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A spin-zero 6eld coupled to itself by a current-current interaction is examined subject to the requirements
that the vacuum expectation of the current be nonvanishing. It is found that this theory is equivalent to the
ordinary electrodynamics of a spinless particle. In all its broken-symmetry aspects the theory is similar to the
Bjorken theory for Fermi particles, although the calculations necessary to arrive at this conclusion are more
complex.

INTRODUCTION
' 'N the preceding paper' (hereafter referred to as I) we
~ ~ discussed the restrictions imposed on a theory where
the vacuum expectation of a vector operator j& is re-
quired to be nonvanishing. As a specific example a
Fermi field interacting with itself through a current-
current interaction' was considered. It was found that
this theory reproduced the electrodynamics of a spin--,'
particle. This theory was particularly interesting and
suggestive because it demonstrated that through the
appropriate identification of terms an unrenormalizable
theory involving one field can be transformed so as to be
equivalent to a renormalizable theory involving two
fields. In this paper we shall perform the analogous
manipulation for a two-component self-coupled spinless
field. These manipulations will lead to the normal
electrodynamics of spinless particles. The underlying
broken-symmetry structure will be found to be essen-
tially identical to that found for the Sjorken model.

In these equations the convenient definition j&=ipq&I'—
has been made. It is easily verified that B„j&=0.%e now
break the I orentz symmetry by imposing the condition

(Ooil j&lOo&)

«oil O~s) g=s
=rl" (x) l

g=s=ri"WO. (1.3)

The possibility of making this requirement hinges on
the intrinsic ambiguity in the meaning of the product
of two field operators at the same point in space-time.
In electrodynamics this product is understood through
a gauge-invariant averaging procedure which precludes
the realization of (1.3).As was found in I, the concurrent
validity of both current conservation and Eq. (1.3) is
very dependent on how this equal time product is
defined through a cutoff procedure in the Green's-
function realization of (1.3).The same observations will

be found to apply here.
If the new operator

O'I"= Bl"+gsij I'q ij"q——
I. DERIVATION OF THE GREEN'S FUNCTIONS

The Lagrange density is taken to be

Z(x) =y~a„y+ ,'y~y„-,'m'ga-—

!g.[~q~ 3L~-q~.]+~ ['~q~.]. (1.1)

The two component fields P and P& are Hermitian and
the matrix q=o.s. From (1.1) we may derive the usual
equal-time commutation relations

is introduced, Eq. (1.2a) becomes

D'"4 = —4'"

while Eq. (1.2b) becomes

D„'y~+msy =0.

Combining these we find the familiar equation

(1.2c)

(1.2d)

[—D„'D'~+m'7P =0.[4(*)A(~')]"'="=0 [4(*)4 "( ')]*"="=o

(1(')[~(*),~'(*')]'.=*. = &'(.—')
Equation (1.4) establishes the equivalence of the usual
first-order formalism' to the second-order formalism.

It is convenient to study the two boson propagators.By varying P& and P in Eq. (1.1) we find the field
equations «~t l (@(*)@(y))+I «s)

G(x,y) =i(1.2a)pa~+ gsij &
q iJ&qgp=-

[8~+g&ij I'
q iJ~q]p„+m'—/=0

and
(1.2b) and

.«-1(~"( )~(y)).lo- )
G~(x,y) =i

(0 10,
From the field equations it is found that these two
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propagators are related through the equation

G~(x,y) = —a,~ iJ~(x)q+g,iq~(x) q

With this device, Eq. (1.7a) may be written as

G~(x,y) = —pa.~+iA «q

+gpqD""(*y) (~/»" (y) )EG(x,y) (1 7c)

while Eq. (1.8a) becomes
8J„(x)

It we make the convenient definition
La."+iA "q+gpqD""(x,y) (a/»" (y) )3G.(x y)

= a(x—y) —m'G(x y) . (1.8b)

t
—id~ —i6

D,'"I
I

=— a," i Ji'(x—)q+g pirl'" (x)q+g piqkaJj 5J„(x)

Eq. (1.7a) may be written in the compact form

—i8
G~(x,y) = —D,'~ G(x,y) .

6J

In ordinary electrodynamics, corresponding to (1.7c) it
is found that

G~(x,y) =—
I a,~+iA, ~q+e pqD;"(xy) (6/aA, "(y) )]G(x,y)

while corresponding to (1.8b), we find

La."+ 'A."q+ qD:"(,y) (a/». "(y))3~.(*y)
= 5 (x y) —m'G—(xy) .

The field equations and the commutation relations then
require that

—ia)
IG. (x,y) = a(x—y) —m'G(*, y) (1 8a) and

Combining (1.7b) and (1.8a) it is found, corresponding
to Eq. (1.4), that

&Oo,
l
A~IOo, )

A ~=
e

&oo,
I
oo, &

.(0 l(A"(x)A" (y))+I«&
D "'=z

(Oo,
I
Oo, &

Ke now introduce the suggestive notation

(Oo I j (x) loo &

A~(x) —=g, —J~(x) = ngp~( )x—J~(x)
&oo, loo, &

and define the function

D~"(y,x) —= (aA" (x)/BJ~(y))
g""a(x y)+g—pG""(x y)— (1 10) G~(x,y) = —La,~—iJ~(x)q+igpqq~(x))G(xy)

= —D~(x, &)G((,y) (1.11a)
and

It will turn out that Di'"(y, x) corresponds to the
photon propagator of ordinary electrodynamics. Thus
Di'"(k) will be found to have a pole at k'=0. In Eq.
(1.10) the auxiliary function Gi'"(x,y) is defined as [B.i' iJi'(x) q+i g pqql" (x—)]G,(x,y) =D&(x&)G„(gy)

= 5(x—y) —mPG(x, y) . (1.12)

A|" is the ordinary vector potential. It is thus clear that

(1 9) to within constant factors, Eqs. (1.7c) and (1.8b) are
identical to the equations of electrodynamics if DI"" has
the form claimed. In the limit that Ji'=0, (1.7c) and
(1.8b) differ from ordinary electrodynamics in as much
as (A i') g p= gpgi', while (A, i') J'=p 0. This is of no con-
cern, as a constant potential has no physical eRect.

For the construction of DI"" we consider the lowest
approximations to G and G&. These are found by
neglecting the variational deriva, tives in (1.7a) and
(1.8a). The basic equations are then

.&0~iI (j"(*)j"(y))+ I «p&
G~"(x,y) =i

(Oo, I
Oo, )

i&«il j"(x)loop& &«il j"(y) I «p&

&oo,
I
0~,& &oo,

I
oo,&

To facilitate this comparison to electrodynamics,
derivatives with respect to the external source J& are
replaced by derivatives with respect to the "vacuum
vector potential" A&. The chain rule shows that G 1/( —D D +m——'). (1.13a)

Here, the quantity DI' is

D (x,~) =[a:(x [) iJ (~)qa(x —g)— —
+ goq~"(&) a(- $)j. —

Of course, the spatial indices x and $ of Di'(x, ]) will be
left implicit in most of what follows.

If (1.11a) is inserted into (1.12), we find that

a aA" (x) a

8J~(y) BJ~(y) BA "(x)
=D~"(y,x)

bA" (x)

Inserting (1.13a) back into (1.11a) yields

G~= D~)1/(D D„+m') ]—. (1.13b)
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photon p op

D"(y~)Dp(x $) = 5(x(—()/ J( '

h 1' toof Eq. (1.15a) forD fferentia .
h j, on

D [gqG.+G q

(1 21) resuits in

G] (1.22)(;g/6 J,)g I
~=p=

r it is found thatthe same m

1.»)
—2 s

Dpzz{ g &qg )4

gg /8AI ~"-p
D [g G.+G qg]) '

in the «rmIf /ye repiese t

,'~(*—»G(P)(i Pg(x,y) I ~=p=

it follows that

,,( „) (1.15)(;p„+,g,qq )G(P)'"G) (x,y) I &=p

Ry. IIKING SO LUTI o

tha

syMM y gREA

a ator.. It is easily found

that13a, then shows th

) 2]—1 (1 1()a)G(P) =(2~) 'L(P +gopqg~) (P +gpqp) 222

tion equivalent to (1.16a t aA rep ese ta 'o
q

the q dep endence in the

1 ~ g, ' P)22 gp2))2] —2gpq(q P)( "+gpqn")([P'+~' go n-
[P2+~2+g p n ] —

g
'2 2 2 2 4g2( .p)2

G(P) =

(1.17)

of broken symm ymetryjn
' —'

)" the condition oSince j )'=ipqpi))',

be written as(1.3) may

2)(' = trqg)'(xx)

1.17), becomes'th the aid of Eq.which, wit

[G)'"[P'+P)2'+gp )) 2P"p"l—
2 2 2 2]2 4g 2(~.p

2gpgv
gP=

(22r)' [p +2)2 +g

2 p o
'

t-hand side of Eq. 1.19
d 'ise ' 1dbeidenti 1

h cond,
.t,.o eq
of 4 difference e we

he fact that t etrivial and on ynl reQects
of freedom. Because oaddition p

the converge
e rovide a,e ral are true in

f the factor o
g

and ma%.e the
the equations, we

r ifweinroIn particular,
'

definitions

G"~=i Trq( H—G~/6J. )

we find that when J"=0,

TrG —TrD„(GGQ v ZDvA g

Inserting this into

(D""+g"")/gp= G""

ith J&=0 yieldswit

D""(s—x)I g.„I)(x—y
(

)

x—y) TrG(x, x)+TrG„(y-—x)G.(x—y)~pt x

si)z(z—z)Dzz. (k)D" (s—x)= s'

this becomes
gp(22r)4

[D "(k)] '= (2~) —
g "4 u(z+

G(p)g""Il' (-)

—Tr[D„(y——~)g. (~—*)G(*—y)],
= —g"'~(s—y). (1.25)

resentationthe Fourier repIntroducing

and

d'4Sgp
L=

(22r) 4i P2+ p)22

Sgp

i(22r)4

()t4P

[p'+2)22]2

z 4 D"(p)G (p)G(p+4)])—+Tr[G~(p)G (p+k D~—
(1.25b)

8g() d p

it follows that

(1.2Oa)= (—'Q+sipp22L —isgp 2)
2 2P ~)zTrqg)'(xx) = s s

t a
' '

n 1.18) for 21/0 isthat the condition . isand hence t a n

1=8 8
—m~J g2gp g

n the cutoff A~~ Eq.In tish model when t e
be mes

(1.2ob)

(1.20b)

1=ggA2/162p2.

co

d for the study of theork is now prepare oThe ground work is n

s eci6cally thear to perform spec
h relation Th

Th
in eg

r as in
~ ~

ed throug
h e nn

pr ~)'(k) is introduced

gp(22r)4
'"(k) —=

T,g )+T,[g (p)g-(p+k
l (22r)4

—D"( )G (P)g(P+k)]k . (1.26)
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The zero energy part of 7r' ) is related to the basic manner we only retain the divergent terms of (1.20) and
calculation (1.20) of the theory through the Ward's the last term of Eq. (1.28) does not occur. It is then
identity possible to conclude that

i—B d4p
~"~(0)=

Bg. (23r)'

1 1 —
k k~-

D ~(k) =- gc jl

(24r) 4 k'I' (k') k'
(1.31)

(P"+god~")
XTr~ I7

(p +4,qg") (pi+4'qg„)+m')

TrqG~(xx) .

Combining this equation with (1.20a) and the condition
(1.20b) it follows that

~'"(0)=
8'g~

TrqG~(00m) = g ~ (ogo'P)—rl q~

=g.~ ', Cq q—~ -(1.27.)

Here, we have made the definition C=—3Fgp. It may
easily be seen that or' )'(k) —lr' &(0) is independent of
g)'. A direct calculation shows for A/403 large that

~"~(k)= (g~~k' k~k')I'(k'—)+g ~ ', Cq q~. —(-1.28)

Here I'(k') is the second-order "photon mass" of
ordinary scalar electrodynamics and is given by

This propagator is transverse for all values of k and
consequently is consistent with current conservation.

It is easily found that for either of these propagators
electrodynamics in a constant external 6eld is repro-
duced, if the identification n= 24go/L= 247ro/Im(A/m) is
made. This restriction is consistent with large cutoff A
and small coupling constant gp.

In conclusion, then, we have found that within the
framework of the self-coupled charged-boson model it is
possible to extract a photon without ever inserting a
photon field operator A&. The propagator for this
photon differs at most from the ordinary second-order
electrodynamic propagator by gauge terms. We are
now prepared to undertake the task of checking the
consistency of this theory with the operator symmetries
required by Lorentz invariance.

II. CONSISTENCY WITH ROTATIONS

As an expression of the vector nature of the operator
jl", it is necessary that

1 —
goko " dEOL1 —4433'/E3)3)'-

I'(k') =—I.+ (1/i) L~"",i"(*))= (~"~" *"~")i"(*)+—g""i" g""i "(*). —
E'$E'+ k' —io]

It follows that

24 2 4 The application of condition (1.3) to the vacuum
expectation of this equation yields

(1/ )(0 I
LI"",i'(*))I o)=g""n"—g""n".

LD~)'(k)) '= (2or)4t (go~ko —k~kk)I'(k') —-'CN~UO). (1.29)
With the aid of the relation

It is now necessary to make the same decision as in I.
The last term of this equation, which is of entirely
different structure from the others, comes from taking
the cuto8 procedure very seriously in the calculation of
(1.20a). If we did not regard this procedure so seriously,
the last term would not have occurred. Inverting (1.29)
with the term results in

1 1 i q'kk~)D""(k)=,
I g "+

(27r)4 k'I'(k') 5 (g k)'I

J)'P doy[y)'To. (y) y.TO&(y))

and the introduction of the quantity

C,""'(y—*)= (o I
LT""(y),i"(*))I o)

this equation is equivalent to the two equations

d3yykC OOX (y)
—gok~k g) k~o (2.1a)

(1.30) and
C(q k)'

Here the convenient notation

g ~=g ~ kgb/q k qk~/q —k—
has been introduced. Thus D &(k) describes the propa-
gation of a zero mass photon. This propagator is
identical in gauge structure to the propagator of I.
Since it arises from currents in essentially the same way,
this form is subject to the same difhculty with current
conservation. If the cutoff is treated in a less literal

d3y/ykC olk (y) ylC Okk (y)]—glkgk gkk~l (2 1b)

The analysis of these structures with the two forms
of the photon props, gator (1.30) or (1.31) was com-
pletely developed in I. It was found with the Bjorken
form of the propagator (1.30) when q'=0 that

C„~"'(k)= L(C,/i)0(ko)8(k')g're")q k

+(C3/i)6(k g)k"qOvy). (2.2)
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It is necessary that Ci—C2= 1/(2ir)'. The term propor-
tional to B(ii k) is the only one that is present if ii'NO,
and originates from the term proportional to krak&/(g k)'
in the photon propagator. Its presence emphasizes
the current nonconserving aspects of the Bjorken ap-
proximation. The tensor structure k"g&g" has been set
so as to assure energy-momentum conservation. It is, in
fact, unlikely that an approximation which violates
current conservation would respect energy-momentum
conservation. However, since the q&g" terms do not all
originate in inverse propagator structures, and will be
shown to be immune from exact calculation, we exercise
the prerogative of respecting this symmetry. We do not
contend that the presence of this term should be taken
seriously in interpreting broken symmetry phenomena
since its origin is due primarily to a symmetry-destroy-
ing approximation. Nevertheless, its presence is reason-
able in a charge-nonconserving theory and very sugges-
tive. The term B(g k) in no sense corresponds to a
normal single-particle excitation io a Lorentz invariant
theory. It must be interpreted as representing transi-
tions mediated by j& between the standard vacuum and
states built on other vacuums whose occurence is
guaranteed by the broken symmetry requirement (1.3).
This then is one type of spurious transition related to
those suggested by Klein and Lee.4 However, it is clear
that its origin is inextricably bound to the presence of

Direct calculation with Eq. (2.1) shows that

C4——1/(2s )'. (2.4)

It is the responsibility of a consistent calculational
procedure to explicitly verify Eq. (2.4).

To perform this calculation we introduce the sym-
metrical energy momentum tensor corresponding to
(1.1). It is easily shown that this is

z' =@.~
lg" L~.~-- goi.i -+-2J.i-+ V3 (2 5)

It may be checked by use of the 6eld equations that

8 T~"(x)=0

Using the definitions made in Sec. I for 6, DI", and 6&
it is found that

the zero mass particle of the theory. As proposed in I,
we feel that this might be indicative that the statement
made by the Goldstone theorem' is always correct in
fully relativistic theories, although its proof restricted
to normal spectral weights is not suKciently general.
For the Lorentz gauge form of D~I'(k) given by (1.31)
it is necessary that

C„4""(k)= (C4/i)e(k') B(k')k "gl'"(m k) . . (2.3)

(On
I
T""(y)

I
on )—=Tr[Gi" (y, p)D"~ (fp) j~ „e—goi TrqGI'(y, y) TrqG" (y,y)+2i J&" TrqG"& (y,y)

(o., lo.,)
+-',g""[Tr[G (y, $)D (pp)]„„0 goi [TrqG~(yy)—][TrqG (yy)]+2iJ~ TrqG (yy)+vs' TrG(yy) ]

goi( iB/BJ—'") Trq—G"&+-', geig&" (—iB/BJ ) TrqG . (2.6)

Hereafter, the last two terms of Eq. (2.6) will be dropped. This is done in order to make this calculation consistent
with the approximations used to determine G and 6& in Sec. I.

It is convenient to determine C„&""through the function

T„~""(y—x) =i
ib (Oa—.&l T "(y) I002) i(oa., l

BT"(y)/BJ" (*)IOn2)

(o-.Io-.) (O~il On, )BJ"(x) —J=O

= i(0
I
(T""(y)j"(&))+10) i(0

I
T""(y—) I 0)&'

by use of the simple procedure outlined in I for transforming time-ordered products into commutators. From
Eq. (2.6) we 6nd, with the assistance of the equivalents to Eqs. (1.21), (1.22), and (1.23), with J&80 that

T,""'(y ~) =D' (* s)L2B(s y) g—s'"n"'+T—rD'"(yn) LG(n, s)qG ( n8)s+G ( n, )nqGs(s, f))D"'(8y)

IJ Ij,v

+2goip&" Tr{g»&B(s—y)G(y, y) —D»(y )[Gn( , )Gn&s( y)s+G ( ,s)Gn(sy)]s) ——,
' Zn(s —y) . (2.7)
(2~)'

In Eq. (2.7) the function Z~(s,y) is defined as

Zn(s —y)/(2n. )4=[2B(s—y)gs+TrD (y,n)[G(B,s)qG&(s, $)+Gz(B,s)qG(s, $))D ($,y)+2geip
XTr(g &B(s—y)G(y, y) —D (y, B)[G(B,s)G+(s,y)+Gn(B, s)G(s,y) j) m' Tr[G(y, s—)qG&(s,y)+Gs(y, s)qG(s, y)$.

Except for the term proportional to m', Z~ is just the trace on (p, v) of the terms preceeding it in Eq. (2.7). If the

4 A. Klein and B. %. Lee, Phys. Rev. Letters 12, 266 (1964).
5 J. Goldstone, Nuovo Cimento 19, 154 (1961). J. Goldstone, A. Salam, and S. steinberg, Phys. Rev. 127, 965 (1962). S. A.

111udman and A. Klein, ibzd. 131, 2364 (1963).
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Fourier transform of Eq. (2.7) is taken, it follows that

T„p"'(k) =D"n(k) 2g~ 'pri"&+ (2m)' Tr(D ip(p) /G(p) qG~ (p+ k)+G~ (p) qG(p+k) jD"(p+ k)d'p

—2'&"~&'»(k) —-', gp"Z&(k)]—=D(k)" Tnp" (k). (2.8)

We know the structure of all the terms appearing in Eq. (2.8) except for the one of the form

(2~)' ~'pL&"(p) LG(p)qG~(p+k)+G~(p)qG(p+k) jD"(p+k) =~""—"(k)

and the ones proportional to nP in Z~(k). The terms
proportional to m' have no momentum dependence and
hence are only of significance to T~p" (0).

By insertion of the forms for G& and G found in Sec. I,
it is found that 8'~p" (k) is quadratically divergent as
A —+00, and odd in ql". A tedious calculation i' which
the cutoG is taken seriously by retaining all finite
terms which occur with divergent terms yields

p&Bpv (k) gv 8pv(p)+ 1Jv [~Bgpvk2+ 2~Bk pkv

+2k'gsi pqv& —2ksk &pri" &j. (2.9)

This expression has no part which looks like g kg~(&k")

and consequently can make no contribution toward the
satisfaction of Eq. (2.2). It takes very little further
consideration to demonstrate that all contributions to
these equations must come from the anomalous parts
of D"s(k) in the form

—4k "ks/C(2~)4(ri. k)'TnP" (0) .

As in I, T&p"(0) involves quadratically divergent terms
which cannot be calculated from (1.20a) through any
Ward's identity. Thus T&p"(0) must be adjusted in
order to guarantee the satisfaction of Eqs. (2.2). We
therefore conclude that for g& time- or light-like that
the relevant terms of C„p"~(k) are

C" (k)=Ps/(2 )q~(&.k)k» &

Thus the consistency, using propagator (1.30), occurs
in a rather strained manner.

It is, however, very simple to check the consistency
when finite terms occuring with divergent integrals are
neglected and D"~(k) is in the Lorentz gauge. Then

(2.9) shows that
Esp" (k) =8'sp"(0).

By the arguments of I, the momentum-independent
parts of T~p" (k) must vanish in this case, so we conclude
from Eq. (2.8) that

T„p""(k)=D" (k)$—2rl&"Lm '» (k)—m
'» (0)j

+gp"ri.L~"~(k)—~s"(0)$.
Using (1.28) and the recipes of I for conversion of a
time-ordered product into a commutator, (2.10) yields

C„p"~(k)= L1/(2~)'ijk "gp"q ke(k') S(k') .
This is in accordance with (2.3) and (2.4) and hence we
may conclude that in the Lorentz gauge the scalar
theory is consistent in an unstrained manner. Equation
(2.10) clearly illustrates a point which was not so clear
for the model of I.Namely, the consistency of the theory
is guaranteed by the zero mass part of the current-
current commutation relations of a conserved current.

In conclusion, we should like to point out that the
essence of what we have done here can be reproduced in
ordinary electrodynamics in the presence of a constant
external potential. This is equivalent to imposing the
broken-symmetry-like gauge requirement (0

~
A p

~ 0)= g p.

However, because of the gauge structure of Lorentz
gauge electrodynamics, no general proof of the vanishing
of the photon mass results from this procedure. '
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