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(—',Pv2) masses within our scheme. Assuming the pion and
nucleon masses and the ~ST coupling constant to be
known, these turn out to be 1200, 1640, and 2310 MeV.
It is a curious fact that, together with the nucleon,
which has a mass of 940 MeV, these masses mJ- obey
to a few percent the rigid rotator formula mg
= A J(J+1)+8,where A and 8 are constants. This is
exactly the prediction of the strong-coupling model"
which, however, had an additional arbitrary parameter.

The above masses of the (-', ,~3) and (—',,—', ) particles
should be compared with the experimental values of
1240 and 1560 MeV, respectively. In the latter case we
are assuming, of course, that we can identify our par-
ticle with the resonance of Ref. 7. LActually, the value

~~~~, q~2 in Eq. (2.14) does not coincide with the maxi-
mum of the cross section; it corresponds to 1650 MeV,
which may be the more appropriate quantity to com-
pare with our calculated value. ]
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An approximate dispersion-theoretic treatment of peripheral inelastic processes is introduced with the aid
of a K-matrix formalism based on the impact-parameter representation of Blankenbecler and Goldberger.
The method allows the use of one-meson exchange poles as a framework for constructing a multichannel
scattering amplitude which satisies unitarity in the high-energy region, allowing for an indeinitely large
number of open channels. The reaction matrix is time-reversal symmetric and exhibits any other symmetries
of the pole terms. Applications are numerically worked out for models of high-energy Kp and np charge ex-
change, and in the former case satisfactory agreement with experiments is achieved. A qualitative discussion
is given of peripheral isobar production models. The high-energy pp and Ep diBraction scattering is ex-
amined, as well as the agreement of the small-momentum-transfer behavior with a simple model not involv-
ing Regge poles. The method sheds no light on the difference between pp and Pp scattering at high energies.

I. INTRGDUCTIGN

~ LASTIC and inelastic reaction amplitudes of ele-
- ~ mentary particles and isobars at high energies

characteristically exhibit a peak in the forward direction.
In some reactions, such as proton-antiproton elastic
scattering, ' the form of the amplitude can be readily in-
terpreted by analogy with optical diffraction patterns,
suggesting a semiclassical picture of the nucleon with an
absorptive core and a diffuse boundary, phenomenologi-
cally of Gaussian shape. In some other cases, for
example' K++p ~E'+ S~~2*++, the center-of-mass
angular distribution of the production reaction is
clearly consistent with a one-meson exchange formula.
The most common high-energy reaction behavior seems
to be intermediate between these extremes.

Phenomenological corrections to one-particle ex-
change formulas based on the introduction of form fac-
tors have been widely used in the analysis of peripheral
inelastic processes, ' but these form factors have at least
two objectionable properties. The 6rst is lack of
generalizability; evidence has accumulated that such a
form factor appropriate to the vertex p~x has a behavior
nxuch different from that for the pe% vertex, ' while a

~
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close relation between these form factors would be ex-
pected in various symmetry schemes such as unitary
symmetry.

The second is a lack of theoretical foundation within
the framework of dispersion, or on-the-mass-shell, tech-
niques. A form factor may be expected to have an im-
portant inRuence in a perturbation-theoretic approach,
but even then it is diS.cult to see the source of such large
variations as are required to fit the data. This point
has been discussed by Durand and Chiu, 4 Ross and.
Shaw, ' and earlier by Baker and Blankenbecler. '

The authors (particularly Refs. 4 and 5) also point
out that the inclusion of initial and final-state inter-
actions, usually taken to be strong elastic scattering
v ith a diffraction character, is very important in the
analysis of peripheral inelastic processes; and, in fact,
these corrections may be quite sufhcient to explain the
deviations from one-meson exchange previously ascribed
to form factors. Essentially the same conclusion has
been reached by Bar and Tobocman in a slightly dif-
ferent language; a detailed discussion of the mechanism
has been given by Gottfried and Jackson. ~

4 L. Durand and Y. T. Chiu, Phys. Rev. Letters 12, 399 (1964).
~M. H. Ross and G. L. Shaw, Phys. Rev. Letters 12, 672

{1964).' M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962).
7 A. Dar and W. Tobocman, Phys. Rev. Letters 12, 511 {1964);

A. Dar, ibid. 13, 91 (1964).K. Gottfried and J.D. Jackson, CERN
paper, 1964 (unpublished).
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The investigations mentioned above share, however,
certain drawbacks which impede a theoretical under-
standing of the reactions. They assume that the in-

elasticity is due to a 6ctitious absorptive potential, or
directly introduce a phenomenological complex phase
shift for the elastic scattering amplitudes. This makes an
intuitive grasp of the physics involved dificult, and one
has no basis for generalizing from one reaction to
another.

The impact-parameter E-matrix formalism to be pre-
sented below has the advantages of the approaches
used by the preceding authors, with additional Qexi-

bility and a more direct contact with physical models.
It will be possible to construct a set of scattering and
reaction amplitudes which is based entirely on one-
meson exchange processes, if desired. The set of ampli-
tudes will in any case satisfy multichannel unitarity in
a high-energy limit. The imaginary parts of the ampli-
tudes will be nonvanishing, and polarization effects may
be easily handled. Time reversal symmetry will be
automatically satisfied, as well as any other higher sym-
metries one wishes to introduce into the meson-
exchange pole terms.

Theoretical justi6cation for the formulas are supplied
only insofar as the behavior for small momentum trans-
fer is treated. A complete theory including large mo-
mentum transfer behavior is not attempted, although
the formalism allows a phenomenological treatment of
short-range reactions to be introduced in a unitary way.

After the basic approximations and formalism have
been set down, simple models will be quantitatively
examined for pp elastic scattering, Ep charge exchange,
and ep charge exchange. In the latter two cases it is
found that the available energy data have a plausible
interpretation in terms of a meson exchange model. The

pp diffraction can be fit by a more complicated model. A
qualitative examination of the vector-meson exchange
model for isobar production then shows that, contrary
to the conclusions of Ref. 2, the model is probably quite
adequate to explain the available data without form
factors when the unitary modifications are included as
in the analysis of the present work.

II. BASIC FORMALISM AND APPROXIMATION

The object of this work is the development of a multi-
channel, unitary representation for reactions at high
energies. Although we could treat many-particle states,
it will be much simpler to begin with a representation
of the effects of inelastic channels by including only
two-body open channels. One surmises that the uni-
tarity effects of multiparticle states on selected two-
body reactions may be simulated in this way, if iso-
bars are included among the final state objects.

As a second simplification, we assume that there are
a large number of open channels below the energy we
are interested in, and that any nearby thresholds are
relatively unimportant. Presumably, the latter would be

true if we actually were considering multiparticle states
from a statistical viewpoint, since the final state many-
body phase space would be small close to threshold for
any particular channel. Together with this, we assume
the momenta in all channels are large compared to the
masses, so we can use high-energy limit conditions in
all the open channels (not only the lowest, elastic
scattering channel).

We will ignore spin in the initial formulation, al-
though this can easily be incorporated if more detailed
properties of the reactions are to be computed. In the
examples treated later, one of the initial particles is
always a proton, but we will ignore effects connected
with its spin in developing the formalism.

A further simplification of the problem is necessary
to reduce the algebra involved. We will take most of
the inelastic final states to be noninteracting, and allow
transitions only to and from the elastic scattering chan-
nel. This will still allow us to accomplish the objective
outlined in the introduction; if the eBects of inelasticity
enter as an incoherent sum over a large number of
channe'. s, we suppose that the interactions in any one
channel have relatively little inhuence on the sum. It is
clear that such an approach is tenable only at high
energies. We will also ignore any possible effects of
anomalous thresholds or complex singularities, since we
are in a very high-energy region.

Finally, baryon exchange terms will be ignored, which
corresponds to using poles only in the momentum trans-
fer variable. This is appropriate for meson-exchange
models.

The formulation of scattering alriplitudes will now be
taken in the Fourier-Bessel representation developed
for dispersion theory by Blankenbecler and Goldberger

(BG),' and further amplified by Baker and Blanken-
bec)er (BB).' We could alternatively develop the formal-
ism in the partial-wave series representation, but
the impact-parameter picture which accompanies the
Fourier-Bessel representation aids physical understand-
ing of the approximations involved and is readily
adapted to phenomenologicaI approximations for the
large momentum transfer behavior. In addition, the
formalism has been discussed at some length in BG and
BB, and we will merely summarize the relevant formu-
las up to the point where our approximation methods
become signi6cantly different from those of BB.

Following the covariant normalization of BG, Sec.
VII, we de6ne the multichannel, two-body scattering
matrix M such that the center-of-mass elastic scattering
differential cross section for scattering of particle 1 on
a proton (11 channel) is given by

R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766
(1962).
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where s is the square of the total c.m. energy, M„ is the
proton mass, and 3f~ tht: mass of particle 1. The M;;
have singularities only for positive s and positive t
under our approximations.

The Fourier-Bessel components of M will be denoted
byH;

M(s, t) = bdb Jo(b( —t)'")H(s, b'), (2.2)

s'/2k'
M, i(s, t) =

(M„+Mg)

ao t+1

k
t+-,',-~ r, (s)

g d ——~Pi(cosO)
1—ir)(s)

pass to the limit of a large number of angular momen-
tum contributions and write

and we do not introduce the singularities in I, which
lead to two signatures as in Sec. VII of BG, since we
are ignoring baryon exchange singularities.

In the limit k;b))1 for all i, where k; is the center-of-
mass momentum in channel i, the matrix I now should
be taken to satisfy the multichannel unitarity condi-
tion in the form Lcompare BG, Eq. (7.11) and Sec. III]

ImH= H'r(s)H, (2.3)

where r is a diagonal matrixof phase space factors appro-
priate to the FB representation: Explicity, we put

r, ,(s) = (Mg, +M2;)/(2k;s'"), (2.4)

where M&;, M2; are the masses of the two bodies in the
ith channel. %e will later assume that most of the im-
portant channels have particles of about the same mass,
and use 2M„. instead of (M~;+M2,); furthermore we
will replace k, by s't'/2, since the energy is large com-
pared to the masses. It is easy to keep the more general
form for r however at this point. Now, if we write

H(s, b') =-K(s,b)LI—ir(s)K(s, b)]—', (2.5)
l

with a real matrix K, the function H will automatically
satisfy asymptotic unitarity condition (2.3). This rep-
resentation will form the basis for our approximation
methods.

Before explicitly introducing meson-exchange models,
we will comment on the relation between (2.5) and other
unitary calculation methods. It was pointed out in BG
(Eq. 3.20) that the large-b Fourier-Bessel components
of the scattering amplitude are proportional to the
partial-wave amplitudes for large /, if b and l are re-
lated by

(2.6)kb=t+-', .

M„(s,t) = P(2J+1)
(M„+Mi) &

g2i8z

)&Ps(cos0), (2.7)
2ikI

with the representation. (2.5) as follows: Writing
e" ~--1/i=re/1 irs, where r~(s)=tangos—(s), we can

The condition kb))1 is required for this association,
but that is precisely the condition under which (2.5) is
automatically unitary for real K. Compare the partial-
wave representation of the elastic scattering matrix
element

s»~k
M„(s,t) =-

(M„+My)

r(b, s)
bdb Jo(b( —t)'")—

1—i7 (b,s)

where b = (t+ 1/2)/k, and r(b, s) = r ~(s) with this identifi-
cation. It is clear therefore that if only a single elastic
channel is open, we can write

s»2k'
r(b, s) =K~~(s,b) .

(M„+M,)
(2 g)

In general, when a number of inelastic channels are
considered, we will obtain a complex phase shift, since
K is to remain real; the relation between the E-matrix
elements and r involving the off-diagonal terms will
contribute an extra imaginary part to r(b,s). This will

be the source of the absorptive part of the phase shift,
heretofore treated in a purely phenornenological way.

Our further approximations will be based on a use of
the first Born approximations, or meson-exchange pole
terms, for the K-matrix elements. These are

K,,&~'=lid (s,b') = xdx Jo(bx)M;, ~(s, —x'), (2.9)

where M,P(s, t) are the pole approximations for the
reaction amplitude i —& j; these may be scalar or
pseudoscalar-meson exchange or vector-meson terms,
the latter written as Regge poles if the high-energy be-
havior is important. It was proved in BG that the one-
channel elastic amplitude in a nonrelativistic Yukawa
potential scattering model was well approximated in
the limit kb))1 by

Hu(s, b') =
1—iP(P/2k

(2.10)

(Eq. 3.11 of BG) which corresponds to using K~~&~& in
our general Eq. (2.5), ignoring inelastic channels, and
using the nonrelativistic limit of the phase space
function,

Ke conjecture that the pole terms for K will be good
approximations in the limit when all k;b))1, even if we
generalize to relativistic reactions and Regge poles as

Then employing the asymptotic representation for
large l

P~(cos8)—Jo(2(t+-', ) sin'(0/2)),

we obtain by a change of variable
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well as scalar meson exchanges. This must hold if un-
subtracted X/D calculations done at low energies can
be extrapolated to multichannel problems at high
energy; if the angular momentum representation is
used, we find'

Ki= NiL«Di J-', (2.11)

the elastic scattering term is

n+ip Q C *C

H„(s,b') =
1—ipn+p'Q C *C

(2.15)

and in meson-exchange models ReD~ j while N
approaches the pole approximation at large energies'
or large l.

Note that such an approximation is usually much
better than just taking the pole approximation for JII;;,
since it is explicitly unitary and will give nontrivial
polarization and interference phenomena.

The pole approximations for K;; diverge at small b

values. Typically we have

xdg
Jp(bx) =8 ' (s)Kp(pb) (2.12)

ti'+ x'

A

K(s,b) =

C ~

~ ~ ~

0 0 0 0 0

0 i ~ t 0

(2.14)

We do not yet make the approximation E;;=E;,' ',
but we take the high-energy limit such that for all i,
r,,(s)=p(s)=2M/s, where M is an average mass of
particles in the channels under consideration; we take
it to he around the proton mass. Now H(s, b) can be
explicitly computed from Eq. (2.5), and we find that

' R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961), Sec. IV.
' See, e.g., R. C. Arnold, Phys. Rev. 134, 81380 (1964),

Appendix.
"A similar form has been used by D. S. Chernavskii, Zh.

Eksperim. i Teor. Fiz. 45, 1558 (1963) LEnglish transl. : Soviet
Phys. —JETP 18, 1072 (1964)g.

for the exchange of a meson of mass p, where Eo is a
modified Bessel function, with the properties

Ks(z) —& y+in(2/z) as z —+ 0,
where y is Euler's constant; (2.13)

Ks(s) —+ (z/2s)'"e * as s ~ao .
Although the divergence for small b is in a region

where the approximations are invalid, it assures that
the scattering and reaction Fourier-Bessel amplitudes
have a characteristic complete "absorption" region with
a diffuse boundary and some minimum radius deter-
mined by the strength and range of the interactions.
In a somewhat more realistic model, the sum of many
strong short-range contributions to the E matrix will

produce such a "black" region for the elastic scattering
amplitudes; as will be shown later, this becomes a
"white" region for any particular inelastic channel.

With the assumption that the inelastic final-state
particles have no interactions other than a transition
back to the (11) channel, we can write the K matrix for
the system in the form"

while the production terms are

H,,(s,b') =—
1—ipn+p'Q C *C

(2.16)

where p(s) = 2M/s.
Our motivation now is principally to see the modihca-

tion of one-meson exchange terms by the peripheral in-
elastic processes. We expect that all reactions couple to
inelastic one-pion exchange terms, which have a
b dependence characteristic of Eq. (2.12), with ti taken
as the pion mass. If we assume that these are the only
important contributions for large impact parameter,
we can factor out the function Eo from each of the oB-
diagonal elements C; in K, leaving a function of s
only. We will determine any desired s dependence by
appeal to experiment. Writing

(2.17)

with F, real, and putting

(2.18)

n(s, b)+i(s/2M) Kss(pb)G(s)
Hit(s, b') =— (2.19)

1—i(s/2M) 'n(s, b)+Kss(pb)G(s)

C,(s,b)
Hi; (s,b') =

1 i(2M/s)n(s, b—)+ Kss(pb)G(s)
(2.20)

We expect these then to give the essential corrections
for large b, which means we should be able to compare
the behavior of M»(s, t) for small t at any given energy,
given G(s) from experiment and n from a theory such
as one-meson exchange. This prospect will be examined
quantitatively for scattering in Sec. IV below.

The formula (2.20) for a single-production amplitude
clearly exhibits the general qualitative behavior of our
approximate amplitudes. The small-b region is damped
out due to the extra factor of Kp(tib) in the denominator.
This will invariably yield a matrix element M» which is
more sharply peaked in the forward direction than the
uncorrected one-pion pole term. We will notice this
effect in the analysis of Np charge exchange. This be-
havior is even more pronounced, however, if we examine
processes which are forbidden to occur through one-

we have the more explicit forms of the elastic scattering
and production amplitudes;
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pion exchange, so the longest-range inelastic E-matrix
terms then are obtained from p or K~ meson poles. In
such cases, the suppression from competing one-pion
inelastic processes is large even in the forward direction.
Such a case is encountered in the charge-exchange reac-
tion E +p —+ E&+n, where p exchange presumably is
the most peripheral contribution. This case will be
quantitatively treated in Sec. V.

A final qualitative observation needs to be added
here concerning unitarity and one-meson pole terms.
In many cases involving spin, the basic pole terms ob-
tained from field theory contain powers of t in the
numerator as well as the denominator. These generate
exceptional S-wave (and possibly I'-wave) contribu-
tions which are not of the form obtained by analytic
continuation down from high J values. There is some
ambiguity in a dispersion-theoretic approach as to
whether or not these exceptional low partial-wave con-
tributions should be included in the pole approxirna-
tions; the question may be resolved if one accepts the
treatment of the exchanged mesons as Regge poles with
a trajectory having small, but nonzero, slope. In such a
case the partial-wave amplitude for 1=0 is an analytic
continuation from higher J values; the pole terms are
numerically close to the field-theory results for low
energies, but at high energies resemble the amplitudes
with deleted 5-wave terms.

The ambiguity in these low partial waves is relatively
unimportant, however, when a unitary formalism Lsuch
as (2.5) above] is applied to compute the scattering
amplitude. Then the eQects of inelastic processes com-
pletely dominate the small-b region of H(s, b'); the off-
diagonal elements will vanish for small b and the
diagonal terms approach some nonzero constant Lcf.
Eqs. (2.19), (2.20)]. This has the effect of eliminating
any exceptional low partial wave terms in the pole
approximations. " As a consequence, charge-exchange
reactions proceeding through one-pion exchange do
not vanish in the forward direction, and the formulae
for vector meson models of isobar production' "may
even be qualitatively quite misleading, unless all
powers of t in the numerators of the matrix elements are
eliminated, e.g., by expansion in partial fractions. We
will return to this discussion in Sec. VII.

The formulas (2.15) and (2.16) are closely related to
the expressions (1.7) and (1.13) of BB; however, they
diGer in detail because of the nature of the approxima-
tions made here for the inelastic channels.

"This point has been discussed in Ref. 4, footnote 7. See also
Fig. 4 of G. Goldhaber, W. Chinowsky, S. GoMhaber, W. Lee, and
T. O'Halloran, Phys. Letters 6, 62 (1963) for further indication
of such an efFect. Evaluating a' (in the numerator) on the mass
shell in the cross-section formula does not give precisely the same
results as in the pole-term matrix element; the unitarity conditions
for various spin amplitudes must be studied when the Anal-state
particles can have states of high spin."L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90
(I963).

(3.2)

then in the high-energy limit, applying (2.5) yields

1
Kt I—ipK]—'=—

(3.3)
ns(1 —ipni)+ip ( p ~

'

where 6= (1 ipni) (1 —ipns)+ p—'
~ P ~

'; thus the off-
diagonal matrix element is

His(s, b') =p/h. (3.4)

Now, for large energies, p' —+ 0; so, if at a given energy
~P~ is negligible compared to unity —or (if P does not
grow with energy) at any sufficiently high energy—
this reduces to

H»(s, b') =
(1—ipni) (1—ions)

(3.5)

III. RELATIONSHIP TO DWBA AND
OPTICAL MODELS

Motivation similar to that of our work here has
led previous authors'~ to utilize the distorted-wave
Born approximation (DWBA) for relativistic, absorp-
tive potentials acting in the initial and final states.
This leads to a formula for the partial-wave inelastic
amplitude of the form4

M» (s) = expLibz&'&(s)]B» (s) expLi8J'"i(s)], (3.1)

where 8~2 is the partial-wave Born approximation
for the reaction, and 8J('), bJ-(" are the complex phase
shifts describing elastic scattering in channels 1 and 2,
respectively. This has considerable intuitive appeal,
but the introduction of an absorptive potential to simu-
late inelasticity is undesirable for two reasons. First,
the connection between different reactions is obscure
and generalizations can be made only on purely phe-
nomenological grounds. Second, there is no provision
for characteristics of the production amplitude to be
reAected back into the elastic scattering channel, as
must happen if unitarity is to be satisfied.

The A. -matrix formalism (2.5) together with approxi-
mations using meson pole terms as in the preceding sec-
tion rectifies these diIIficulties, although it is expected
to do so accurately only for large impact parameters.

It is instructive to reproduce the result (3.1) as a
limiting case of the K-matrix formulas. Ke simplify,
however, by taking only a two-channel problem, so the
phase shifts become real in the limit of small channel
couplings (small off-diagonal pole terms). Then we will
find (3.1) is indeed true in the limit Eis ——Es, ~0, or
sufficiently high energy.

For a two-channel problem we would write
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But the factors in the denominator now just give the
phase of the amplitudes in the elastic scattering chan-
nels, so using (2.6) we reproduce (3.1) under the stated
conditions.

It is not clear whether a complete justification of (3.1)
in the limit of small oR-diagonal Born terms within the
framework of our model can be achieved, since there is
some convict between the complex-potential viewpoint
and the representation (2.5).

Another approximation method, which has been
applied by Serber' to high-energy proton-proton dif-
fraction scattering, is based directly on the eikonal
method" used with great success in studies of the nu-
clear optical-model potential. With rather drastic as-
sumptions on the validity of a complex potential model,
the formulas nevertheless reproduce the experimental
data for large momentum transfer amazingly well. It
would clearly be desirable to include this approach in
the present work, but there are two obstacles to this.
First, there is no justification in terms of a dispersion-
theoretic foundation; in fact, this method was dis-
carded by Blankenbecler and Goldberger in the be-
ginning in favor of the more conservative 1V/D repre-
sentation for just this reason. Second, and more serious
from the point of view of the present work, one needs
to specify in advance the absorptive potential; and it is
precisely this concept that the K-matrix formalism is
designed to avoid. There is clearly room for improve-
ment in connecting the two points of view.

IV. ANALYSIS OF Pp AND XP ELASTIC SCATTERING

In this section, we attempt to fit the small-angle ex-
perimental pp and Xp elastic scattering cross sections
with simple models for the peripheral inelastic processes.
Continents on Regge poles will be reserved to the end
of this section.

To begin, we shall assume the diagonal E-matrix
elements E~~, E22, etc., corresponding to the elastic
scattering channels are negligible„so that all the observed
cross section will be due to inelasticity. This is not quite
consistent with the experimental data, ' since extrap-
olation of the elastic amplitudes to zero angle and
application of the optical theorem in pp scattering indi-
cates a few percent, real part exists in the amplitude;
but we shall use the assumption as a plausible first
approximation.

Assuming only pion poles in the oR-diagonal E-matrix
elements, we are led to Eq. (2.19) with n=0, for the
elastic scattering amplitude. Now, we observe from ex-
periment that the diffraction peaks do not change shape
with energy. This leads us to put

where a is a constant for each reaction. Then we have

aKp'(lib)
Hit(s, b') = s(s/2M)

1+aKp'(lib)
(4.2)
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With this formula, we are able to fit the pp data for

very small momentum transfers (—f)' '&2li( —t&0.08
BeV'/c') including the magnitude of the elastic cross
section, by choosing u= 1.8 at 10 BeV.

For Xp, the smaller experimental slope and magni-
tude of the diRraction peak is indicative of shorter
range inelastic processes. This amplitude was fit by
assuming that the dominant inelastic E-matrix terms
could be represented by the exchange of a heavier
meson. A mass of twice the pion mass was chosen, lead-

ing to a formula for IIii which is obtained from (4.2)
by replacing p, by 2p, , and taking 3f to be the average
of M~ and 3/I„. In this case, the best 6t was obtained
with a= 0.6.This 6t may be regarded as phenomenologi-
cal, with 3 parameters (a, M, and meson mass 2li).
However, we have set 3f to its most naive value, and
have not chosen an eRective meson mass of less than 2p, ,
because no physical states in the crossed channel have a
mass between IM and 2p, . The 6t could be considerably
improved if we were to regard 3f and the meson mass as
completely free parameters, for example if we used
1.5 p, insteady of 2p, and increased 3E to a larger value.

Some improvement in the pp fits could be achieved

by increasing M, which we took equal to the proton
mass in the pp fit. An average mass of the inelastic re-
action channels would presumably be somewhat larger
than M„ in reality. The fit for pp scattering around 10
BeV is shown in Fig. 1. The behavior of H~~ as a func-

G(s) =a, (4.1) -t(eev'l

"R. Serber, Phys. Rev. Letters 10, 357 (1963); Rev. Mod.
Phys. 36, 649 (1964)."R. J. Glauber, in Lectures in Theoretical physics (Interscience
Publishers, Inc., New York, 1959) Vol. I.

FIG. 1. Fit to pp elastic scattering at 10 BeV for small momen-
tum transfer. Experimental points are a sample from Ref. 1;
dashed line is an exponential 6t to data. Solid line shows prediction
of Eci. (4.2) with a=1.8.
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FIG. 3. Fit to Kp elastic scattering near 10 BeV for small
momentum transfer. Experimental points are taken from Ref. 1.
Solid line is prediction described in text using dipion with a=0.60.

tion of b for pp scattering is sketched in Fig. 2, where we

have plotted bHii(s, b')/Hit(s, o) for the same value of a.
The fit for Zp elastic scattering at similar energies is

shown in Fig. 3.
The pp fit is adequate for small (—t); the Ep fit may

not be as good if smaller (—1) data values continue the

apparent exponential trend. We should emphasize that
the normalization (for the elastic cross section at least)
is also determined by our parameter a. The ratio of
elastic to total cross section is also predicted by the
model, by application of the optical theorem; however,
this is not expected to come out well, since the total
cross section depends on the small-b region which is not
treated correctly.

It is clear that by adding a suKciently large number of
heavy-meson exchange poles one could approximate the
experimental shape, an exponential in (—t), correspond-

ing to a Gaussian distribution in b for the large-b re-

gions. The data are well ht by a Gaussian distribution
for H(b'), but there is no physical model leading directly
to such a distribution which is based on inelastic pro-
cesses. The Regge pole dominance hypothesis for high-

energy interactions" does predict an exponential drop-
off in t, but if we are to fit the pp scattering with only

Regge poles, it seems necessary to take a Pomeranchuk

trajectory which has zero slope. If this is true, it is
difficult to account for the pp scattering behavior at
high energies unless the Regge pole residue functions of
some vector mesons change sign" around t =0.This can-

not happen in a single-channel two-body potential-
theory model, " from which most of the Regge pole
knowledge is obtained; however, the question remains

open when many-particle calculations of Regge poles
are considered.

It should also be pointed out that a future high-

energy theory which includes moving branch point con-

tributions in the complex J plane (as well as Regge
poles) may completely change the pole analysis; the
arguments concerning residue functions are applicable

only to poles and not to branch-cut discontinuities, and

the branch-point contributions may in fact dominate
the pole terms.

There may be a theoretical connection between the
Pomeranchon pole formula (with vanishing slope for the

trajectory) and our formula (4.2) for the peripheral
inelastic contributions to elastic scattering. Both give
a purely imaginary amplitude in 6rst approximation, a
total cross section which is a constant at high energies,
and a diffraction pattern which does not change shape
with increasing energy. The theoretical bridge could be

supplied by considering multiparticle states which con-

tribute to the Pomeranchon pole structure, in some

approximation such as the multiperipheral field-theoretic

model developed by Amati, Fubini, and Stanghellini. "
This sort of reasoning has been developed by Feinberg
and Chernavskii. "

By allowing the (1,1) A. -matrix element to be non-

zero, we can account for the fact that pp and pp elastic

scattering amplitudes are not the same, and similarly

for the E'
p compared to E+p amplitudes. However,

one-meson pole terms alone cannot account for the dif-

ference, since the same difhculties exist in such a moclel

as with the Regge-pole model" concerning the signs of

the pole residues. Thus, we cannot explain the difference

unless we take the K~~ terms from a model including

multiparticle states in the t channel.
If a model for E~~ is available, it is also possible to

obtain a shrinking diffraction pattern for pp scattering
without the explicit introduction of Regge poles, by

'6 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys
Rev. 126, 2204 (1962).' W. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206
(1964).

H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963); Sec.
III.' D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,
896 (1962).

'0 Section V of E. L. Feinberg and D. S. Chernavskii, Usp. Fiz.
Nauk 82, 3 (1964) LEnglish transl. : Soviet Phys. —Usp. 7, 1
(1964)].
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adjusting the energy dependence of E». Similar obser-
vations have been made by Durand and Greider. "

One 6nal observation may be inserted here concern-
ing nucleon-nucleon scattering; the curves for pp and

pp seem to be most similar for small momentum trans-
fers. ' This is a favorable indication for a model such as
presented here for pp scattering, since we expect the
peripheral one-pion exchange processes to be quite
similar for these two cases even if the interactions differ

significantly at smaller b values.
In order to settle on a model for the E-matrix ele-

ments in the peripheral region, which can be used in the
succeeding sections to unitarize one-meson exchange
processes, we adapt the form implied by (4.2); in the
notation (2.14) (for pp reactions)

x
Ql

Kx0'5

0
0 l.0 2.0 3.0 4.0

X=M b

I I I l I I I I i I I I I i I l I I i I I I I

I
III

Unmodified

~~pole term

I
I
I Eqn. (5.i)

5,0

(.",= (s/2') ' "a,Es(pb), (4.4)

where a=+; a . A similar form is to be used for Ep
reactions, with p replaced by 2p.

V. HIGH-ENERGY KN CHARGE EXCHANGE

Experimental data at moderately high energies" on
the charge exchange reaction E +p —+ As+ e indicate
a strong forward peak. This leads one to suspect that
the process may be dominated by one-meson exchange.
The p meson is the lightest one which can contribute if
selection rules appropriate to strong interactions are
taken into account. There is some difFiculty with ex-
plaining the small dip in the forward direction as indi-
cated by the 1.8 GeV/c" data, but we assume that this
will disappear if the energy is suSciently high.

A simple calculation of the magnitude of the cross
section for this process from the perturbation-theory
diagram for p exchange was performed. The coupling
constant factor f,«f,»/47r is the only adjustable
parameter, if we take the pN anomalous-moment cou-
pling strength (relative to the electric part of the cou-

pling) from the analysis of nucleon electromagnetic
form factor data. An estimate of the expected magni-
tude of this number can be obtained from combining
the experimental 2-pion decay width of the p with theo-
retical ratios derived from the idea of universal isospin
coupling of the p" or the octet models in unitary
symmetry, " the predicted values coincide in these
two approaches. We expect on this basis a value of 2.0
for f,~xf»v~/47r. On the other hand, fitting the experi-
mental charge cross section at 1.8 GeV/c 0.6 mb/sr near
the forward direction" with the perturbation-theory
amplitude calls for f,rrxf, ~N/4m=0. 2. This factor. of 10
discrepancy would lead one to believe that there is a
serious quantitative disagreement between the one-

"L. Durand and K. R. Grieder, Phys. Rev. 132, 1217 (1963).
+ P. M. Dauber, Phys. Rev. 134, 81370 (1964)."J.J. Sakurai, Ann. Phys. (N.Y.) ll, 1 (1960).
~4 M. Gell-Mann, Phys. Rev. 125, 1067 (1962);J. J. Sakurai, in

1'heoretical Physics (International Atomic Energy Agency, vienna,
1963),

Fro. 4. Solid line gives xHos(s, x) for EX exchange reaction,
where x=ra, b; Hos taken from Eq. (5.11).Unmodified pole term
is shown for comparison.

meson exchange model and experiment, although the
width of the forward peak is roughly in agreement with
a p-exchange model.

On the basis of our K-matrix approach, we can correct
this simple model by explicitly taking into account
peripheral inelastic processes. To accomplish this, it is
sufFicient to assume that the inelastic processes dominate
the numerical value of the denominators in (2.15) and
(2.16); then we can take the denominators from our
fit to Zp elastic scattering in the previous section. "
The charge-exchange amplitude is a difference between
the eigenamplitudes for I=1 and I=O scattering. The
resulting Fourier-Bessel component of the amplitude,
ignoring spin, will be of the form

Hoz&»(s, b')
Hcz(s, b') =

1+aE o'(2pb)
(5.1)

We have introduced the denominator from Eq. (4.2),
with numerical coefFicient and meson mass chosen to
fit the Ep elastic-scattering data. The numerator
Hoz&» is the uncorrected perturbation-theory (meson-
pole) charge-exchange amplitude in the Fourier-Bessel
representation. We ignore the spin-fIip amplitude, since
the explicit computations above showed it was numeri-
cally dominated by the nonspin-Aip term when p ex-
change is the initial approximation.

A graph of this function is given in I'ig. 4, with the
uncorrected I'"ourier-Bessel amplitude for comparison.
The computed cross section, normalized to the data
near the forward direction, is shown in Fig. 5. The re-
quired value for f»rJrf, ~~/4' now is 0.7, which is a
distinct improvement in bringing theory closer to ex-
periment. It is clear that in general, cross sections for

"The forward diffraction peak in Ep scattering seems to have
the same shape down to 0,2 BeV; R. Crittenden, H. J. Martin,
W. Kernan, L. Leipuner, A. C. Li, F. Ayer, L. Marshall, and
M. L. Stevenson, Phys. Rev. Letters 12, 429 (1964).
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processes involving heavy-meson exchanges are sup-
pressed to a considerable extent by the competition of
peripheral inelasticity, and angular distributions for
such processes are peaked somewhat more sharply in the
forward direction than would be expected from the un-
corrected pole approximation.

~ 2 2
pion term (p -t) onIy,

'th t '
h I I t

VI. HIGH-ENERGY NEUTRON-PROTON
CHARGE EXCHANGE

Experiments at 2.04 and 2.85 BeV have indicated a
very sharp forward. peak in the mp charge-exchange
cross section, "suggesting a peripheral process induced

by one-pion exchange. The perturbation-theory pole
contribution for this process was examined by Phillips, "
who pointed out that this term alone would vanish in
the forward direction since it contains 3 in the numera-
tor. Phillips suggested that constructive interference
may take place between the one-pion term and other
"background" components of the elastic-scattering am-

plitude, resulting in a narrow forward peak which could
account for the experimental result.

An alternative model was proposed by Muzinich, "
using only the p-meson exchange amplitude, which was
formulated as a Regge pole term. By suitable choice of
Regge parameters, it was possible to 6t the charge-
exchange data in Ref. 24. It was subsequently pointed
out by Phillips" that such a 6t does not seem to be
consistent with an analysis of the difference between
the pp and ep total cross section, and that the residue
of the p Regge pole must change sign near 3=0 in
Muzinich's model. "Later, a more complicated model
was proposed by Ahmadzadeh" who introduced another
heavy isovector meson to correct the difhculties with p

exchange in Muzinich's model.
Our analysis will return to the idea of a basic process

caused by one-pion exchange, but corrected through
use of the E-matrix formulas for the inelastic competi-
tion and diÃraction scattering in the peripheral region.
We will consider first a spinless model based on a one-

pion-exchange matrix element proportional to i'/(p' —t),
which vanishes in the forward direction, and show how
the unitarity modi6cations change this matrix element
to give a forward peak. Then we will consider the spin
structure of nucleon-nucleon scattering and show in
the actual case how it is possible to obtain the narrow
forward peak through inelastic eRects. A de6nite pre-
diction is not possible in the latter case, however, since
it is necessary to examine the spin dependence of in-

elastic channels, for which data are not available.

Beginning with the spinless model, we note that the
unitarity saturation of low partial waves as discussed
at the end of Sec. II will be quite important here. Dele-
tion of the 5-wave (or small b) component allows us to
replace t/(~' —t) with p, '/(p, ' t), which do—es not vanish
in the forward direction; in fact, this already gives

approximately the right charge-exchange amplitude for
small angles. Denoting the I'ourier-Bessel transform of
the charge-exchange amplitude based on this replace-
Inent by H~E' ~, we have a formula for H~g identical in
form with (5.1)

H (s,b') =HcE (~,b')/~(b) (6.1)

Xl
E 2.0

Cy

4 I.O

0
0 I.O 2.0 3.0

—t/p,

4.0 5.0

"H. Palevsky, J. A. Moore, R. L. Stearns, H. R. Muether,
R. J. Sutter, R. E. Chrien, A. P. Jain, and K. Otnes, Phys. Rev.
Letters 9, 509 (1962)."R.J. N. Phiihps, Phys. Letters 4, 19 (1963l.

FxG. 6. Fit to neutron-proton charge-exchange cross section at
2.85 BeV. Experimental points are from Ref. 26; solid line is vr

plus p superposition modified by inelastic unitarity, as described
in text.

where 5(b) has the same form as the denominator in

(S.1) with u (and pb as the argument of Es) chosen to
6t the proton-proton elastic scattering amplitude.
Numerical fits in this case show that (6.1) yields ap-
proximately a 50% reduction in cross section in the
forward direction compared to the pole term, and an
increased peaking toward small angles which brings the
theoretical curve into good agreement with experiment.
The more slowly varying contributions, which are still

appreciable for (—&)'~') ~, may be ascribed to a
p-exchange contribution. The fit to data based on (6.1)

» L J. Muzinich, Phys. Rev. Letters 11, 88 (1963).
"R.J. N. Phillips, Phys. Rev. Letters 11, 442 (1963).
"The undesirability of such a situation has been discussed in

Sec. IV.
"A. Ahmadzadeh, Phys. Rev. 134, 8633 (1963).
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plus a p contribution of the same form is given in Fig. 6,
with the function (ti' —t) ' for comparison.

We observe that the suppression of the magnitude of
the off-diagonal peripheral cross section is less in this
example than in the p exchange case treated in Sec. V.
The physical reason is clear; in the pion-exchange case,
the effective range of interaction is comparable to or
larger than that of the inelastic process, leaving much of
the function H(b) undisturbed; whereas in the heavy-
meson processes the inelastic terms have a larger range
and suppress a great deal more of the pole term's b

components.
A similar pole-term model has been investigated by

Islam and Preist"; they are able to fit the data moder-

ately well, but utilize form factors to obtain the re-

quired behavior for the pion term. Since their pion form
factors are just. those required phenornenologically to
account for other experiments involving one-pion ex-

change, ' it is not surprising that our approaches agree

in the end. The pX coupling constant they require,

f,»'/4' =0 4, is r.ather small compared to universality
predictions""; our fit allows a larger value (about 1.0)
because of the unitarity effects.

We now turn to the realistic case including nucleon

spin. " The helicity formulation of nucleon-nucleon

scattering appropriate for relativistic energies has been

presented by Goldberger, Grisaru, MacDowell, and

Wong (GGMW). '4 Combining the formulas (6.6) of

GGMW with (3.5) of Ref. 35, we find the one-pion ex-

change forms of the I=1 partial wave amplitudes h~

Lde6ned in formula (3.1) of Ref. 35] as follows:

The unitarity relations now involve the uncoupled
hp~ and h~~ amplitudes, and the triplet amplitudes

hi~, h~~, h~2 are coupled among themselves. '4

We assume that those helicity amplitudes which are
zero before corrections are applied (one-pion exchange
only) remain zero when unitarity is enforced. Then we

have only the two amplitudes )t ~ and p4, which have the
angular momentum decomposition'4"

4 (~,t) =E ' Z(2J+1)doo'(s)l:&o'(~) —& '(~))

y, (s)t)= E 'P(2J—+1)di, i (s)Lh» (s) —h, (s)). (6.3)

These may be converted to the impact-parameter rep-
resentation by use of the asymptotic forms (for large J)
of the Legendre functions; after utilizing formula (3.30)
of Ref. 35, and. passing to the limit of a large number of
angular momentum contributions, we obtain the
representations

$2($)t) = (2b'/E) bdbLho(b)s) —h»(b)s)$ Jp(b( —t)' '),

)t)4(s, t) = (2k'/E) bdbl h22(b, s) —hi(b, s)j

&( Jo(b( —t)'")—(1+s)

g2

hing~ ———hp~= ——
44x

JQz-i(XO)+ (J+1)Qz+i(XO),
X QJ(XO)—

2J+1

1 g
hg~ ———h2g~ ————

44m

(6 2)

(J+1)QJ—i (Xo)+JQ&+&(Xo)
X Qz(XO) ——

2J+1

where Xo——1+ii'/2k' The I=O amplitudes are (—3)
times the I= 1 amplitudes. The charge-exchange ampli-

tude is the difference between I=O and I=1 ampli-

tudes after corrections from inelastic unitarity have

been included.

hg2~ ——0,

"M. M. Islam and T. W. Preist, Phys. Rev. Letters 11, 444
(1963)."Iam indebted to Dr. R. J. N. Phillips for a private communi-
cation concerning the fallacies of a spinless treatment.

'4M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960)."I.J. Muzinich, Phys. Rev. 130, 1571 (1963).

J (b(—t)'")—J,(b(—t)»') . (6.4)
b( t)1/2—

The functions h(b, s) here are to be identified with h~(s)

for large J, where kb= J+i~. We have removed any

terms which are singular for small J values, as required

by unitarity. The total charge-exchange cross section
will be proportional to the sum of the squares of )t)2

and )t)4.

Note that )t)~ has an angular dependence identical to

that of the spinless model, whereas )t)4 will always vanish

in the forward direction. Thus, if we are to ascribe the

sharp forward peak to the pion-exchange process modi-

6ed by inelastic unitarity, it seems to be necessary that

(k~2 —hi) be much smaller than (ho —Itii).
Such a situation will obtain if the long-range inelas-

tic processes in the triplet amplitudes (both J= l and.

J=t+1) are much stronger than in the singlet (ho)

amplitudes; then the values of h~ and h22 will be damped

strongly from the inelastic competition, while hp will

survive alone to produce the forward peal~ from )t)2.

Detailed experimental data on inelastic processes would

be necessary, then, for a direct check on this analysis.
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VII. PERIPHERAL ISOBAR PRODUCTION MODELS

Some inelastic reactions yielding isobars at high en-
ergies, for example E++P —+ E*+Pat 3 BeV/c, ss show
a very strong forward peaking in the over-all center-of-
mass reaction angle, and appear to be good candidates
for one-meson exchange process. There seems to be a
considerable variation in the degree with which data
for such processes 6t simple pole approximations as far
as the momentum-transfer dependence is concerned.
This has been interpreted by most investigators' as
evidence that vertex corrections in the 6eld-theoretic
sense are very important. However, we have seen in our
analysis how the momentum-transfer characteristics
may be quite diRerent from the pole approximations in
a unitarized theory including inelastic channels. As dis-
cussed in the introduction, such eRects have been
treated in Refs. 4 and 5 by introducing a phenomenologi-
cal absorptive potential. The physical picture presented
by the K-matrix formalism is somewhat more trans-
parent. We will now show how qualitative agreement of
most of the available peripheral isobar-production
data with a theory based on one-meson pole terms may
be achieved. Detailed calculations will depend on the
spin structure of the amplitudes, and will not be carried
out here.

In our approximate form of the E-matrix approach,
every off-diagonal (production) matrix element takes
on the form (2.16). This simple form is essentially due
to ignoring the interactions of the bodies in the final
states.

It is apparent that predictions of the one-meson pole
terms concerning the alignment or relative population
of spin states of the isobars are not aRected by the
peripheral inelastic damping corrections, which appear
in the denominator of (2.16). As a consequence, pre-
dictions such as the Stodolsky-Sakurai" " vector-
meson model makes concerning final-state (isobar decay)
angular correlations remain valid in our E-matrix model.
These predicted correlations are consistent, in every
case which is probably peripheral, with the experi-

3~ G. R. Lynch, M. Ferro-Luzzi, R. George, Y. Goldschmidt-
Clermont, V, P. Henri, 3. Jongejans, D. W. Leith, F. Muller, and
J. M. Perreau, Phys. Letters 9, 359 (1964)."L. Stodolsky, Phys. Rev. 134, 81099 (1964); K. Gottfried
and J. D. Jackson, Phys. Letters 8, 144 (1964).

mental" "data. On the other hand, we expect the in-
elastic unitarity corrections will increase the forward
peaking of all such reactions; much more so in cases
where the elastic scattering of the initial-state particles
exhibits a diffraction character, with a large total cross
section, signifying strong inelastic peripheral processes.

This qualitative consideration appears to fit quite
well with the reactions considered in Refs. 2 and 3. In
comparing the theoretical curves given in those refer-
ences, we must 6rst remember to subtract out in the
matrix element any terms which go to a constant for
large t as explained at the end of Sec. II before squaring
to obtain the cross section. This inDTiediately clears up
the main difhculty with the curves given in Ref. 2,
Fig. 3, which treat the reaction s++P ~ to'+X»,*.
The matrix elements in the one-meson exchange model
have an additional power of t in the numerator due to
the large total spin of the final states, compared to re-
actions such as vr++p —+ rr'+E*. The latter reaction
(Fig. 4 of Ref. 2) can be fit correctly after unitarity
corrections are put in. Note that these two processes,
with s.+p initial states, deviate more strongly from the
pole terms than K++p ~ K'+1Vs, s* (Fig. 2 of Ref. 2);
the latter is already quite well 6t. We expect this trend,
since K+p reactions have a smaller total cross section
and smaller elastic cross section than s+p reactions at
the energies under consideration. I'urthermore, we pre-
dict that Ep reactions will show about the same degree
of forward enhancement as the s.+p reactions as long
as the Ep and s +—p cross sections are comparable at
the same energies; around 3 BeV this is the case. Some
caution must be used, however, in predictions for ener-
gies below 3 BeV, since the vr+p and s. p diffraction
peaks do not exhibit identical behavior for these low
energies. "
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