For space-like

I q I
'(m, '

30p,' this increase in the value of the propagator
comes to less than 5% and is well within the uncer-
tainties of such analyses.

"See, for example, S. M. Herman and S. D. Drell, Phys. Rev.
133, 3791 (1964).

"The analyticity of such diagrams has been discussed recently
by C. Fronsdal and R. F. Norton, University of California, Los
Angeles, report May 1963 (revised) (unpublished).

or

8ps)(X+1)2(mp+/2)2(minZ2 ' —1)=66p2. (42)

%e note in passing that we may also approximate
a lower bound on bp. ' by an entirely different tech-
nique similar to that used in Ref. 2. The essential
assumption now is that the form factor F //(qs) associ-
ated with the x VN vertex satisfies an unsubtracted spec-

~ For example, K. Ferrari and F. Selleri, Nuovo Cimento Suppl.
24, 453 (1962).
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tral representation

1 " ImF(q")dq"
F(q') =-

9p2 g g Z6

thus
1 " ImF(q')dq'

7l 9p2 (t p
(43)

where

dq'Lp(q')]'"
4M,

X [(q2 4/1I12)/q2]1/4[~ ((q2)1/2)]l/2 (45)

1 ' 'ImF(q')dq'I—
7l gp2 g P

(46)

is the contribution from below the physical EN thresh-
old, and observe that for q'&4'' unitarity bounds
oy bv

(47)02 ((q')'")& 16 r/2(q' 4M')—
then

dq2[p(q2)]1 /2[q2(q2 4~2)] 1 /4 (4Q)

Applying now Schwartz' inequality once again we obtain

As in Ref. 2, we may use Schwartz' inequality to de-
rive the following inequality for ImF(q') above the
physical threshold for AA" production, q'&4M'

[ImF(q2))2 &2r(q2 /42)2[(q2 4~2) /q2]1/2

xor((q')'")p(q') (44)

where o2((q')'/') is the total annihilation cross section
for the 'S3 state of the /VE system, and p(q') is the
weight function in the spectral representation of the
pion propagator, Eq. (32).

If we now write Eq. (43) in the form

approximate, as the integral is over a region unphysical
for the ÃX process. In the two-particle approximation
we consider the px state as the only one which couples
to both the m and EX in the mass region 9p'& fT'(4M'.
Application of unitarity to the amplitude for pe+-+EX
analytically continued below threshold into this region
can then be made as shown by Mandelstarn23 in order
to approximate I in this region. We have not carried
out this calculation. If it turns out that I&&g, then the
bound Eq. (51) is much stronger than Eq. (42).

VI. RELATION BETWEEN ZEROS IN PROPAGATORS,
POLES IN IRREDUCIBLE VERTEX FUNCTIONS,

AND UPPER BOUNDS ON
COUPLING CONSTANTS

In this section we discuss the connection between the
occurrence of zeros in propagators, poles in the Dyson
irreducible (proper) vertex parts, and upper bounds on
the renormalized coupling constants. This is the original
problem studied by Geshkenbein and Ioffe" and
Meiman" who bounded coupling constants by the re-
quirement that there be no poles in the proper vertex
parts. We present no new limits in this section but
rather concern ourselves with the question of whether
or not there is physical significance to be attached to
the appearance of vertex poles and propagator zeros.

Goebel and Sakita'4 have already pointed out by
considerations based on potential models that a pole in
the proper vertex part has no direct physical significance
and therefore cannot be excluded by general arguments.
We present here a further model in support of their
argument and in answer to a subsequent communica-
tion from Geshkenbein and Io8e.'8 This is a generalized
Lee model with an unstable 8' particle in addition to the
stable V particle both of which couple to the E and 0.
It contains a pole in the Dyson irreducible vertex I',
and a zero in the V particle propagator, but no pole in
the scattering amplitude and, hence, no direct observ-
able consequences. Before developing this model let us
first review brieQy the Geshkenbein-Ioffe argument.

We consider the propagator of a boson with a
Kallen-Lehmann representation of the form

(g—I)'&I
4M4

dq'q'p(q')
I

D(x) = , p(x')
+ dx (52)

or

dq' 16
xl

4M2 q3 (q2 4/III2)1/2]

q'p(q') dq'
M' 4M~

& (g/M2) 8/42

[(g—)'/ ~]p'

(49)

(50)

(51)

Here we have introduced dimensionless variables as in
previous sections. x„ is the position of the pole.

For x&x„, both terms are positive so that there can
be no zero in this region. If p(x) does not vanish for
x& 1, there will also be no zeros in the continuum. We
assume this to be the case; i.e., there is always at least
one open channel above threshold. When x„&x& 1 the
pole term is negative and the integral is positive leading
to a possible zero as illustrated in Fig. 3. The spectral

where g2/42r = 14.4.
Any attempt to evaluate I, however, can only be very

I S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).~ C. J. Goebel and B.Sakita, Phys. Rev. Letters 11,293 (1963).
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E . (52) allows at most one such zero.p
sufficien conIn fact, the necessary and suffi

to exist for x„&x&1is

RS AN D VERTEX FUNCTIONSBOUN DS 0ON PROPAGATOR

JL

p(x) 1
4x

] g 1 1 xy
(53)

e existence of a zero to the value ofW o d t
o p g

term corresponding o ap
state which shall be the state o owes
Then we have

p(x)&p"'(x)—=g'P(x) IF(*)I' (54)

sures the strength of the coupling to the

d
e,x, is a kinema ic

factor normalized to unity a x„
=1

5 ), if
ic exce t for a cu s

Using the inequality in Eq. , we

p"'(*)
dx

POLE TERM

INTEGRAL

D(x)

rrence of a zero in the propagator'k)~e occurrence o a
D(g) in Eq.

e uivalent to the statementTheir result is logically equivaen
that if

g + 1/Imin (6O)

(1—x„)
p(x)

dx
1 g—1

it follows from p(x)&p& &»,x, that

Qmin Imin ~ (61)

ever it follows directly fromthen I'(x) has a pole. However, i o
Eq. (A2) of the Appendix that

(55)

)

illbeazeroinD x.
Introducing Eq. (54) into Eq.

g'Q&1 where we define

dg
P(x) IF(x) I'

x—1

g + 1/&min (56)

rrence of a zero in'd the necessary occurrencin order to avoi

es ff "have shown that if there areGeshkenbein and Ioffe ave
no poles in I'(x) where

e a zero in the ropagator. I'urther-there will then b
more, i

e must require then t athere will be a zero. e mus

Xp Xy

"p(x)dx

S iYQ

(62)

two article contribution to p(x)Keeping only the two par ice
leads to the inequality

2=Qown that for g'&g, ') where g,'=—Qm;„
d I'( ) d 1o ol .

constant is the absence of a zero in x

e"' " 't'='o '"n't
a ole in I'(x).

ill
f th'"""'h' nbbound g' in terms o pf the osition o

that D(x) has aGeshkenbein and Ioffe.. Let us assume
zero at x=xp so at

I'(x) =F(x)/(x —x,)D(x) (57) g'(xo —x,) dx xg o
—. F()l'

S SQ

(63)

then the coupling constant mustis the proper vertex, t en e
satisfy the inequality

g'& 1/Im..~

. (A2) of the Appendix, we haveUsing the result of Eq. o

vr ere,
'

h re in our notation, 1 Xp [(1 x )i/2+(] x )i/sj2

dxp(x) i F(x) i

'
- min

(64)
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W

g8 = 0
9 = o

*

—Ct — +~ ~

Fxo. 4. The Dyson
expansion for the
mass operator Z of
the V Geld in the
extended Lee model
described in Sec. VI.

couple. The Hamiltonian is written as

&=~v tv'4 v+~wp4wV w

cdkcra ccp+ ~Q'yt4w+4'wV v)
(2ir)'

+ (~ypg v'+~wpgw')4 iv 4-
+(XypPy+Xwpg w)f~tdt. (68)

We have set the mass of the E particle to zero for sim-

plicity and the 8 field is written

so that we have

(xp —x„)
g2

[(1—x„)'"+(1—xp) '"$'

X dx p(x) ~F(x) ~' &1. (65)
—min

If x& 1 so that there is no zero, we obtain our previous
result that g20;„&1.As xo approaches x„, the bound on
g' approaches in6nity. Since, in general, xo can be any-
where in the range x„&xo&1 no useful bound is
obtained.

This result was constructed with no further assump-
tions on the form factor than that it is analytic in the
cut plane with the branch point at x=1, and with

F(x„)=1, while x~&1. If we make the additional
assumption that I'(x) does not have a pole at the zero
of D(x) but has the very same analyticity properties
assigned above to F(x), it follows from Eq. (57) that
F(x) must have a zero at x= xp.

Then we can obtain a stronger bound by writing

F(x)= [(x—xp)/(x„—xp) )F(x), (66)

dx p(x) (F(x) ~'
—min

(67)

For arbitrary xo between x„and 1 we again obtain the
result that g'0; &1. With this assumption that F(x)
has a zero at x=xp and I'(x) has no pole where D(x)
has a zero the bound on g' becomes stronger as xo ap-
proaches x„.This is the case considered by Geshkenbein
and Ioffe in Ref. 17.

We now argue that there is no compelling physical
argument in support of the bound Eq. (58) by con-
sidering a generalized Lee model with two fields Pv
and Pw, representing fermions with the same quantum
numbers, in addition to the E and 0 to which they

where F(x) has no pole at xp. We then obtain the
inequality

L(1—xn)'"+(1—xp) '"3'
g2

(xp —x~)

X 1+Xv'(cp —My) Z2(cp, 3IIv,M y)

I'(cd) =Zy —'"Xy

Xw, 'Zip(cp, 3fv)
(72)

(cp —cpp) [I+XwPZi(cp, cpp) $

Xw, '(cp —Mv)Zi(cp, My)
X (73)

(cp cpp)[1+Xwp Zi(cp&cpp) j-

d'k N(k)

(2m.)' ' (2M', )' '

We assume the commutation rules

g v', 0 v}=I, ffwtntw} =1, gw",fv}=0

and all other anticommutators are zero. The a~ sat-
isfy the usual canonical commutation rules [a&,a&t7

=b(k —k'). We further restrict the parameters in the
Hamiltonian so that there is only one stable single-
particle state denoted by

~
V) plus the continuum of 1VO

scattering states. The TV field introduces an unstable
particle resonance and is of importance here because
the mass operator now becomes an infinite series of
terms as illustrated in Fig. 4 instead of a single term as
in the Lee model, and we therefore have the possibili-
ties of a pole in I'(x) and a zero in D(x).

Furthermore, we impose the asymptotic conditions
that

(0~/v~ V)=Zv ——const

and
(O~yw~ V)=0. (70)

This requires that only the Pv field will asymptotically
generate a stable V state.

We now de6ne the V propagator by

D v(t —&')—= (0
~
T(yy(&)yvt(&'))

~
0) (71)

and the Dyson vertex and scattering amplitude in the
conventional manner. A direct summation of the
graphical series gives for the Fourier transforms of the
propagator, proper vertex, and transition amplitude

Dv '(~)=Zv '(~—Mv)
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2( )=r( )D;( )r( )

&vs=~v s/L1+~v 'Zi(Mv, Mv) j.
We have also introduced

(75)

1
Zi(gdi gds) =

4x'

ku'(gd) dgd

7

CO
—

Cay CO
—

COg

ku'(gd) cgd
(76)

Z2 M]&%2&M3
4gr' (gd —gdi)(gd —gds)(gd —gds)

which are positive for co&35&. We assume that the cutoff
u(gd) falls off suKciently rapidly for large gd to make
Zi(gdi, a») convergent and the theory finite at each step.
The coupling constant X&' is restricted by its definition
and the requirement that Xzp'&0 to satisfy

0&i~v'& LZi(M v M v)j-'. (77)

It can be shown that X~p' and Xy' can be chosen so
that there is only one stable state. We have already
assumed this in our discussion since the physical V
state and the E8 continuum were taken to form a com-
plete spectrum of states. Consistency of this assumption
is then established by showing that these states do in
fact satisfy the completeness condition

l v)(vl+P, lee)gvg, l
=1 (78)

with appropriate choice of X~p' and of ) yp', or Xy'
satisfying restriction Eq. (77). More intuitively we see
this by observing that the V propagator Eq. (72) has
only one pole at the physical mass Mz of the stable V
particle, and that the 8' propagator

(ol2'(4 (&)4 '(&'))lo)

and the "mixing" oG diagonal propagator

(0lr(p (~)A '(&')) lo)

have no poles. According to Eq. (72) this condition is
satisfied if

Xvp Zi(MggMv) Xgvp Zi(Mgggdp)

1+Xvp'Zi(Mg, Mv) 1+XgvQPZi(Mg, gdp)

(M g
—Mv)Zi(Mg, Mv)

(79)
(Mg —gdp)Zi(Mg, gdp)

Xpi'p

(74)
(gd gdp)L1+XgvppZi(gdggdp) j

where 3f~o has been eliminated in terms of cop which is
the position of the zero in Dv(gd) and the pole in
r(gd), Mvp has been eliminated in terms of the stable
particle mass M&, and 8 was determined by the asymp-
totic condition (0

l Pgv l V)=0.The residue of the pole at
co=My of the scattering amplitude is defined to be ) y'
and is related to the bare coupling constant by

is canceled by the pole of the last term leading to a
finite T(gdp). There is thus no observable effect of the
zero in D& or pole in F. Hence there are no physical
grounds for ruling out the possibility of zeros in propa-
gators or poles in vertex functions and so the tech-
niques used in this paper lead to no bounds on coupling
constants.

In conclusion, we note that if we apply the method of
Meiman to bound X~' in our VR' model we obtain the
inequality

L(Mg —Mv)'"+(Mg —gdp)'"$' 1
g , (80)

-COp —My Zi(Mv, Mv)

where

( 1 ku'(gd) Chd 1
R=—

I

— dg — exp — dtt
(2gr 27r(gd —Mv) C8 2'

ku'(gd) dgd

Xln (81)
27r(gd Mv)' d8—

The inequality of the arithmetic and geometric means
implies that

If we do not assume that the position of the zero in
Dv(gd) is known but merely that M v&gdp(Mg then the
factor (gdp

—Mv) ' may be infinite and we obtain no
bound. If there were no zero so that cop&M& then we
would obtain

Xv'&R[Zi(Mv, Mv)) ' (82)

which by Eq. (81) is consistent with the known bound in
'Av' that lIv'Zi(Mv, Mv)(1.

An alteration of the VS" model to one in which both
the V and the 5' appear as stable particles, as studied
by Srivastava, "no longer yields a zero in D& or a pole
in F. This model gives the same equations discussed in
a recent paper by Geshkenbein and Ioffe" who appealed
to this result to support their coupling constant limit
and to refute the earlier criticism of Goebel and Sakita. '4

"P.K. Srivastava, Phys. 128, 2906 (1962).

Since the first two factors are arbitrarily close to unity
for large values of X~p' and X~p', and the third factor is
larger than unity for M&&or p&3f & according to the de-
fining Eq. (76) for Zi we see that our model with one
bound state is consistent. We notice, however, that D~
has a zero and F a pole located at cop between the pole
and the continuum of Dy. These are not present in the
scattering amplitude, however, because the pole at
gd = gdp in the first term of Eq. (74), i.e.,

~8'p

r( )D,( )r( )
(gd gdp) l 1+Xgvg Zi(pdpggdp) j
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The point is simply that one has additional constraints
upon the coupling constants and mass parameters
Xp p X~p 8 M Qp M~0 in order to make the tnro stable U

and 8" particle states mutually orthogonal. The con-
struction of states and propagators in this case has been
given by Srivastava as well as by Geshkenbein and Ioffe
and we do not repeat it here. The resu1ting mode1 is
thus too restrictive to enable any general conclusions to
be drawn.
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So

with

ln[f(8) g(8)]d8

[f(8)g(8)]d8»'I I

1
I1——exp-

27r
d8 lnf(8)

[f(8)g(8)]d8&exp-
' f/ 7r

(A7)
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APPENDIX

1
I2——exp-

27r
d8 ln

~

G(e")
~

'

In this Appendix we give a simplified resume of the
mathematical procedures introduced by Meiman for
constructing the limits obtained in this paper.

%e prove the following theorem:
Given an integral of the form

1I= dx(x+—a,)~r(x+as)". . (x+a„) "IG(x) I' (A1)

Now

= exp —Re
7r

d8 lnG(e") (AS)

l ds
lnIs ——2 Re — —inG(z)

21Tz ~~ jf,Q s

If G(s) has no zeros within the circle, then its known

properties and Cauchy's theorem imply that
satisfying: (1) I exists; (2) the integrand is positive;
(3) G(x) is a function which is (i) analytic in x except for
a cut from 1 to oo, (ii) unity at x=e (c real and &1),
(iii) bounded at ~ by some power of x't', (iv) nonzero
on the cut except at a 6nite number of discrete points;
then

Is——exp[2 Re lnG(0)]= 1.
On the other hand, if G(z) has zeros at points

zi rie'r' ——z9 rse'o' z =——r„e'r"(r &1)

we can write

(A10)

I&4X'P+(1+at)'"]' 'P+(1+a )'"]' ' . .
[h,+(1+a„)'"]'~ (A2) (A11)

(z—r, '
e&)r(z r„e'o-)—

G(z) = G(z)
with

y= (1—c)'".
—r1e'«

(A3)
where G(z) has no zeros and

e't Pnn

Proof: In terms of the variables defined by

= —(t—)/(t+ )

tan(8/2) = t= [(x—1)/(1—c)]' '

I may be written

(A4)

Hence

1nI2=2 Re

G(0) =1.

ds—inG(z)
2' Z g ~j&Q

(A12)

d8 t(1+t')[1+ai+(1—c)t']~' . .

[1+a„+(1—e)t']~"
~

G(e'e) ('. (A5)

Equation (A4) defines a mapping of the cut x plane into
a unit circle as shown in Pig. 1.

Setting or

n

+2 Q — d8in
j=1

G(0)
=2 Rein

s—r e'~~

—r .e4'i
(A13)

f(8)= (t~(1+t')[1+at+(1—c)t'] '
[11a„+(1—c)t']

and

I2=
r12r22 r 2

(A14)

g(8) =
I
G(e'e (A6) So for all allowed G(z) we have'"

the inequality of the arithmetic and geometric means" I2& 1. (A15)

"See for example, G. Szego, Orthogonal Potynomeats (American
Mathematical Society, New York, 1959), p. 2. See also Chap X
for further development.

' Equation (A14) follows directly from Jensen's theorem. See,
for example, E. C. Titchmarsh, The Theory of Fnneteons (Oxford
University Press, London, 1939), 2nd ed. , p. 125.
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Observing now that

and

Ch

inl 1+a't'I = 1nl 1+a l

2m „1+8
dt

lnt=O,
2n. „1+t'

I& may be readily evaluated to give

(A16)

extends below x= 1 to a point x=P) c. Ii remains the
same as previously but I2 must now be evaluated by
applying Cauchy's theorem to an integration around a
contour F as shown in Fig. 5. Then

0=1nG(0)

1nG(s)
4s

2%1 p s

1nIi ——2 1nf 2@,+(1+a )'"]~'
Pi+(1+a„)'"]") . (A17

So, 6nally,

I&4X'P+ (1+ai)'t']'~' [1iy(1+a~)' ']'~" (A18)

1 1nG(s) 1
dx+

2xz „„jgQ 8 27[ z p

' disk 1nG(z)
dc, (A19)

where
(A20)dlskw(s) =w(s+zt) —'w(s —ze) .

which proves the result.
We note that it has not been necessary to make any

assumptions on the existence of J'f(8)d8
Let us now consider the case in which the cut in G

So
1 ' disk 1nG(s)

I2——exp —— Qs

Ulcc

p

(A21)

Fxo. 5. The integration contour for the
integral I2 as given in the Appendix rvhen
the form factor has a cut. starting at a
point x=P to the left of the propagator
cut.

1 i disk 1nG(s)I;„=exp Zs
71"l p

y41i'[1i+(1+ai)' '] ~' [1i+(1+ay)'~']'~". (A22~

The bound now depends on the unknown function
disk 1nG(s) and so it cannot be fixed in the same precise
manner as previously.


