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Higher Baryon Resonances in the Static Model*
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(Received 17 July 1964)

The X/D solution to the static model, with linear approximation to the D function, is applied to a sequence
of meson-baryon scattering problems. As in the old strong-coupling model, it is found that the 37 and 5 are
the erst two members of a sequence of particles with I=J= 2, $, ~, ~, ~ ~, and that an analogous sequence
is obtained when strange particles and SU(3) symmetry are included. In both cases, the J=-2 particle is dis-
cussed in some detail. In the SU(2) case, general expressions are also derived for the widths of all the other
members the sequence.

I. INTRODUCTION

'~HE simplest model for the I'-wave scattering of
baryons and pseudoscalar mesons is the static

limit of the X/D method, in which only baryon-
exchange forces are considered and the D function is
approximated by a straight line. The essential element
in this approximation is that the baryons are considered
so heavy compared to the mesons that their recoil can
be neglected. This was the model used by Chew' to
illustrate the reciprocal bootstrap between the nucleon
(Itr) and the ( 'sPss) isobar (6). Within the same calcula-
tional model, an analogous scheme has been shown re-
cently to work for the SU (3) multiplets to which the Z
and the 6 belong. ' '

In this model, only ratios of coupling constants can
be calculated. Unless additional dynamical assumptions
are made, 4 we must give up the possibility of deter-
mining mass differences. However, we can always check
whether the signs and relative magnitudes of the forces
are consistent with a given scheme of particles. By
considering the scattering of mesons from excited states
of nucleons, we 6nd that the method predicts a sequence
of baryon states in both the SU(2) and SU(3) models,
of which the familiar 1V and d, (spin —', octet and
spin- —', decimet) are the first two.

The calculational scheme is elementary. A meson-
baryon state is specified by its spin J, isotopic spin I,
and total energy 8'. As is customary, let us use as
variable ~= 8'—M;, where M; is the mass of the baryon
and i=2&& (spin of the baryon). Only I' waves occur
in our calculations, so we use the amplitude

fr g(pp) =e" sinb/qs,

where q'= (cp' —1) and 5 is the phase shift. The meson
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One possible set of assumptions is made in the Appendix,
where the masses of the (~,~) and (-', , &) isobars are calculated in
terms of the nucleon mass.

mass is 1. The dynamics are provided by the crossing
relation

IJ & — &11' JJ' I&J' (1.2)

Bl.I(&) Q &rr'p JJ' yr' J' /(~I' J'+&) ~ (1.3)

If we define y~ J'= 0 whenever there is no particle in the
(I,J) state, the sum in (1.3) may run over all possible
I' and J'. We can now use Br~(~) as the input to an
X/D calculation of fry to obtain

.&re(~) Q~rr=Pcs Vr z 'D( ~r z)/—~r z+~), (1.4)

cp —(up
s (a&'s —1)s'slVr g((o')

X'
y M —

COO Q) —M

(1 5)

where coo is some subtraction point and A is a cutoff
representing our ignorance of high-energy effects. The
expressions (1.4) and (1.5) guarantee elastic unitarity
and can thus be used whenever a one-channel approxi-
mation' is valid.

Suppose Eqs. (1.4) and (1.5) give a dynamical par-
ticle in the (I,J) state. Following Chew, ' we can approxi-
mate Eq. (1.5) by a straight line

Dr g(cp) = (rdrg re)/(rurg rpp) . — —
Then

'yr J Il (MI J)/D (cur J) Q &rI'p J.P'yI' J' ~ (1 7)

' The general arguments of this section are unchanged by the
presence of well-behaved inelastic effects, which can be taken into
account by replacing FIJ(co') in Eq. (1.5) by RIz(co')Biz(co'),
where RIJ is the ratio of total to elastic partial-wave cross sec-
tions. This does not change any of the subsequent equations.
Similarly, the particular type of cutoff we have chosen is not
crucial.

Here, n and p are the crossing matrices for isotopic spin
and spin, respectively. In our static model, only I'
states occur, and spin is conserved just like isotopic
spin. Thus both n and P are finite-dimensional.

If a particle (which can be either a bound state or a
resonance) occurs in a state with quantum numbers I
and J, the corresponding amplitude has a pole pre'/
(cprq —cp). The force (or Born term), for which we take
the exchange of all I'-wave particles, then has the form

8 i382
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Thus, P~J'& 0 immediately provides us with a necessary
condition for the existence of a particle, since all the
residues y~ J'must be positive. Of course, this condition,
which corresponds roughly to the force being attractive,
is not sufhcient, but we cannot do any better without
actually calculating the D function in Fq. (1.6). From
Eqs. (1.4) and (1.5), it is evident that, with reasonably
smooth high-energy behavior, particles in those states
in which F~J is largest may be expected to have the
lowest mass, and be therefore important in the dy-
namics. On the other hand, if F~J is small, we expect
the particle, if it exists at all, to have a very high mass
and be therefore unimportant. Thus, from F~J we shall
predict what states may have a particle and roughly
the order of the masses, while from Eq. (1.7) we shall
obtain relations among the coupling constants.

Chew's reciprocal bootstrap' is essentially Eq. (1.7)
applied to the AS system assuming dynamical particles
in the (—'„—',) and (2,2) states. The crossing matrices n
and p are the same in this case:

for I, J=2, 2. The two equations (1.7) in this case
turn out to be identical.

'y 1/2, 1/2 2 y 8/2, 3/2) (1.10)

which is consistent with experiment. If this result is
now substituted into Eq. (1.8), we find the measure of
the forces in the three states

F' 8/2, 3/2 y 8/2, 3/2 )
K'1 1

~ 3/2, 1/2 ~ 1/2, 3/2 —0 )

~ 1/2, 1/2 2 y 3/2, 3/2 .

Thus the assumed system of particles is consistent with
the forice criterion of the preceding paragraph. Further-
more, we may expect co»/2»/2+%3/2, 3/2 in agreement with
experiment.

But one must be careful not to exaggerate the pre-
dictive powers of this method. For, in fact, if we had
assumed the existence of (-,',—,') and (-,', -', ) particles as
well, we would have obtained four equations (1.7),
which reduce to the two conditions

y 1/2, 3/2 y 8/2, 1/2 )
1»

2y'3/2, 3/2 7 1/2, 1/2+ Y 1/2, 3/2 ~

(1.12)

All four Fqg's are positive in this case and Chew's
solution (1.10) is seen to be only one of a continuum of
possible solutions.

The generalization of the mÃ reciprocal bootstrap to

This result suggests that a reasonable measure of the
force which is independent of the unknown masses is

(1.8)

the corresponding SU(3) multiplets is straightforward,
although complicated slightly by the fact that the octet
state has to be treated as a two-channel problem, so
that Eq. (1.7) cannot be used. This problem is discussed
in detail in Refs. 2 and 3.

1/6 —2/3 3/2
n= P= —1/3 11/15 3/5

1/2 2/5 1/10.
(2 1)

for I, J= &, 2, 2.
What forces are thereP We must certainly include E

and 6 exchange, which we would xpect to dominate.
From the crossing matrix (2.1), F33/2, 3/2 is evidently
positive, while the sign in the remaining single-channel
states depends on the ratio p'3/2 3/2/y'1/2, 1/2. Thus, we
can predict an I=J= ~ particle; if we also exchange it,
Eq. (1.7) gives

V'3/2, 3/2= (1/4)&'1/2, 1/2

+ (4/25)P'3/2 3/2+ (1/100)y'3/2 3/2 (2.2)
or

y 5/2, 5/2 ~ 4 y 3/2, 8/2

y 1/2, 1/2 4 2~ y 1/2, 1/2

(2 3)

To check on the possibility of particles in the other.
states, we need the ratio (&'3/2 3/2/y'I/2, 1/2) . Since &'I/2, 1/2

is known in terms of the mph coupling constant, we
then could also estimate from Eq. (2.3) the absolute
magnitude of y'5/2, 5/2, thereby obtaining a prediction
for the width of the decay of this resonance into m.+h.

Consider the amplitude A~J for the inelastic process
2IN-+ 3rd. When there iS a partiCle in the (I,J) State,
this amplitude has a pole (&Ij+Ij )'"/(cur J (0), where
co= 5'—M». The Born term from the exchange of these
particles is then

+Ij(10) Z &II'PJJ'(VI' j' "/I' J' ) /(~I' J' +&) ~ (2 4)

where cvi j'= &uij—(M3—Mi). The crossing matrices for
this case are

n=p=
2/3 —(v'10)/3)

—(+10)/6 —2/3 i
(2.5)

for I J=g, g ~

As in the case of elastic scattering, let us assume
that the lowest intermediate state, i.e., the mS state,

II. mA SCATTERING

Now we apply the same method to the scattering of
pions by the I=J=—,

' baryon (6). Here, forces are
provided at least by E and 6 exchange; both these
particles are mh E waves. However, our method is valid
only in these states in which I=—,

' or J=—,', since the
others communicate with the lower lying mÃ channel
and therefore cannot be treated as single-channel prob-
lems. The crossing inatrices n and P are once again the
same:
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122rq' (Y'5/2, 5/2)'
ImAI j~ f7j*AIj= (XIj(o1)//DI j (/d))A II (2.6) 0 5/2, 5/2

(& &5/2, 5/2) +g (Y 5/2, 5/2)

is the most important. This means that the unitarity J=I=—,
' xA elastic cross section,

relation for A~~ is

(2.14)

Since ImAI~ and S~J are real, A~~ must have the same
phase' as DiJ ' on the right-hand cut. Thus it has the
form

(2.7)AI j(o1)—SIj(o1)/DI j((0)

where nIj(o/) has only left-hand singularities, Im237j
= ImAI jDIj ImBI j——DIj.Therefore, NI j(o&) satisfies

287 j(&) P 7277'P jj'D'YI' j' YI' j' ) /(&I' j' +&)]

XDI j( ~7 j—') (28)

If we use Eq. (1.6) for DIj, a direct-channel pole resi-
due ls

a result analogous to Eq. (1.7).
Since pig' ——0 unless I=J=—,', ~, the xS—& xA forces

are provided by E and 6 exchange. The two equations
(2.9) then turn out to be identical, and are

2('Y 3/2, 8/2Y 8/2, 8/2) (Y 1/2, 1/2'Y 1/2, 1/2) ~ (2 10)

If this result is combined with Eq. (1.10), we obtain

7 8/2, 3/2/Y 1/2, 1/2 2 ~
=1

Finally, substituting (2.11) into (2.3), we get

p 5/2, 5/2/p 1/2, 1/2 3 ~
3 ! 3 1

(2.11)

(2.12)

But p'&/2, &/2 is related kinematically to the ~Eh coupling
constant and hence to Y'3/2, 8/2 through y'1/2 1/2 4Y 3/2, 8/2.

Using Eq. (1.10), we therefore obtain finally

Y 5/2, 5/2 8 Y 1/2, 1/2 2f (2.13)

as the prediction of our static model for the width of
the I=J= ,' resonance. Here, f'—is the 2IXE pseudo-
vector coupling constant and is numerically about 0.08.

Recently, two p2r+2r+ resonances have been observed,
one at 1560 MeV~ and one at 2400 MeV. 8 Let us assume
that the former can be identified with our (2, 2) particle
(see the Appendix). In that case, the latter may be its
Regge recurrence with J= ~~. Then the slope of a
straight-line Regge trajectory in the energy variable
would be roughly the same as the slopes of ":1V, 6, and A

trajectories. "Plotting a Breit-signer formula for the

6 R. Omnes, Nuovo Cimento 8, 316 (1958).
7 G. Goldhaber (private communication).

This resonance is listed by M. Roos, Nucl. Phys. 52, 1 (1964).'S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962);G. F.Chew and S.C. Frautschi, Phys. Rev.
Letters 7, 394 (1961) and 8, 41 (1962); R. Blankenbecler and
M. L. Goldberger, Phys. Rev. 126, 7'66 (1962).' These Regge trajectories are shown in G. F. Chew, M. Gell-
Mann, and A. H. Rosenfeld, Sci. Am. 210, 74 (February 1964),

(YIj 'YIj ) &&Ij(o17j)/DI j'(o17j)

Z &77'Pjj' (VI' j' YI' j' )"', (2.9)

III. OCTET-DECIMET SCATTERING

In this section we shall repeat the above calculation.
with all the particles involved promoted to SU(3)
multiplets. Thus we consider the scattering of an octet
of pseudoscalar I'-wave mesons oR a decimet of spin-23

baryons. The reduction of the direct product meson-
baryon states is

8 x10=8+10+27+35. (3 1)

Since no representation occurs twice on the right side
of Eq. (3.1), we have to deal only with one-channel
problems and therefore may apply the same scheme
we used in the preceding sections.

The crossing matrix (211 in Eq. (1."/) is now re-
placed by"

1/5 —1/2 —9/20 7/4
—2/5 3/4 —9/40 7/8
—2/15 —1/12 37/40 7/24

2/5 1/4 9/40 1/8 .
where the rows and columns are labeled by the repre-
sentation dimension Ii =8, 10, 27, 35. Since all the
entries in the bottom line of Eq. (3.2) are positive, as
are those in the bottom row of (2.1), we find from our
force criterion that a quinquetrigesimet of spin--,
baryons may occur. If we also exchange these 35 iso-
bars, then the SU(3) versions of (2.2) and (2.3) are

785'= (1/5)78'+ (1/10)718'+ (1/80)785' (3 3)
or

&9 y35' 1 1 F10'
+ )

80 y8' 5 10 y8'
(3 4)

where the isospin index in the residues has been re-

"This should be contrasted with the conclusions of A. Messiah,
Phys. Letters j., 181 (1962), who also considered 7i--6 scattering
but predicted (-'„-',) and (-'„-',) resonances. This appears to be a
consequence of his neglect of nucleon exchange. He also neglected
the s-le/ intermediate state in the (»—',), (2,2), (—'„-',), and (—',, 2)
states.

12 D. E. Neville, Phys. Rev. 132, 844 (1963).

we find a full width at half-maximum of about 210
MeV, if co5/2 5/2 is chosen so that the maximum is at
1560 MeV. The width of the resonance of Ref. 7 is of
the order of 200 MeV.

Finally we can use Eq. (2.12) to check. on the forces
in the other single-channel states. The result, in re-
markable analogy to (1.11), is

~ 5/2, 1/2 P 1/2, 5/2 ~ 5/2, 3/2 ~ 3/2, 5/2 0 (2 15)

Thus it is consistent to assume that there are no reso-
nances in the other mA states with I=-,' or J=—,'."
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placed by an P index and the spin index has been
dropped for brevity.

To find the ratio pie'/y5', we may generalize the 7r/7/ —0

3rd process to SU(3) and then follow exactly the pro-
cedure in the previous section. The isotopic spin crossing
matrix a in (2.5) is replaced by

I/v'5 —(v'10)/4
1/+5 2/5 —V2/4

—Q(2/5) —3/2/5 —1/2
2/3+5 —2/5 —v2/6

9/~5—27/20
—9/10'

1/10
(3.5)

where now the rows are labeled by F=8~, 8q, 10, 27.
Here, the amplitudes labeled 8~ and 8~ are for transi-
tions from the antisymmetric and symmetric octets
appearing in 8 xS into the octet appearing in 8 xlQ.
Their residues are (ys'ps~')'" and (ys'ps'')'", where, in
terms of the 7rX/1/ coupling constant f2,2 '

yap' = 12(1—a)2f 2 (3 6)

bio'/va'= (1—aa)'3f'/bio' ~ (3.8)

%as'= (20/3)a2 f2 (3 7)

where a/(1 a) is th—e usual D to F ratio. Applying the
generalization of Eq. (2.9) to the spin-2 decimet state,
we obtain

(2 2)
(1, -', )
(o, 1)
(-'1, l)
(—2, o)
(1, —:)

(o, 2)
(—1, 4)
(—2, 1)
(—3, 2)

1260
1400
1540
1690
1830
1560
1670
1780
1890
2000

Strong threshold

7fEE (1575)x (io8o)
~X (1255)

=- (1460)
~.n (1955)

7fm-E (1220)
Z (1330)

(146o)
~ (1815)

KQ (2170)

dict essentially the same width for the I=J=—,'mA
resonance as before.

Finally, we can use our force criterion to check on the
possibility of other resonances in the one-channel octet-
decimet states. Again we 6gd that the other forces Egg'
are negative or sma11 compared with F35,5/~'. For in-
stance, with 0,=0.57, we have

F 8 5/2 0 033&8 ) P ]0 5/2 0 009&8 )

F 27, 5/2 0 07478 7 F 25, 1/2 0 023'YB 1

35, 3/2 0 0~~+8 ) ~ 27, 1/2 0 ~22+8 y

TABL,E II. The masses (in MeV) of the multiplets contained in
the 35-dimensional representation calculated from Eq. (3.11) with
u= —191 MeV and 0 =32 MeV and with m0 6xed by the require-
ment that m1, @2=1560 MeV. The corresponding lowest strong
thresholds are listed for comparison.

I'2s, 3/2'= 0.055ys',

le J'35, 5/2=0. 259ys'. Therefore, either there are no
resonances in the other states or else they lie so high
that their effects are probably unimportant.

Thus our model predicts 35 new spin- —,
' even-parity

baryons. Since the properties of a quinquetrigesimet are
relatively unfamiliar, "we conclude this section by de-
scribing some of them brieQy. The states may be
classihed by their hypercharge I" and isospin I and are
listed in Table II. In addition to the I=—,

' nonstrange
multiplet, our supermultiplet contains another I'= 1
group with I= ~. This I=—,', J=—,

' Tnultiplet, which did
not appear in our SU(2) model, will be seen in elastic
7r/V scattering only to the extent that SU(3) is violated.

The masses of the 35 particles should satisfy the
Gell-Mann —Okubo mass rule

ygp' ——(16/11)L-;a'+4a(1 —a))f'. (3 9)

Substituting this into (3.8), we obtain

adios/F22= (11/64) (3—2a)/a. (3.10)

To get an absolute number, we need the D to F
ratio. This has been calculated in Refs. 2 and 3 using
slightly different methods. The results are all in agree-
ment with the poorly known experimental value, so in
Table I we list the values of (ytos/gas) and (y252/gas)
for all the calculated values of 0. , these ratios are related
to the residue ratios for the nonstrange components by
simple kinematical factors. We see that the ratio
(y'5/2, 5/2/y'1/2, 1/2) is not very sensitive to the value of
e and is approximately the same as the ratio —', which
we obi.ained using the SU(2) model; therefore, we pre-

mrr=me+/Jy+bPI(I+1) —I /4). (3.11)

In general, a and b depend on j and two Casimir
operators

F F 3 (m1 +mlm2+ m2 )+ (mi+ m2)TABLE I. Values of (F103/Yss) and (ysss/Yss), using Eqs. (3.4)
and (3.10) for various values of a. The values a=0.57, 0.78 cor-
respond to the two solutions obtained in Ref. 3, while u =0.69 was
the value calculated in Ref. 2. The values of (Y'3/3, 3/3/Y'1/3, 1/3)= (5/4) (Ysss/733) and (Yss/2, 3/2/Y 1/2 1/2) = (25/32) (Y10'/Ys') should
be compared with the results of the SU(2) model of Sec. EI.

and

d;/AFIRE',

FA (1/18) (mi —m2)——
XL9+ 9 (mr+ m2)+ 2mi'+ 5mim2+ 2m2'),

where t mi, m2) is the highest weight of the representa-
tion and is explained in the next section.

3 Some of these properties are discussed by H. Harari and
H. J. Lipkin, who noticed that some of the particles might be
stable against strong decays, Phys. Rev. Letters 13, 345 (1964).

(710 /'Ys ) (VSS /'Ys ) (Y 3/3, 3/2/'Y 1/2, 1/2) ('Y 3/2, 3/3/'Y 1/2, 1/2)

0.57
0.69
0.78

0.56 0.26 0.44 0.32
0.40 0.24 0.32 0.31
0.32 0.24 0.25 0.29

The ratio (f2/715') has already been calculated by con-
sidering the amplitude in the spin-~ decimet state of
elastic octet-octet scattering. ' ' The result is whi
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Now it has been suggested by Glashow and Samurai"
that the canstants a and 6 may be the same for all
SU(3) multiplets with the same baryon number. This
is consistent with our knowledge of the masses of the
spin--,' octet and the spin--', decimet, provided a= —191
MeV and b=32 MeV. Using these values and the value
1560 MeV for m~, 5~2 we obtain the masses listed in
Table II."

From the table we see that three of the (Y,I) multi-
plets are stable against strong decays. The (—2, 0)
would decay electromagnetically, while the I'=2 iso-
topic quintet and the Y= —3 isotopic doublet states
would have to decay weakly. Therefore, provided the
1560-MeV n.+vr+p peak is really a member of a quin-
quetrigesimet (which is the smallest representation
containing I=-',), the existence of these metastable
particles is a test of the conjectured universality of the
constants a and b.

m(2m+1)

26—1 12+S —1

2n+3

2e+1

2N+3
(4 1)

e(2e+1) e(v+1) (v+1) (2m+1)

2e—1

2B+1 (m+1) (2m+1)

"S.L. Glashow and J. J. Sakurai, Nuovo Cimento 25, 337
(1962}.

'~ This calculation of the masses in the quinquetrigesimet was
carried out by M. Gell-Mann, who also noticed that some of the
particles might be stable against strong decays."G. Wentzel, Helv. Phys. Acta 13, 269 (1940) j see also, W.
Pauli and S. Danco6, Phys. Rev. 62, 85 (1942)."S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 83, 109
(1946}.

IV. HIGHER SPIN STATES

Let us forget the strange particles for a moment and
turn back to our SU(2) model of Secs. I and II. So far,
we have found particles in the (~if), (3~$3~), and (5~$5~)

states. This sequence suggests that if we calculated in
a similar way the scattering of the pion and the ($P)
state, we might obtain a (q, 72) particle, and repeating
the same procedure indefinitely, continue the se-
quence to (-', ,$), (—", ,

-'—,'-), etc. Indeed, such an infinite
sequence was obtained by %entzel in the old strong-
coupling model, " and by Tomonaga" who used an
intermediate coupling solution of the static model.
Of course, we cannot predict the masses without going
beyond our approximation, ' but the masses of the erst
three suggest an. increase each time of the order of two
pion masses.

To see that we can indeed g,et such a sequence, con-
sider the (v+1, n+1) state in the scattering of a pion
off an (n,n) baryon (n, is half-integral). Presumably,
this is the lowest state with these quantum numbers, so
we have a one-channel problem. The crossing matrices
are

for I (or J)=n —1, e, m+1. From this matrix it is
evident that no matter what particles are exchanged,
F'"„+&,„+& is always positive since the elements of n
and P appearing on the right side of Eq. (1.8) are
always in the bottom row of Eq. (4.1) and therefore
positive. Thus, one may always expect a resonance in
the (v+1, n+1) state.

To show that it is consistent to have only I=J
particles in our model, suppose we also exchange this
(v+1, m+1) state together with the (N, e) and (m —1,
n 1) part—icles, which have already been produced at a
previous stage. Then Eq. (1.7) gives

2s—1 2 1 2

2n 2n 2n
0+1,@+1= n—1, n—1 l Pn, , r/

2n+1 v+1

1 2

'r'"„+i „ i. (4.2)
(v+1) (2/z+1)

+

Now we consider the process

w+ (e,e) ~ m+ (v+1, n+ 1) .
The generalization of Eq. (2.9) is

n+1, n+lg n+1, n+1J
2n+2 2n )I/t'2

e(v+2) (2n+1) 1
(p 2m+2~ 2n)1/2+

(~+1)'(2ny3) (~+1y

X ('p n+1, n+1Y m+1, m+1) y (4 3)

since only the (e,n) and (I+1,m+1) isobars can be
exchanged. It is not difficult to show that the only pair
of ratios which can satisfy Eqs. (4.2) and (4.3) and at
the same time be consistent with the results of Secs. I
and II for s= 2) g ls

n+1, n+1.1 pn, n . p n+I, n+l/ pn, n
2n+2 / 2n+2 2n / 2n

= (2rs+1)/(2m+3) . (4.4)

If we now use this result in Eq. (1.8), we find that
n+1, n ~ n+1, n—1. ~ n, n+1 ~ n—1,~1

do not obtain any dynamical particles with I&J.
Equation (4.4) can also be used to get the width of

an (I+1,v+1) isobar when it decays into a pion and
an (N, n) particle. We use the fact that both y, „'"+'
and y'"~~, ~~ are uniquely determined in terms of the
coupling constant between a pion, an (e,m) particle and
an (m+1, v+1) particle. This leads to the relation

y„,„'"+'=$(2m+3)/(2m+1) j'p'"„+i „~i. (4.5)

Combining this with Eq. (4.4), we immediately obtain
y'"+'„+~ ~~=y„,~'". In particular, this implies y„,„'"

g/g, i/2. Equation (4.4) therefore gives

7 ~l, +~1 (2~+1)/(2~+3)v'i/2, 1/2 r

which is just the reduced width in terms of p'i/2, i/2 3f'.
Can we find an analogous sequence of SU(3) multi-
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plets? In Sec. III we studied the scattering of the E'S
octet off a spin--,' decimet and discovered the strongest
attraction in the product state of highest J and highest
SU(3) representation. This suggests that if we scatter
the mesons off the new spin--,' multiplet, we may obtain
a spin-2 multiplet transforming according to the largest
representation which appears in 8 2C BS, and so forth,
leading to a sequence of states just as in the SU(2)
case. To identify these representations, let us name
them by their highest weights fm~, m2), which are de-
fined so that the highest hypercharge which occurs is
I"~»——(m&+2m2)/3, while the isotopic multiplet with
I"=I',„has I=m~/2. Thus the octet is a L1,1j, the
decimet a L3,0], and the quinquetrigesimet a L4, 1$.
The dimension of a general representation is (m2+1)
X (m2+1) (m~+m2+2)/2. Therefore, the representa-
tion for that multiplet in our sequence which has spin
N is (22+—2, 22—-'2), since this is the highest representa-
tion occurring in the product of $1,1)with LN+ —,', 22—2$.
In fact, the representation L22+2, 22 2j—contains I=n

with F=1 only once. Starting with n=-,', the dimen-
sions of the first few of these multiplets are 10, 35, 81,

~ ~ ~

The same dynamical arguments as in the SU(2) case
can be used to show that our model will indeed produce
this sequence. Using the SU(3) generalization of Eq.
(1.8), the force F/q in the highest state is given en-
tirely in terms of crossed-channel residues with co-
efhcients which are products of an element from the
bottom row of the angular-momentum crossing matrix
(4.1) with one from the bottom row of the appropriate
SU(3) crossing matrix. These elements are always
positive, since in both cases they are squares of Clebsch-
Gordan coeKcients. Therefore, F&z is always positive
in the state of highest I and highest SU(3) representa-
tion, which means that we can always expect a particle
in such a state. We cannot of course argue as we could
for the SU(2) case, that these are in general the only
particles which our model would give rise to.

We conclude with some speculative observations. A
sequence of multiplets for which I (or F) as well as I
increases with the mass suggests that it might be
fruitful to study continuation in these internal quantum
numbers in analogy to the Regge continuation in angu-
lar momentum. Our results may shed a little light on
the nature of this continuation.

The most striking feature of our sequences of states
is that it is not I as a function of W for 6xed I Lin the
SU(2) case) which most resembles a Regge trajectory,
but rather a curve obtained by increasing both J and I
simultaneously. Furthermore, if the I=J versus 8"
curve is interpolated between the points 940, 1240, and
1560 MeV, which we assume are the first three physical
points lying at I=J=—'„-,', —'„ then the slope of this new

type of trajectory is roughly the same as the slopes of
the usual baryon Regge trajectories of which these
particles are the lowest members. In other words, if
the 6rst Regge recurrences of the X, 6, and ~, 2 par-

ticles are indeed at 1690, 1920, and 2400 MeV, respec-
tively, all the Regge trajectories lie on top of each other
to within 100 MeV or so. If this notion is extended to
SU(3) multiplets, we arrive at the rule that all Regge
trajectories with 8=-1 are degenerate. This rule is
broken by only 10—20%, the principal manifestation of
the breaking being that higher I (nonstrange) tra-
jectories lie somewhat higher than those with lower I.
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APPENDIX

Calculation of the Lowest Particle Masses
in the SU(2) Model

To calculate the masses of our isobars, we have to
make one additional assumption. For example, let
us assume that the cutoff A in Eq. (1.5) is the same in
all cases. It can then be calculated by requiring that
the D function vanish at co=0 in the (22, -'2) state in 7rX
scattering. For simplicity, we shall also assume that the
D function is linear with the value and slope normalized
at the physical threshold co=1. In other words, we
approximate Eq. (1.5) by

M —1 iV/J ((d )
Dzz(~) =1——d~'(~"—1)"', (A1)

7l ] (co' —1)'

taking coo
——1. This approximation is consistent with

Eq. (1.6) and so all our results on coupling constant
ratios can be taken over.

The equations Drz(~rz) =0 in the n.S scattering for
I=J= ~ and I=J=—,

' can now be solved simultaneously
for A and ~3/2, 3/2, since co~/2, ~/2

——0 and since we know
y'i/2, ~/2 and y'3/2, 3/2 in terms of the xÃS coupling
constant f'=0.08. The result is 4=7.1 and co3/2, 2/2

=1.88. If we take this h. as well as the values of y~g'
obtained in Sec. II and solve D2/2, 5/2(cali/2, 5/2) =0 in 2r&

scattering, we obtain ~5/$, 5/g

The above process can be continued indefinitely. Thus
We Can CalCulate the maSS Of the (72/22) partiCle in 2r

—(2, 2) scattering, the (22, 22) mass in 2r —(2,—,') scattering,
etc. At every stage we can use the general formulas of
Sec. IV to obtain the needed residues. We obtain
ar;/2, ;/2=4. 8, cog/2, g/2=11. 5 ~ . However, we see that
cog/2, g/2&A, which means that our simple cutoff model
cannot be applied in this case. Since the masses of all
the higher isobars depend on this mass, they cannot be
calculated correctly either.

Therefore, we can predict only the (2,2), (2,2), and
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(—',Pv2) masses within our scheme. Assuming the pion and
nucleon masses and the ~ST coupling constant to be
known, these turn out to be 1200, 1640, and 2310 MeV.
It is a curious fact that, together with the nucleon,
which has a mass of 940 MeV, these masses mJ- obey
to a few percent the rigid rotator formula mg
= A J(J+1)+8,where A and 8 are constants. This is
exactly the prediction of the strong-coupling model"
which, however, had an additional arbitrary parameter.

The above masses of the (-', ,~3) and (—',,—', ) particles
should be compared with the experimental values of
1240 and 1560 MeV, respectively. In the latter case we
are assuming, of course, that we can identify our par-
ticle with the resonance of Ref. 7. LActually, the value

~~~~, q~2 in Eq. (2.14) does not coincide with the maxi-
mum of the cross section; it corresponds to 1650 MeV,
which may be the more appropriate quantity to com-
pare with our calculated value. ]
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Impact-Parameter K-Matrix Approach to High-Energy Peripheral Interactions*
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An approximate dispersion-theoretic treatment of peripheral inelastic processes is introduced with the aid
of a K-matrix formalism based on the impact-parameter representation of Blankenbecler and Goldberger.
The method allows the use of one-meson exchange poles as a framework for constructing a multichannel
scattering amplitude which satisies unitarity in the high-energy region, allowing for an indeinitely large
number of open channels. The reaction matrix is time-reversal symmetric and exhibits any other symmetries
of the pole terms. Applications are numerically worked out for models of high-energy Kp and np charge ex-
change, and in the former case satisfactory agreement with experiments is achieved. A qualitative discussion
is given of peripheral isobar production models. The high-energy pp and Ep diBraction scattering is ex-
amined, as well as the agreement of the small-momentum-transfer behavior with a simple model not involv-
ing Regge poles. The method sheds no light on the difference between pp and Pp scattering at high energies.

I. INTRGDUCTIGN

~ LASTIC and inelastic reaction amplitudes of ele-
- ~ mentary particles and isobars at high energies

characteristically exhibit a peak in the forward direction.
In some reactions, such as proton-antiproton elastic
scattering, ' the form of the amplitude can be readily in-
terpreted by analogy with optical diffraction patterns,
suggesting a semiclassical picture of the nucleon with an
absorptive core and a diffuse boundary, phenomenologi-
cally of Gaussian shape. In some other cases, for
example' K++p ~E'+ S~~2*++, the center-of-mass
angular distribution of the production reaction is
clearly consistent with a one-meson exchange formula.
The most common high-energy reaction behavior seems
to be intermediate between these extremes.

Phenomenological corrections to one-particle ex-
change formulas based on the introduction of form fac-
tors have been widely used in the analysis of peripheral
inelastic processes, ' but these form factors have at least
two objectionable properties. The 6rst is lack of
generalizability; evidence has accumulated that such a
form factor appropriate to the vertex p~x has a behavior
nxuch different from that for the pe% vertex, ' while a

~
* Partially supported by the National Science Foundation.' K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.

Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 503 (1963).' V. Barger and E. McCliment, Phys. Letters 9, 191 (1964).
3 K. Ferrari, Nuovo Cimento 30, 240 (1963); E. Ferrari and F.

Sellari, Nuovo Cimento 27, 1450 (1963).

close relation between these form factors would be ex-
pected in various symmetry schemes such as unitary
symmetry.

The second is a lack of theoretical foundation within
the framework of dispersion, or on-the-mass-shell, tech-
niques. A form factor may be expected to have an im-
portant inRuence in a perturbation-theoretic approach,
but even then it is diS.cult to see the source of such large
variations as are required to fit the data. This point
has been discussed by Durand and Chiu, 4 Ross and.
Shaw, ' and earlier by Baker and Blankenbecler. '

The authors (particularly Refs. 4 and 5) also point
out that the inclusion of initial and final-state inter-
actions, usually taken to be strong elastic scattering
v ith a diffraction character, is very important in the
analysis of peripheral inelastic processes; and, in fact,
these corrections may be quite sufhcient to explain the
deviations from one-meson exchange previously ascribed
to form factors. Essentially the same conclusion has
been reached by Bar and Tobocman in a slightly dif-
ferent language; a detailed discussion of the mechanism
has been given by Gottfried and Jackson. ~

4 L. Durand and Y. T. Chiu, Phys. Rev. Letters 12, 399 (1964).
~M. H. Ross and G. L. Shaw, Phys. Rev. Letters 12, 672

{1964).' M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962).
7 A. Dar and W. Tobocman, Phys. Rev. Letters 12, 511 {1964);

A. Dar, ibid. 13, 91 (1964).K. Gottfried and J.D. Jackson, CERN
paper, 1964 (unpublished).


