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A set of mass relations which connect the masses of the strongly interacting particles is presented. All of the
observed particle masses can be represented with good accuracy by a simple additive relation, in which there
enter only two fundamental constants. We have also obtained many examples of the relation ma=ad&+m2
where nz&, m&, and m3 are the masses of three strongly interacting particles. It is shown that there exist many
cases of particle pairs having the same mass difference, i.e., m1 —m2=m3 —m4. Moreover, there are about
20 sequences of particles, where a sequence is defined as a group of three or more particles with the same mass
spacing. A set oi simple mass relations has been obtained for the E meson, and the E*(725) and E*(888)
resonances. The relation of the mass of the p meson to the mass spectrum of the strongly interacting particles
has been investigated. Finally, it has been found that for a large number of particle pairs (a,b), we have the
relation nlrb

——)ns, where ) is a simple fraction.

I. INTRODUCTION

'HE purpose of this paper is to point out a set of
mass relations involving the mesonic resonances

and the baryon isobars. This work can be regarded as
an extension of previous results on empirical mass
relations involving the baryon isobars. ' ' All of the
mass relations considered in the present work are linear
in the masses. 4 As an example, we will consider a number
of relations of the form: ms ——mr+ms, and mr —ms
=ms —m4, where m; (t,=1, 2, 3, 4) are the masses of
strongly interacting particles. The relation ms ——mr+ms
has the same form as that given by a production thresh-
old relation, or else it can be interpreted as meaning
that particle 3 is a compound of particles 1 and 2, in
the sense of a loosely bound nucleus, with very small
binding energy. However, it should be noted that
whereas ms=mr+ms can be interpreted in some cases
in terms of a threshold or compound nucleus eGect, '
if the isotopic spin I, baryon number 8, and strangeness
5 of particles 1, 2, and 3 are such that 3 can be regarded
as a compound of 1 and 2, we will also note examples of
this mass relation where the existence of 3 can no longer
be interpreted in this manner, i.e., when the quantum
numbers I, 8, and 5 of particles 1, 2, and 3 do not have
the appropriate relations for 3 to be a compound of 1
aIld 2.

For those mass relations which cannot be interpreted
in terms of a compound model, there is, of course,
always the possibility that they may represent merely
numerology. However, some of the mass relations are
very striking by their simplicity and symmetry, and
they are presented in this paper in the hope that they

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' T, F.Kycia and K.F.Riley, Phys. Rev. Letters 10, 266 (1963).
2 R, M. Sternheimer, Phys. Rev. Letters 10, 309 (1963).
3 R. M. Sternheimer, Phys. Rev. 131, 2698 (1963).
4 A preliminary account of the present work has been published

in a letter by R. M. Sternheimer LPhys. Rev. Letters 13, 37
(1964)$.

'The fact that for a few baryon resonances, the mass corre-
sponds to a threshold for two-particle production has been known
for some time. See, e.g. , S. F. Tuan, Nuovo Cimento 23, 448
(1962).

are physically meaningful, and that they may even-
tually contribute to our understanding of the mecha-
nism of the strong interactions. We will not give in this
paper all of the linear mass relations which have been
obtained, but essentially only those which seem to be
particularly simple, as examples of the various types of
mass relations. '

In Sec. II, it will be shown that with a suitable
definition of the pion mass nz„, and using the constant
I(: introduced by Takabayasi and Ohnuki, ' the masses
m of all of the strongly interacting particles can be
expressed in the form:

where p and q are integers. In particular, for the se-

quence of nucleon isobars whose ground state is the
well-known —,', -,'- resonance, ' ' namely Ests*(1238),
fit', &,*(1512), Xsts*(1922), and 1Vrts*(2197), the mass
can be expressed simply as: m= pm (i.e. , q=O), where
p=9, 11, 14, and 16, respectively, for the four states
involved. The fit of Eq. (1) to the data is generally
within 4 MeV. Throughout this work, we have used the
experimental mass values given by Rosenfeld, ' wherever
they are available. The representation of the masses
according to Eq. (1) also brings up a number of inter-
esting features of the mass differences, especially when
these are just a multiple of m or ~. It has been shown
that the probability that a random mass distribution
would reproduce the actual agreement of the observed
masses with Eq. (1) is essentially negligible (see the
Appendix).

In Sec. III, we will point out a number of linear mass
relations which involve only the masses of the observed
particles, i.e., which do not involve the constant ~. In

' A more detailed account of the present work is given in
Brookhaven National Laboratory Report BNL-8123 (unpub-
lished). Copies of this report can be obtained from the author.
See also R. M. Sternheimer, Phys. Rev. Letters 13, 358 (1964).

7 T. Takabayasi and Y. Ohnuki, Progr. Theoret. Phys. (Kyoto)
30, 272 (1963).

e A. H. Rosenfeld, in Proceedings of the 196Z Conference on High
Fnergy Physics at CFRS, Geneva, edited by J. Prentki (CERN
Scientific Information Service, Geneva, 1962), p. 783.

364



STRONGLY I NTERACTI NG PARTI CLES 81365

particular, we will show that the relation ms=mr+ms
holds in many cases in which particles 1 and 2 could
not combine to form particle 3, in the manner of a
quasinucleus, as described in Refs. 1 and 3. It appears
that the number of cases for which ms ——mr+ms is
considerably larger than would be expected from a
random mass distribution, and therefore such linear
relations may turn out to be physically meaningful,
even though they are not based on a compound model.
In this connection, it may be pointed out that the mass
relations mentioned above for the nucleon isobars, e.g.,
mLEs/s*(1238) j=9m, cannot be understood in terms
of a quasinucleus model, since a loosely bound aggregate
of nine pions would not have baryon number 1, and
half-integral spin and isotopic spin, as does the isobar
its/s*(1238) .

Among the other mass relations which we will discuss
in Sec. III are the following: (1) mi —ms ——ms —m4, i.e. ,
equal mass differences; (2) ms mi+——srms, of which
there exist several examples'; (3) mass relations in-
volving the p meson mass; (4) ms=Am&, where X is a
simple fraction, i.e., a rational number with small
numerator and denominator. In particular, we have
investigated the cases where X is half-integral (X= ss, ss,

—',), and quarter integral (X=3/4, 5/4, 7/4, 9/4). There
exist also several sets of three particles, such that
nz3='Am2 and ns2=Pm~, with the same value of P, so
that m3 can be written as m3= X'mi.

II. MASS RELATIONS INVOLVING m AND x

In this section, we will show that the mass formula,
Eq. (1), represents the masses of all of the presently
known strongly interacting particles to a very good
accuracy (see Tables I—111).Actually, it would be more
pertinent to state that Eq. (1) follows in a very natural
manner from some empirical observations on the mass
spectrum (in particular, equal mass differences), so that
Kq. (1) can be believed more strongly than if it were
merely an arbitrary parametrization of the experimental
mass values.

Throughout this paper, we will denote by m the
average —', (m ++m o) of the masses of sr~ and mrs; thus
m = 137.3 MeV. With this definition of m, we have":
nz„=4m to within the small uncertainty of the experi-
mental determination of the mass of the q meson:
m„,, ~=549~2 MeV.

We note that to a very good approximation, the mass
of the well-known E3i2* isobar with J=I=-,' can be
written as

Here we have identified the states by giving the isotopic
spin I (/Vr*) and the experimental value of the mass'
with its associated uncertainty as estimated in Ref. 1.
It can be concluded from Eqs. (2)—(5) that the masses
of the four states which belong to the isobar system
whose ground state is /Vs/se(1238) are just multiples
of kg.

We now consider the results of Takabayasi and
Ohnuki, ' who have shown that the masses of the I=O
mesons with strangeness $=0 are equally spaced, " at
intervals of a, where x=235 MeV. Thus for the I=O
mes ons,

m„(I=O) =m„+na, (6)

where v=0 for the g meson, m=1 for co, m=2 for q,
and n= 3 for f. Since m„=4m, Eq. (6) can be rewritten
as follows:

m (I=O)=4m +m. (7)

In order to obtain an equation for the mass m, of
the p meson, we make use of an empirical relation
previously obtained by Sternheimer t Ref. 3, Kq. (11)j,
namely:

mp+m(g —m/+ 2m' . (8)

Upon inserting the expressions of Eq. (6) for m„and
fQf &

one obtains

are those given in Ref. 1. According to Kycia and
Riley, ' the mass differences

m f¹/s*(1512)g —mLXs/s*(1238) g
and

mP'&/&*(2190) j mC&s/s*(1920) j
are equal to m ++m 0, which can be written as 2m .
Furthermore, the mass differences

mPV», *(1920)j—myles/, '(1238)j
mL¹/s*(2190)j—mL¹/s*(1512)j

are equal to m„+m, which can be written as 5m, .
Upon making use of these results, and of Eq. (2), we
obtain for the three mass values involved:

m(ItIi/s*, 1512&2)= 11m (= 1510MeV), (3)

m(1Vs/s*, 1920&15)= 14m (= 1922 IfeV), (4)

m(¹/s*, 2190&20)= 16m (=2197 MeV) . (5)

m(1V3/, ~)=9m = 1236 MeV. (2) mp= 2m~+ 2K. (9)

The experimental value of m(/Vs/s*) is 1238+2 MeV.
Here and in the following, the experimental values of
the nucleon isobar masses are taken from Rosenfeld';
the experimental uncertainties of these mass values

' T. Takabayasi, Nuovo Cimento 30, 1500 (1963).
' R. P. Peierls and S. B. Treiman, Phys. Rev. Letters 8, 339

(1962).

It has been noted by KyciaI3 that the mass difference
m& —m, is equal to 2~, where m& is the mass of the

"We remark that the relation mf —m„=m„—m was noticed
independently by the present author. Results similar to those of
Ref. 7 were also obtained by R. Kumar (private communication).

"This equation for ra, was also proposed by Takabayasi Lsee
Ref. 9, Eq. (28)g.

~ T. F. Kycia (private comraunication).
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recently discovered B particle" (mz= 1220 MeV). Thus,
for the I=1 mesons, we may have the equation:

m (l=1)=2m.+2m',

where m= 1 for p and e= 2 for B. We also note that for
m=o, one obtains mo= 2m . A quasiparticle having this
mass (2m =m ++m 0) and isotopic spin I= 1 has been
used by Kycia and Riley' and by Sternheimer' in their
classification of the baryon isobars.

VVe note that to a very good accuracy, the mass of
the K*(888) meson is given by

m[K*(888)]=m,+m . (11)

With m, =750 MeV, the right-hand side of Eq. (11)
is 887 MeV. The reason for proposing Eq. (11) will be
given below [see Eq. (66)]. Similarly to Eqs. (2)—(5),
Eq. (11) cannot correspond to a compound model,
since the system of a p meson and a pion would have
strangeness 5=0, and I=O, 1, or 2. Upon combining
(11) with (9), we obtain

m[K*(888)]=3m.+2m. (12)

If we regard the hyperon isobar Yo*(1815) as the
co'rnbination of a nucleon and a K*(888) particle, ' ' we

may write for its mass:

m[YO*(1815)]=m~+3m +2~. (13)

It has been noted by Takabayasi' that the value of
is approximately given by m&/4. Following this

author, we define ~ as mN/4= 234.7.
"

MeV, where

m~ ——,'-(m +m„). Thus —Eq. (13) becomes

m[YO*(1815)]=3m +6~.

Takabayasi' has also pointed out that the difference
m[YO*(1815)]—mq is closely given by 3~, and that
m[YO*(1405)]=6~. Upon using these results and the
mass differences shown in Fig. 1 of Ref. 3, one obtains
the following expressions for the various Vo* and I'~*

states and for the A hyperon:

Upon using the Kycia-Riley scheme for the nu-
cleon isobars N3~2*(1650+25), N»2*(1688&3), and
N&~2*(2360+25), together with Eq. (9) for m„one
obtains

m[N3/2 (1650+25)]=mN+ 5m = 5m +4m,

m[N»&*(1688+3)]=mN+ m, ,= 2m.+6~,

(20)

(21)

mx= m[K*(888)]+m, —m~. (24)

Upon using Eq. (12) for m[K*(888)], and the relations:
m„=4m, m~=4', we obtain from Eq. (24)

m~= 7m~ —2K. (25)

In connection with the K*(725) particle, we note
that:

m[K*(725)]—mx=229 MeV=~, (26)

so that we can write:

m[N3)2 (2360+25)]=m[N»2*(1688)]+ 5m
= 7m +6m (2.2)

We note that N3~2*(1650&25) [Eq. (20)) corresponds
to the "shoulder" of the sr+-p cross section. "

In the preceding equations [Eqs. (2)—(22)], we have
obtained expressions for all of the strongly interacting
particles, except for the following: K, K*(725), Z, -,

»2*(1532),0, and three recently discovered resonances
which will be discussed below.

In order to obtain an expression for m~, we note that
to within 2 MeV, the following simple mass relation
holds:

m[K*(888)]—mx ——m~ —m„= 391 MeV. (23)

This relation was obtained in the same manner as Eq.
(11), by using a linear mass transformation recently
discovered by Wick, '~ which will be discussed below.
In Eq. (23) and in the following, we use for mz& the
average 2 (mrr++mx~) = 2[(493.9&0.2)+ (497.8+0.6)]
=495.9+0.6 MeV. Equation (23) gives

my= m[Y0*(1815)]—3~=3m +3m (15) m[K*(725)]=7m.—.. (27)

m[Y&*(1385)]=m&+2m =5m +3~, (16)
In order to obtain an. expression for the mass of the

Z hyperon, we note that we have the mass relation. "
m[Yg*(1520)]=m[Yg*(1385)]+m = 6m +3m, (17)

m[Y~*(1660)]=m[YO*(1520)]+m =7m +3z. (18)

We also obtain the following expression for the mass
of the ABC particle (see Fig. 1 of Ref. 3):
mxsc=m[Yo" (1815)]—m[YO*(1520)]=3m—3m . (19)

The right-hand side gives m~~g=292 MeV which is
compatible with the recent experimental determination
of Booth and Abashian, " according to which mAg~ is
less than 2m, +20 MeV=295 MeV.

'4 M. Abolins, R. L, Lander, W. A. Mehlhop, N. IX. Xuong, and
P. M. Vager, Phys. Rev. Letters 11, 381 (1963).

15 N. E. Booth and A. Abashian, Phys. Rev. 132, 2314 (1963).

mg=8I~: —Sm =2m~ —Sm . (29)

It has been pointed out by Takabayasi' that the ratio
~/m is very close to 12/7. Thus, an alternative ex-
pression for m~ is obtained by adding 12m —7~ to
Eq. (29), which gives

m~= 7m~+K. (30)

"P.Carruthers, Phys. Rev. Letters 4, 303 (1960)."G. C. Wick (private communication).

mz m++mp mx ~

Upon inserting Eq. (9) for m, and Eq. (25) for m& into
Eq. (28), we obtain
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ma ——2m +6». (36)

It may be noted that Eq. (35) for m[ &~s*(1532)) is
the same as the expression (17) for m[Fs*(1520)).This
result is at 6rst sight disconcerting, since it means that
the same mass formula applies to two baryon states,
with different strangeness and different parity [as-
suming that Fs*(1520) is a Ds~s sta, te). This brings up
the general question of the relation of the mass values
to the other quantum numbers of the particle states
(i.e., I, J', 8, and S). This problem will be discussed in
detail below. From the point of view of the agreement
with experiment, we have 6m +3»= 1527.9 MeV. This
agrees to 4 MeV with m[ t~s*(1532)), but for
m[Fs*(1520)), the discrepancy is 8 MeV. Actually,
the isobar F's*(1520) represents the case forswhich the
deviation from the experimental value of the mass is
largest (see Tables I—III).

' W. H. Barkas, J. N. Dyer, an(I H. H. Heckman, Phys. Rev.
Letters 11, 26 (1963).

"V. E. Barnes, P. L. Connolly, D. Crennell, B. Culwick,
W. Delaney et u/. , Phys. Rev. Letters 12, 204 (1964).

~ M. Gell-Mann, Phys. Rev. 125, 1067 (j.962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961); S. Okubo, Progr. Theoret. Phys.
(Kyoto) 27, 949 (1962).

For the experimental value of mr, we will use the
average mass':

mx ——-'s[nz(Z+)+m(Zs)+m(Z —)]
= 1193.4&0.3 MeV. (31)

We will now obtain expressions for the masses of the
and 0 particles, and the r~s*(1532) resonance. For

this purpose, we note the following empirical relations:

m, +m„=m[=-„,'(1532)], (32)

m[F s*(1815)]—m~= mu.

Upon using m, =750 MeV and m„=782 MeV, ' the
left-hand side of (32) gives 1532 MeV, in very good
agreement with the mass of the ~~2* state. The left-
hand side of (33) is 1678 MeV. Concerning the mass of
the 0 particle, " in view of the equal spacing of the
1Vs~s*(1238), Ft*(1385), and t~s*(1532) states, 's one
expects a mass of =1679 MeV, with which Eq. (33)
is in good agreement.

In analogy to Eq. (32), we have the following similar
mass relation for the Fr*(1385) member of the SUs
decuplet":

mx+m[E*(888)]= m[Ft*(1385)]. (34)

Upon using mx= 496 MeV, the left-hand side of (34)
becomes 1384 MeV, in very good agreement with the
mass of the I'~* state.

Upon inserting the expression for m, [Eq. (9)] and
m„[Eq. (7)) into Eq. (32), one obtains

marys*(1532)]= 6m +3». (35)

In a similar fashion, from Eq. (33), one obtains by
means of Eq. (14)

Finally, in order to obtain an expression for the mass
of the particle, we note that we have the relation

m-. +m„+m = 2m[Xs~s*(1238)). (37)

This mass relation, which may seem strange at first,
was obtained by looking for relations that are similar
to Eq. (29), which can be rewritten as follows:

mr+m, „+m =2mN. (38)

With m-. =1319 MeV [estimated average of m(. )
and m(')) and m„=1019 MeV, Eq. (37) holds to 1
MeV. Upon inserting Eq. (2) for m[Xs~s*(1238)] and
Eq. (7) for m„ into Eq. (37), one obtains

(39)m-. +4m +2»+m =18m,
whence

m = 13m 2K. (4o)

The calculated value of the right-hand side is 1315.5
MeV, which differs by only 3 MeV from the estimated
a,verage m=.

Equations (25) and (40) for m& and m-. , respectively,
suggest that

m= —m~=6m . (41)

Upon using m==1319 MeV, m~=496 MeV, the left-
hand side of (41) becomes 823 MeV, in very good
agreement with 6m =823.8 MeV. Thus the agreement
of Eq. (41), which involves only observed masses, is
actually closer than the agreement of the expressions
for mz and m-. separately [Eqs. (25) and (40)].

All of the mass relations given above are of the
following general form:

m=pm +g», (42)

where p and q are integers (which are negative in some
of the cases). Thus p and g may be in the nature of
quantum numbers pertaining to the mass formula. For
the I= 0, S=0 mesons, we have p= 4, and q is the same
as the quantum number n used in Eq. (7). Similarly,
for the I=1, S=O mesons, we have p=2 and g=2e
[cf. Eq. (10)].We note that Eq. (42) is analogous to
that for the energy of an anisotropic harmonic oscillator
in two dimensions, except for the fact that p or q
becomes negative for some of the particles.

For the purpose of a direct comparison with experi-
ment, Tables I—III give the experimental mass values
and the calculated values from Eq. (42). The doublet
of values (p, q) which pertains to each state is listed in
the second column of each table. Table I pertains to
the mesons, Table II includes the nucleon isobars, and
Table III includes the hyperons and hyperon isobars.
The estimated uncertainties of the experimental mass
values have also been indicated. It is seen that the
differences between calculated and experimental values
are generally less than the experimental errors and in
no case does the difference exceed 8 MeV. (In fact, in
20 out of 27 cases listed in Ta,bles I—III, where a precise
comparison is possible, the difference is 4 MeV. ) For
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TABLE I. Mass values for the mesonic resonances.
(All values are in MeV. )

Meson

ABC
P
8
X
E

E.*(725)
r*(888)
E*(1175)

(P,q)

(4,0)
(4,'1)
(4', 2)
(4,3)

(—3, 3)
(2,2)
(2',4)
(7,'0)

(7s 2)
(7', —1)

(3,2)
(0,5)

~ca lc

549.2
783.9

1018.6
1253.3
292.2
744.0

1213.4
961.1
491.7
726.4
881.3

1173.5

mexp

549a2
782&2

1019%1
1255+5
290
750+5

1220&10
960&5
495.9w0.6
725&5
888W3

1175~5

TABLE II. Mass values for the nucleon isobars. The experimental
uncertainties are those given in Ref. 1. (All values are in MeV. )

Isobar (m„p)

X(938.8)
cV3(2*(1238&2)
X, *(1485a5)
Ã1(2*(1512~2)
X i *(1650&25)
XI]2*(1688&3)
X ] *(1920&15)
F1]2*(2190~20)
X3]2*(2360m25)

(p,q)

(o,4)
(9,0)
(4 4)
(11,0)
(5,4)
(2,6)
(14,0)
(16,0)
(7,6)

~ca lo

938.8
1235.7
1488.0
1510.3
1625.4
1682.8
1922.2
2196.8
2369.8

TABLE III. Mass values for the hyperons and hyperon isobars,
(All values are in MeV. )

Particle (m, v)

s(1115.4a0.15)
Z (1193.4a0,3)
F *(1385&5)
co*(1405w5)
I',*(1520'5)
I",*(1660~10)
I'0'(1815~20)
=(1319~2)
= ] *(1532~3)
n-(1680~10)

(P,v)

(3,3)
(7,'1)
(5,3)
(0,6)
(6,3)
(7,'3)
(3,6)

(13, —2)
(6,3)
(2,6)

mcalo

1116.0
1195.8
1390.6
1408.2
1527.9
1665.2
1820.1
1315.5
1527.9
1682.8

mxym~lf:*(725) j=m. , (43)

mtt+2z=nt[Nrts*(1688) j. (44)

Upon inserting Eqs. (25) and (27) into (42), we obtain

m~= 14m —3z, (45)

so that Eq. (44) gives

ntPNrts*(1688)7= 14nt —tt= ntLNsts*(1922)$ —tr, (46)

some cases, the agreement is remarkably close. We
mention in particular the nucleon isobars Nsts*(1238),
N&&s*(1512), and Nsts*(1922) and the A particle
(ntq„n= 1115.36+0.14 MeV, ntz, „r,= 1116.0 MeV).

Before proceeding to a discussion of Eq. (42), we will

point out some additional mass relations. We have
noted the following empirical relations:

nts 2nt +6x=nttt+——2tt (48)

corresponds to the Nrts*(1688) nucleon isobar, Lcf.
Eq. (44)].

(2) The recently discovered meson"" X' with mass
m=960 MeV which decays into rt+2vr corresponds to
p=7, q=O in Eq. (42), i.e., mx ——7m . We have
7m =961.1 MeV, in very good agreement with the
experimental value. We note that, similarly to Eqs.

"L.D. Roper, Phys. Rev. Letters 12, 340 (1964)."G. R. Kalbfieisch, L. Alvarez, A. Sarbaro-Galtieri, O. Dahl
et el., Phys. Rev. Letters 12, 527 (1964)."M. Goldberg, M. Gundzik, S.Lichtman, J.Leitner, M. Primer
et a/. , Phys. Rev. Letters 12, 546 (1964).

where the last step in Eq. (46) follows from Eq. (4)
for m&N»s*(1922) j.

The expressions (45) and (46) give very close agree-
rnent for ntn and nt)N~tse(1688)$. Thus the right-hand
side of (45) equals 1218.1 MeV (as compared to
nta = 1220 MeV). For Eq. (46), 14m —tr= 1687.5 MeV,
in very good agreement with the experimental value.

From Eqs. (2), (45) and from Eq. (7) for ntt (with
n=3), we obtain

,'(nt—t+nt~) =nt/Nsts*(1238) j, (47)

which is well satisfied by the experimental mass values
m~ and m~. Thus with mf ——1255 MeV, m~ ——1220 MeV,
the value of the left-hand side of (47) is 1237.5 MeV.

An interesting feature of Eq. (47) is that the particles
on the left side have baryon number 8=0, whereas, of
course, the isobar has 8= 1.This is another example of
the fact that in the present scheme the masses of the
mesons and baryons are interrelated.

After the work. leading to Eq. (42) had been com-
pleted, three new resonances were discovered. All three
mass values can be represented accurately by means of
Eq. (42).

(1) The P» resonance in the ~ p system corre-
sponding to a mass m=1485 MeV, which was found
by Roper, " corresponds to the state with p=4, q=4,
for which Eq. (42) gives: ns=4nt +4tr=1488 MeV, in
good agreement with the experimental value. A reso-
nance state with p=4, q=4 was actually anticipated
for two reasons: (a) the states with p=q seem to be
very important, as discussed below; thus (2,2) corre-
sponds to the p meson; (3,3) represents the A particle,
so that it was natural to expect that (4,4) might
correspond to an, observable resonance; (b) referring
to Eq. (7), the states n=0, 1, 2, and 3 correspond to
mesons with I=0, 5=0. It was therefore expected that
the state n= 4 (with mass nt= 1488 MeV) might occur,
and correspond to a meson with the same quantum
numbers (I=O, S=O) as the states n=O, 1, 2, and 3.
Instead, it appears that there actually exists a state
with n=4, but it is a baryon isobar (with I=-,', S=O).
A similar situation exists concerning Eq. (10). The
cases m=1 and m= 2 correspond to mesons having I= 1
and S=O. The state n=3 for which Eq. (10) gives a

mass
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(7) and (10), we now have a sequence of levels with
constant separation Dm= 2m, namely X= (7,0);
/Vp/5*(1238) = (9,0), /Vi/2*(1512) = (11,0). Here and in
the following, we denote the particles by their (p,q)
assignment. Again we encounter the feature that a
meson and two baryons are combined in the same
sequence. Incidentally, if we accept the quasiparticles
(Y/vr)= (5,0), and (3w)= (3,0) used in the compound
particle model of Refs. 1 and 3, then we have an ex-
tension of the previous sequence to include the pion

I
= (1,0)7, (3m), (Y/~), x, xp/2*(1238), and Ei/5*(1512),

with 5 equal mass spacings Am=2m„.
In connection with the X meson, the Q value for the

decay into &+2~ is given by

Q(X)=mx —m„—2m =7m —4nz —2ns =m, . (49)

It may be noted that for the Y/~3m decay, the Q
value is also m . In general, since the mass values are
represented by Eq. (42), the Q values for the decay of
the particles will also have the form of Eq. (42), except
possibly for some of the leptonic decays. The relation
of the muon mass to Eq. (42) will be discussed below.

(3) A group at Wisconsin" has found a resonant
state with a mass m=1175 MeV, which decays into
E'+2m. We note tha, t the mass value is very closely
given by 5I(.=1173.5 MeV. Moreover, if this resonance
is con6rmed, it would serve to form a sequence together
with the nucleon (m/I/=4K) and the Pp*(1405) state
(m=6/(). This sequence has the same mass spacing
km=a as the I=O, S=O meson sequence: g, co, q, and

f Fq (7)3
In view of the fact that in the present scheme, the

mass of a particle is characterized by the two integers

p and I7, it seems reasonable to inquire whether the
values of p and q give some information about the other
properties of the particle, i.e., its isotopic spin I,
angular momentum J, parity P, strangeness and baryon
number. However, an inspection of the (p, g) assign-
ments shows that no such correlation of p and q with
the other properties is directly apparent. In fact, there
exists at least one, and very probably, two counter-
examples, in which two particles with the same quantum
numbers I, J, 8, 5 have different masses: (1) the first
case is the well-known co, y pair; both particles have
the J~ quantum numbers 1 (with G parity= —1),
and their masses differ by I(; (2) the second case is the
pair consisting of the nucleon and the P~~ resonance of
Roper" at m= 1485 MeV. Both of these are P~~~2 states,
with isotopic spin I=—„their masses differ by 4m,
i.e., by the mass of an g meson. In fact, in this particular
case, the compound model of Refs. 1 and 3 can be used,
namely the P» isobar can be regarded as the com-
bination of a nucleon plus an Y/ meson, i.e., (/V, Y/). Such
a combination would have strangeness S=0 and isotopic

24T. P. Wangler, A. R. Erwin, and W. D. Walker, Phys,
Letters 9, 7j. (1964).
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FIG. 1; Plot of the strongly interacting particles in terms of
the values of the coefBcients p and q of Kq. (42).

"R. F. Peierls (private communication).

spin I=-,', in agreement with the quantum numbers of
the isobar.

Aside from these two very obvious counterexamples
to the expectation that p and (7 might be unique func-
tions of I, J, 8, and S, we have several other similar
situations. As an example, the masses of the nucleon
isobars /Vp/P (1238), /Vi/&*(1512), X3/5*(1922), and
/Vi/p(2197) are particularly simple, since they are just
multiples of m, i.e., (7=0 in Eq. (42). Moreover, the
quantum numbers 8 and S are, of course, the same for
these four states (8=1, S=O). One might hope that
isotopic spin I=-,' would be associated with even (or
odd) p, while I=-', would be associated with odd (or
even) p. However, the values of p for /V», ~(1238) and
/Vi/2*(1512) are both odd, but the I values are diferent.
The same situation exists for /Vp/p*(1922) and
E»2*(2197), where both p values are even. Actually,
one can derive a complicated dependence of p on I and
J which will just fit these four states. However, the
resulting equation for p(I,J) looks very artificial and
would not fit the p values for the nucleon and the other
nucleon isobars. Perhaps these results for the lack of a
simple dependence of p on the other quantum numbers
are not so surprising, when one considers that
1V5/5*(1238) and Xi/5*(1512) are part of the same se-
quence which includes the 960-MeV resonance (X
meson), as discussed above. Thus there is a change in
baryon number between the X particle and the
/Vp/2*(1238) isobar, and this change could not have
been predicted by just considering the value of p.
I,The fact that there is no simple correlation of p and

q with J and P (parity) is also shown by the assign-
ments Vi*(1385)= (5,3)=P3/2 state; F'p (1520)= (6,3)
=Dp/5, F'i*(1660)= (7,3)=Dp/5. It has not been
possible to obtain a formula for p in terms of J, /, and
L, (orbital angular momentum) which would fit these
three states and also give agreement for the A particle
I:= (3,3)j

It has been suggested by Peierls" that it might be of
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interest to plot the assignments (p, q) for the various
particle states on a graph of p versus q. This plot is
shown in Fig. 1. For the three particles, Z, and
Ite(725), two alternative (p,q) assignments have been
shown. In the figure, we have also included the quasi-
particles 2m, 3m, and gm, which have been used in the
compound model for the classi6cation of isobars, as
given in Refs. 1—3. The ¹~s*(2197)isobar with p= 16,
q=0 would lie outside the limits of the figure, to the
right of its(s*(1920).

In addition to the particles discussed above, this
figure also includes the deuteron D (p=O, q=8), and
the following resonance states which have been re-
ported or confirIned after the main part of this paper
was completed: (1) the o meson" (o —+ tr++7r ) with
mass m 380 MeV (p=q=1); (2) the two resonances
in the z.p system, 'r A i(1090) (P=8, q= 0), and 2 & (1310)
(p=1, q=5); (3) a possible resonance" in the reaction
s. +P ~A+K', with mass m=1647 MeV= 12m
(p= 12, q=0); (4) two states with mass m= 1760 MeV,
V*(1760)" and ge(1760) ' for which the assignment
is p=6, q=4; (5) a, possible S=O meson" decaying
into s.++z. , with m=922&30 MeV (p=5, q=1). It
is noteworthy that all of the 8 observed particle states
for which ns= ptm (p) 1), i.e., q=O, have strangeness
5=0. These states are: ri[p=4], X(960) [7], At(1090)
[8], 1Vs)s*(1238) [9], ¹(s*(1512)[11], cVt)s*(1647)
[12], 1Vys*(1922) [14], and ¹~s*(2197)[16], where
the number in the square brackets gives the value of p
in Eq. (42). Since the number of particles with S=O
represents about 60'Po of all particles, the probability
that a random distribution of states would give rise to
the observed correlation with S=O is (0.6)s=0.017.

Figure 1 shows that there exist 18 sequences each
consisting of three or more particles, separated by a
constant mass interval. The, longest sequences (each
having five particles) are as follows: (1) the (r),oi, p,f)
sequence (interval. =z), discussed in Ref. 7, to which we
can add the ¹~s*(1485)state; (2) a sequence going
from A to I' t*(1660),with interval m; (3) the sequence
(z., 2n. , 3z., t), ri7r) with interval ns; (4) the sequence

[y, A, 8, As, I's*(1405)] with interval z—m (=97
MeV). There are also two sequences with interval 2s,

"R. Del Fabbro, M. De Pretis, R. Jones, G. Marini, A. Qdian,
G. Stoppini, and L. Tau, Phys, Rev. Letters 12, 674 (1964).
Evidence for the 0. meson has also been obtained by F.S.Craw&ford,
R. A. Grossman, L.J. Lloyd, L. R. Price, and E. C. Fovvler, ibid.
11, 364 (1963), and by J. Kirz, J. Schwartz, and R. D Tripp, .
Phys. Rev. 130, 2481 (1963).See also L. M. Brown and P. Singer,
Phys. Rev. Letters 8, 460 (1962)."S.U. Chung, O. Dahl, L. Hardy, R. Hess, G. Kalbfieisch et al. ,
Phys. Rev. Letters 12, 621 (1964); M. Aderholz et al. , Phys.
Letters 10, 226 (1964).

"G.T. Ho6, Phys. Rev. Letters 12, 652 (1964); L. Sertanza,
P. Connolly, B. Culwick, F. Eisler, T. Morris et al., ibid. 8, 332
(1962).

29A. Barbaro-Galtieri, A. Hussain, and R. D. Tripp, Phys.
Letters 6, 296 (1963)."P.Selliere et al. , Phys. Letters 6, 316 (1963); A. Halsteinslid
et al. , Proceedings of the Sienna International Conference on
Elementary Particles (1963), Vol. 1, p. 173.

3' H. Hulubei et al. , Phys. Letters 6, 77 (1963).

namely: [E*(725), Z, Iri*(1660)] and [2~, p,
¹~s*(1688)].Some of the preceding sequences appear
to mix up the baryons and mesons. Thus, in the sequence
extending from the A to I' t*(1660), the f meson comes
between the A and the I"te(1385). With the recently
discovered X meson (tl=960 MeV), one also obtains
a new sequence of four particles with Am=f(:, namely
K, E'*(725), X(960), and Z.

From Fig. 1, one can deduce directly a number of
mass relations, in particular those for which a mass
difference m —m& equals a multiple of m, or ~, or
I(:—m . Among the additional relations which can be
deduced from Fig. 1 or from the (p, q) assignments, we
list the following:

mK —mA mABc mx mx 6m~ ) (50)

mz —nzx= tts[Xs(s*(2360)]—mt[I" i*(1660)]
=m[ Yt*(1660)]—mx

=m[Fp*(1815)]—my=3s, (51)
m[1Vs)s*(1920)]=2mx, (52)

I[at(s*(1688)] mii =—ns[Ys*(1405)] m~=—2z (53.)
In particular, Eq. (50) holds to within 2 MeV. Thus,
m„-.—m~= 1319—496=823 MeV, mA —mABc=1115—290=825 MeV, mx —m =960—137=823 MeV, as
compared to 6m =823.8 MeV. The other relations have
essentially the same accuracy as (50), if one uses the
experimental mass values, except that for Eq. (51),
the mass differences are 700 MeV, as compared to
3&=704.1 MeV.

Among the various states (p, q), those for which
either p or q is the square of an integer, and the other.
index is 0, appear to be especially important. Thus
(4,0) corresponds to the ri meson, which is the lowest
I=O meson state (aside from the ABC). (9,0) is the
cV,&s*(1238) resonance which forms the ground state of
an isobar system. ' (16,0) is the 1Vt~s*(2197) resonance
which forms a link between the two nucleon isobar
systems of Kycia and Riley. ' Finally, (0,4) corresponds
to the nucleon. (0,9) gives a mass 91r=2112 MeV,
which is somewhat above the mass region iIl which
the existence of resonances with S=—1 or S= —2 has
been thoroughly investigated.

The states for which p=q also appear to have some
special importance. Thus, (2,2) corresponds to the p
meson, which is the lowest mass I=1 meson (above tlie
pion). Similarly (3,3) corresponds to the h hyperon,
which can be regarded as the ground state of the entire
system of S=—1 isobars, a,s shown in Fig. 1 of Ref. 3.
The state (4,4) which had been anticipated from the
present arguments has been recently found as a reso-
nance in the tr P system, s' as discussed above. The
doublet (1,1) corresponds to the o meson, for which
additional evidence has been recently obtained. "

In addition to the particles shown in Fig. 1, we also
wish to discuss the following states: (1) The mesonic
resonance decaying into K&'K+x+ which was first ob-
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= (1 0) E= (7 —2); q= (4,0). (54)

(2) For the vector meson octet [p, E*(888), and co

or rp], we obtain

and

p= (2,2) E*(888)= (3 2).

a)= (4,1) or p= (4,2) .

(3) For the baryon octet, we find

1V= (0,4); h = (3,3); Z= (7,1); "= (13, —2). (56)

The only apparent regularity is that the three vector
mesons p, E*(888), and q& have the same q and equally

spaced p values. This leads to the relation

—,'(m, +m„) =nz[E*(888)]. (57)

With mp: 750 MeV, m~= 1019 MeV, the left-hand

"R.Armenteros et al , Proceedings of. the Siennu International
Conference on Elementary Particles (I963), Vol. 1, p. 287. T. H.
Tan, D. Miller, and J. Steinberger, Bull. Am. Phys. Soc. 9, 459
(1964).

~ P. A. Piroue, Phys. Letters 11, 164 (1964).
"A. Citron, W. Galbraith, T. F. Kycia, B. A. Leontic, R. H.

Phillips, and A. Rousset, Phys. Rev. Letters 13, 205 (1964).
35 A. N. Diddens, E. W. Jenkins, T. F. Kycia, and K. F. Riley,

Phys. Rev. Letters 10, 262 (1963).

served by Arrnenteros et al.32 has a mass m= 1.41 BeV,
which is very close to 6n= 1408 MeV. Hence the (p, g)
assignment would be (0,6), which is the same as that
for the Foe(1405) isobar. Thus we have a case where a
meson and a baryon have the same (p,q) values. (2) A
similar situation exists at m =2360 MeV if the resonance
state" decaying into A+1V is confirmed. This mass
value is essentially the same as that of the Xz/'*(2360
~25) nucleon isobar. Thus the (A,1V) state would have
the same (p,q) doublet as X'/'*(2360), namely (7,6).
(3) The two recently discovered resonances in the n+p
and ~ p total cross sections" satisfy several interesting
mass relations. The mass values are m(Xt/z*)=2645
~10 MeV and m(1Vz/z*) =2825~15 MeV for the I=
and I= -,' states, respectively. The mass diff erence
2825 —2645=180 MeV is essentially the same as that
between the two lower states, " 1Vz/z*(2360+25) and
Xi/&*(2190~20). Both mass differences are given by
3m —K=177 MeV. Moreover, m[Ez/z*(2645)]
—m[A'z/za(2360)]=2m . The (p, q) assignments are
therefore (9,6) for Ei/'*(2645) and (12,5) or (0,12)
for Es/z*(2825), where we have made use of 7m=12m .
Thus we have: m[lVs/z*(2825)]=3m~, and from the
point of view of the compound model, this state could
therefore be regarded as a quasinucleus consisting of
a, nucleon plus a nucleon-antinucleon pair (in the I=1
sta, te) with negligible binding energy.

It is of interest to write down the (p, q) assignments
which correspond to the octets of the SU3 scheme. "

(1) The particles of the seals, r meson octet (m, IC, g)
are represented by

side becomes 884.5 MeV as compared to Rosenfeld's
value 888 MeV for m~~.

For the J'=2+ decuplet, namely Ez/'*(1238),
Fi*(1385), i/z*(1532), and 0, we have obtained the
following assignments:

m„=m[Si/z*(1688)]—m~= 14m —5a, (60)

where we have made use of the fact that the Xt/Qe(1688)
isobar corresponds to the threshold for the reaction
sr+tV —+ E+p. The relation (60) gives m, = 748.7 MeV,
in very good agreement with the experimental value'
m.,=750 MeV. We note that Eq. (60) corresponds also
to adding 12m —7a to the right hand side of Eq. (9)
for m„making use of the approximate relation n/nz
=12/7. Equation (60) agrees somewhat better with
the experimental value than Eq. (9) which gives 744.0
MeV (see Table I).

Upon inserting (11)into (60), we obtain the following
alternate expression for m[E*(888)]:

m[E*(888)]=15~.—5n. (61)

The right-hand side equals 886.0 MeV, in good agree-
ment with the experimental value.

We will now discuss the method by which the mass
relations (11) and (23) were obtained. Wick" has
recently considered the dependence on the masses m;
of the allowed regions of the relativistic variables s', t,
and I for the general reaction 1+2—+3+4. These
regions are defined by the three branches of a cubic
curve for which the equation was first derived by
Kibble. "Wick' has shown that if the masses involved
in a given reaction are denoted by m, (i= 1, 4), then
the same region of allowed s, l, and e values (i.e., the
same cubic) will be obtained if the m; are replaced by
either of two sets of derived masses m and m," (i=1,
~ .4), where m and m," are given by two linear
transformations of the original m; values. As an

"T. W. B. Kibble, Phys. Rev. 117, 1159 ($960)

%/z*(1238)=(90)' V *(1385)=(53).
Zi/z*(1532) = (6,3) ' 0=(2,6).

Thus, we find

m(. 1/2 ) ~(IV3/2 )=m(Q) m—(F, ') =3n 3t—g

="sac, (59)

where we have used Eq. (19) for m»c.
The spacings between adjacent states (i.e., with 5

dif7ering by one unit) are slightly diferent from one
another, with the present assignments. However, the
average spacing (i.e., one-half the spacing between two
states with ~=2) is 2tm"no=146 MeV, which is
closely equal to the experimental value ( 147 MeV).

In connection with Eqs. (45) and (46), we note that
an alternative expression for m, can be obtained from
Eq. (46), namely:
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1922 MeV is the mass of the I=-,', Ii7/2 nucleon isobar.
One obtains from m4"

example, we list the expressions for m3' and m&".

(62)ma' ———,
'

(—mi —m2+ms+m4),

m3 =
2 (mi —m2+ma+m4) .

Here and in the following discussion, mme =m[K*(888)].
'tA'e will use the following expression for the mass of the
I=-,', J=-,' isobar:

In Eqs. (62) and (63), it is assumed that the masses

m; have been labeled as follows: m~&m~~m3&m4. If
it turns out that a derived mass (m, ' or m;") is equal
to the mass of an observed particle m, or to -,'m, then
one can obtain a new mass relation, as will be shown
below.

We consider the reaction: x+E~X+K. One

obtains m~ =53, m2'= 307, m3' ——750, m4' ——1383;
m] = 190 mg =444 m3 =887 m4 = 1246 MeV.
Thus, we have m3' m„——m~" ———',m[E*(888)], m3"

=m[K*(888)].The other derived masses m, ' and m;"
are uninteresting from the present point of view (except
possibly m4' =mP'i*(1385)]).

From the expressions for m, ' and m3" [Eqs. (62)
and (63)], we obtain the relations:

m[X3l2*(1922)]=mal+mr —2m . (72)

In order to derive Eq. (72), we note that the I=—,'
level at 2195 MeV can be written as either' ' mal+mr
or m[X3l&*(1922)]+2m . From Eqs. (71) and (72), we
And:

m~+mf 2m—,= mx+m, —+m„+mx~. (73)

Upon inserting Eq. (8) into (73) one obtains

(74)

Upon setting 4m =m„, one obtains Eq. (23).

III. MASS RELATIONS NOT INVOLVING x

m[N3l2*(1922)] =2m4" ——m—x+mp+m„+mx* (.71)
(63)

m, =m, '= ', ( m. m-ir—+m~—+mz), (64)

m[K*(888)]=ma" ', (m ——-mrr+—m~+mx) . (65)

Upon subtracting (64) from (65), we find:

m [K*(888)] mu —m,—— (66)

which is equivalent to Eq. (11).
Upon adding (64) and (65), we find

m +m[K*(888)] m&+=m, m&-
= 2m'+ m p

—2m', (67)

In this section, we will present several types of mass
relations which have in common the feature that they
do not involve directly the constant &. In other words,
these mass relations involve only the physically ob-
servable particles. They are on the whole more accurate
than those of Eq. (42). For the additive relations of
Parts (A)—(E), the accuracy is always to within 2 MeV,
and generally to within 1 MeV.

All of the mass relations to be discussed below are of
the following form:

where we have used Eq. (28) for m&. One finally obtains riim1+S2m2 ll3ma+S4m4 (75)

m[E*(888)]= 2m~ —2m',

which ca,n be written as follows:

(68)

my+.2m&ad= m+..1 (70)

In comparing (69) and (70), we note that according to
the SU3 scheme, E and q belong to the same octet, in

the same manner as E* and ~.
It can be shown, that the use of m,"=-,'m[K*(888)],

together with Eqs. (64) and (65) would n.ot lead to any
additional results, besides the two mass relations given

above, Eqs. (66) and (68). It may be noted that by
applying the transformations (m;) —& (m, ') and (m, ) —+

(m;") to the reaction 7r+E —& A+K, one does not get
any useful results.

Another reaction which has been found to lead to a
new mass relation is: p+~ —+ E'+K*(888). One finds

that m4" =961 MeV, which equals —,
' X1922 MeV, where

mx+ aim [K*(888)]=mli . (69)

This mass relation is satisfied to within 1 MeV (with
mx=496, mi„=939 MeV). Equation (69) can be re-

garded as the analog for the strangeness S=&1 mesons

of a similar relation proposed by Takabayasi, ' namely:

A. The Mass Relations ms ——m, +m,
Concerning the rela, tions of the form

m3 ——mi+my, (76)

we have given numerous examples of this type of rela, —

where e~, e~, e3, and e4 are integers. In most cases,
e4-—-0. Moreover, except for some of the cases for which
mi, =Km, p.=fraction), the integers li; are small (~3).
The following types of mass relations will be considered:

(A): m, =m, +m„.
(8): ma=mi+-, 'm, ;
(C): relations involving the E, K*(725), and K*(ggg)

mes ons;
(D) and (E): rela, tions involving equal mass differ-

ences, i.e., m~ —m2 ——m~ —m4. These sections will include
a discussion of the relation of the mass of the p, meson
to the present scheme;

(F): multiplicative mass relations involving only
two particles, i.e., m~ ——)m, where ) is a rational
number, i.e., a simple fraction. In most of the cases, the
denominator of X is small. In terms of Eq. (75), we have
X=lli/lla, with e2=n4=0.
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tion in Sec. II.It should be noted that the mass relations
of the compound. -particle model' ' are of the form (76).
However, as discussed in detail in Sec. II, this relation
holds also in many cases where a compound of particles
1 and 2 could not have the same quantum numbers

(I, J, 8, 5) as particle 3. Among the previous examples
of (76), we may mention the following: Eqs. (11), (32),
(33), (34), (43), (52), and (59).

A more systematic way of investigating Eq. (76)
consists in obtaining all of the mass differences Am

among the 32 presently known strongly interacting
particles, and in deriving the properties of the distri-
bution F(hm) of the mass differences. We note that, as

expected from Eq. (42), the distribution F(A4r4) seems

to show de6nite clusters around certain particular
values, with relatively large intervals between the
clusters. In particular, there are clusters centered
around the masses of known particles. In the following,

we give the numbers of times that various particle
masses occur in the spectrum of the hm values: m:
7 times; m~B~. 9 times; nz~. 5 times; m„: 3 times;
m[K (725)]: 5 times; m, : 5 times; m: once;
nz[K (888)]:3 times; m[X(960)]:6 times; nz„: twice;
m~.. 3 times, giving a total of 49 mass differences.

Aside from those mass differences which are essen-

tially equal to the mass of an observed particle, there
are about 50 mass differences which are equal to a
multiple of m, or to w or a multiple of z.

It is easily shown that two particle pairs will have

equal mass differences if on the (p, q) plot the four

particles form a parallelogram. If the particles are
labeled 1, 3, 2, 4, as we go around the parallelogram,
e.g. , clockwise, then we have

whence

pi+pp= pp+p4,

qi+qp=qp+q4,

mg+nZp ——mp+m4.

(77)

(78)

(79)

5$$ ' fPS3 —844 fP$2 p (80)

8$]—614=m3 —1@2. (81)

One can obtain several parallelograms from Fig. 1,
e.g. , [p, f, 4p, 2~] corresponding to Eq. (8); PT,
Egip*(1688), 1Vpip*(2360), A'pip*(1625)]; [A, I'p*(1520),
X(960), g], [Vp*(1405), Vp*(1815), Apip*(1625), 8];
and [K*(725), Vq*(1385), X(960), ABC]. We also have
several rectangles, e.g. , [8, X~~p*(1485), p, p]; [p, q,
q, 2s]; and [f, I'~*(1660), X(960), q].

B. The Mass Relations mp ——m~+-,'m,

%'e will now discuss the mass relations of the form

prom Eq. (79), it follows tha, t we have two cases of

pairs with equal Am, namely,

Two examples of this type of mass relation have been
given above, namely Eqs. (69) and (70).

The relation (70) which has been noticed by
Takabayasi' is important for one of his mass formulas
[see Eq. (7) of Ref. 9]. Since we have obtained a very
similar mass relation, namely Eq. (69), the question
arises as to whether the mass of some of the other
particles can also be expressed in the form of Eq. (82).
We have not investigated this problem exhaustively.
We have restricted ourselves to the mesons, the
hyperons, and the ATp~&*(1238) isobar. In most cases,
we have found that the mass can be expressed by the
relation (82) very accurately. In fact, in many ca,ses,
there are several alterna, te expressions (82) for a given
mass.

As an example, for the Z hyperon, upon inserting
Eq. (28) into Eq. (69), one obtains

m s =m, +-',m [K*(888)], (83)

which is completely similar to Eq. (69) for m~, except
that m p replaces nsE. .

It is, of course, impossible to decide at the present
time whether these relations are only numerology, or
whether they may be useful for an understanding of
the strong interactions. However, this type of mass
relation seems to occur in a number of cases. In par-
ticular, as will be shown below, there are eight mass
diQerences which can be written as ~m„=391 MeV.
In fact, the mass differences of Eq. (23) provide two
examples, and we can write

m[K*(888)]=mx+ ,'nz„- (84)

It may also be noted that relations of the type (82)
have been previously considered by Matumoto. '7

We have obtained the following accurate mass
relations:

~,=~[K*(725)]y-',~.
=4p4x+-,,'ns[LVp)p*(1238)], (85)

1
Vga' =Pl p~ p SZ+ ~ (89)

The fact that there are four alternate ways of expressing
the mass of the A'@,~(1238) isobar seems to be rather
remarkable. It should be pointed out that some of the
rela, tions (85)—(89) could have been derived directly

mg =m[K*(725)]+-,'m~, (86)

m[Ar pq&*(1238)]=m[K*(725)]+-',m
=m&+-,'~[A'„(1485)]
=m[X (960)]+-,'ns„

=Bs~+,'ts[Eyp*(219-7)], (87)

mr =w „+-',m[Vp*(1405)]
+-', [V,'(1520)]
=~»c+ pm[Em, *(1922)], (88)

Blp= tSy+ pBZp.
1 (82) » K. Matumoto, Progr. Theoret. Phys. (Kyoto} 27, 1079 (1962).
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from the (p, q) assignments of the particles involved.
However, in many cases, this is not possible, e.g. , for
all cases for which the p and q pertaining to the mass
mp of Eq. (82) are not even numbers (for instance, for
the cases with -', m„, since q= 1 for the p&).

C. Mass Relations for K, X*(725), and K*(888)

We have obtained some particularly simple mass
relations for the E meson, and the E*(725) and K*(888)
resonances. In order to derive the relation for m~, we
can use Eqs. (23) and (68), namely,

is satisfied within 2 MeV. It should perhaps be pointed
out that mq+mx ——1611 MeV corresponds to the
threshold for h+E production in 7riV collisions. It was
noted in Ref. 3 that this threshold does not lead to a
resonance maximum in the 7t-S system, whereas the
threshold for Z+E production is associated with a
nucleon isobar, the Ei~p*(1688) state. Instead of being
associated with an isobar, it appears that the AE
threshold corresponds to the sum m[E*(725)]
+m[E*(888)), even though the reaction E*(725)
+E"'(888) —+A+K is, of course, forbidden by con-
servation of I, J, and B.

m[E*(888)]—mls ——miv —m„,

m[E*(888))+2m'= 2miv.

(23)

(68)
D. Mass Relations Involving the

Mass of the p Meson
Upon subtracting (23) from (68), one obtains

3m' —m++my )

which can be written as follows:

3mx=4m, +4~=1488 MeV.

(90)

(91)

The relation (90) or (91) holds within 1 MeV for
3mx. It should also be noted that 4m +4~ corresponds
very closely to the mass of the recently discovered
Ni~p*(1485) resonance "

In view of the particularly simple and accurate
relation (90), we have investigated whether
3m[E*(725)] and 3m[K*(888)] can also be expressed
in a similar manner. The results are as follows:

3m[K*(725))= miv+m[iVp(p*(1238)) = 9m +4', (92)

3m[K*(888)]=m[Fp~(1405)]+mr=4m +9m. (93)

The accuracy of Eqs. (92) and (93) is similar to that of
(90).

We note that 3m~ can be written as follows:

3mii=m[Yp*(1815))+m[ i~p~(1532))=9m.,+9m. (94)

The fact that 3m&=9m +9~ follows, of course, directly
from Eq. (15).

The mass relations (91)—(94) lead to the following
additional results:

(a) The relation

Although the p, meson is a weakly interacting
particle, it is nevertheless of interest to determine
whether its mass is connected in any simple way with
the masses of the strongly interacting particles and,
in particular, with the constants m and a which enter
into Eq, (42). Indeed, one finds that m /m„=13/10
and z/m„=20/9 to a very high accuracy. These frac-
tions may seem strange at first sight, and the de-
nominators are rather high. However, as will be shown
below [in part (F), Sec. III], for a, large number of
pairs of strongly interacting particles, we have the
relation mp=4n, i, where X is a simple fraction (rational
number). Cases with X=10/9, 20/9, and 13/10 will
also be shown to exist for several pairs of strongly
interacting particles.

The experimental p meson mass is given as" (206.765
&0.003)m, = 105.652&0.002 MeV. With m =-', (139.59
+135.00) = 137.295+0.05 MeV, one obtains

m 137.295~0.05
= 1.29950+0.00047, (98)

m„105.652~0.002

as compared to 13/10=1.3. For ~, we will use the
following accurate value:

~—= ~~ (m„+m„)= g~p(938.213+939.507&0.02)
= 234.715+0.003 MeV. (99)

my= (9/4)mx, (95) Then we obtain

is satisfied within the experimental error of ml;. Thus
with m&=1115.36&0.15 MeV, Eq. (95) gives

1115.36~0.15

234.715~0.003
= 2.2216,

m„105.652&0.002
(100)

(9/4)
=495.72&0.07 'iVeV, (96) as compared to 20/9=2. 2222.

If one uses the relations

which is in very good agreement with the experimental
value: mx= 495.9&0.6 MeV, obtained as —', (mx++mxp),
where m~+= 493.9&0.2 MeV and m~& =497.8&0.6MeV.

(b) The relation

20m„= 9~,

13m„=10m,

(101)

(102)

m[E*(725))+m[E*(888))=m, +m„
'8 D. P. Hutehinson, J. Menes, G. Shapiro, and A, M. Patlach,

Phys. Rev. 131 1;351 (1963l.
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one obtains upon dividing (101) by (102)

9«/10m = 20/13, (103)

which differs by only 30 keV from the measured mass
value. %e also note that if one would assume that
m /m„ is exactly 13/10, the result for m„would be

m„= (137.295+0.05)/1.3
= 105.612&0.038 MeV. (105)

This value has a larger standard deviation than (104)
on account of the larger uncertainty of m, as compared
to that of «. Actually, Eq. (105) agrees with the experi-
mental mass value to about one standard deviation,
as was expected from the result of Eq. (98).

AVe have also attempted to express the p, meson mass

by means of Eq. (42), with appropriate values of p and
q. It was found that the closest agreement would be
obtained with p=11, g= —6 for which we have

m„= 11m —6m= 102.1 MeV. (106)

This result was found by considering all possible com-
binations for which )p) and )q~ are ~16. Obviously,
with much larger values of

~ p[ and )q), one would be
expected to improve the agreement somewhat. How-
ever, we have restricted ourselves to values of p and q
which are of the same order as those used in Fig. 1.

The error for m„obtained with (106) is: 105.6
—102.1=3.5 MeV, or roughly a factor 100 larger than
that obtained with Eq. (104). We shall consider Eq.
(106) again in the following discussion.

In connection with the (p, q) assignment for m„LEq.
(106)), one is led to the question as to whether m„
appears as a mass difference between states belonging
to the meson or baryon isobar systems. Indeed, one
finds for the baryon isobars, three mass differences
which are very closely equal to m„, i.e., well within the
experimental errors of the isobar mass values. Thus we
note that

mLXw~*(1922)) mLY0*(1815))=107 MeV=m„, (107)

mLN&/2~(1512)) mLY0~(1405))=107 MeV=m„. (108)

Furthermore, if we use for the "shoulder" in the s.+p
cross section the value suggested by Kycia and Riley, '
namely: m (1V3~2*)=m&+m„+m =mN+5m =1625
MeV, we obtain the additional relation:

mt Ps~2*(1625))—mL YD*(1520))= 105 MeV =m„(109).

so that «/m =200/117=1.7094.
If one would assume that the ratio «/m„ is actually

20/9, one would obtain for the muon mass:

m„= (234.715+0.003)/(20/9)
= 105.622&0.0014 MeV, (104)

The mass relations (107)—(109) have several conunon
features as far as the quantum numbers I, J, S, and
the parity I' are concerned. In order to show this, we
write down the (znost likely) I, J, S, and J' assignments
for the various states involved:

1V3(2*(1922):I=$,
Y0*(1815):I=0,

1V3(2 (1625): I=j &

Y0*(1520):I=0,
E~)2*(1512):I= -', ,

Y0*(1405):I=0,

JP 7+
2

JP 5+
2 )

JP 2 )

JP 2 7

JP—3—
2 7

Jp 1—
2 7

S=O
S=—1.
S=O.

7

S=—i.
S=O.

7

S=—1.

In each case, in going from the nucleon isobar to the
hyperon isobar (AS= —1), J decreases by one, and the
parity remains unchanged. Also, in all three cases, the
isotopic spin of the I'* is I=O.

We now consider Eq. (106), and note that it is corn-
plete1y consistent with Eq. (108), in the following
sense. We have previously noted that mLE&~2*(1512))
=11m Lsee Eq. (3)), and, according to Takabayasi, '
mt Y0*(1405))=6«. Thus Eq. (108) can be rewritten
as follows:

11m —6m= m„, (108a)

which is identical with Eq. (106). The comparison of
(106) and (108) illustra, tes the fact, previously men-
tioned, that the relations between the masses of ob-
served particle states are in some cases more accurate
than the values given by the pm +q«expression. In
the present case, the difference of the experimental
mass values in Eq. (108) is 107 MeV, in better agree-
ment with m„=105.6 MeV than the value 102.1 MeV
derived from (106).

In connection with the fact that m„appears three
times as a mass difference between isobar states, it is
reasonable to inquire whether m„also plays a role in
the meson spectrum. Taking a hint from the fact that
in all three cases, m„represents the mass difference
between isobars whose strangeness S differs by one unit,
we are led to consider as a possibility a pair of mesonic
states, one of which has ~S~ =1, i.e., a K* or K, the'
other having S=O. One finds that to a very good
accuracy:

mLK*(888)) m= m—„ (110)

With m„= 782 MeV, (110) gives 106 MeV on the left-
hand side, in very good agreement with m„.

In view of Eq. (110), we have calculated all of the
values mx+m„, m/K*(725))+m„, and m/K*(888))
~m„. This has given us several additional simple mass
relations. In particular, one finds that

mPK*(888))+m„= 993 MeV= 2mx, (111)

from which it follows that

mx m„= m/ K( —88)8) mx=mN m,— —
=390 MeV. (112)
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m[I'i (1660)] m[iVzzz' (1238))= 4m„. (116)

In fact, if in (116) one uses the best experimental
values, 1660 and 1238 MeV, one obtains on the left-
hand side: 422 MeV, which is in very close agreement
with 4m„= 4)& 105.6=422.4 MeV.

We have also considered the mass values mo&m„,
where mo is the mass of a strangeness S=O meson.
Thus we have obtained the following results:

nz„= m„+-,'m[E*(888)]=mx+-', nz„, (117)

mQ —mQ+mp p (118)

We note that all of the preceding equations involving
nz„, i.e., Eqs. (107)—(118),are satisfied to within 2 MeV,
and generally to within 1 MeV. Equation (117) is of
the same form as Eqs. (85)—(89), i.e., mp ——mi+-', mz.
An additional relation of this type gives the mass of
the E meson

mx =m„+-,m„.I (119)

In Eq. (118),we can write for m& [cf. Eq. (43)):

whence
ma mx+m[K*(7——25))=nzg+m„, (120)

mx —nz„= no~ —m[K*(725))=390 MeV. (121)

Referring to Eq. (112), mq —m[K*(725)] represents
the fourth example of a ma, ss difference of 390 MeV.
The cases with d,m=390 MeV will be discussed below
in more detail [in Sec. III, part (E)).

Upon combining Eq. (110) with Eq. (11) for
m[K~(888)] we obtain

whence
m p+m —m„=m„,

m@7 mp mJr mp 4

(122)

(123)

With m„= 782 MeV, m, = 750 MeV, the left-hand side
of (123) is 32 MeV, while the right-hand side equa, ls:
137.3—$05.6=31.7 MeV, in very good agreement. It
may be noted that such good agreement would not
have been obtained if we had used m +(= 139.6 MeV)
or m, p(=. 135,0 MeV), instead of the average pion mass

In obtaining Eq. (112), we have used Eq. (23) in
connection with mzz —m, . Equation (112) shows that
one has three consecutive mass levels: m„, m~, and
m[K~(888)), for which the two mass spacings: nzzr m,—
and m[K*(888))—mrr are equal.

We have also obtained the following relations:

m[E*(725)]—nz„= -', nz[iVp~z*(1238) ]= 619 MeV, (113)

nz[E'(725)]+m„=-,'m[Yi*(1660)7=830 MeV. (114)

From (113) and (114), one can derive that

4m[E*(725)]=m[cVz~z*(1238) )+m[I'i*(1660)), (115)

We note that aside from m„—m„ there are three
other Dm values which are essentially equal to m —m„.
These mass differences are as follows:

mf —nzzz =m[ Yp*(1520))—m [iV i~z*(1485)]
=m[I'i~ (1660)]—m[Xz~z*(1625))=m —m„. (124)

The fact that my —m&=m —m„ follows directly from
Eq. (123), since we have: mr =m„+21' and nzzz m, +——2~
[see Eqs. (7) and (10)).The two other mass differences
of Eq. (124) have the same expression as mf —ma,
namely Am= 2m„—~.

We have also found that a number of mass differences
are equal to multiples of m„, i.e., 2m„, 3m„, or 4m„, in
the same manner as for n~ and mm .

Thus we have found the following mass relations
involving 2m„:

m[Yp*(1405)]—ms=nz[ up*(1532))—nz-. =2nz„
=211.2 MeV (125))

a,nd the following sequences of four particles with.
common mass interval Am= 2m„:

m[&l*(1385)]—zzz[E*(1175)]
=m[E* (1175))—m[X (960)7=nz[X(960))

—mp
——2m„, (126)

m[F p*(1520)]—nz[A z(1310)]
=mP p(1310)7—m[2 &(1090))=m[2 i(1090)]

—nz[K*(888)]=2m„. (127)

We note that the masses of corresponding particles in
the two sequences differ by just one pion mass; e.g. ,

m[E*(888))=m, +m„, ;

m[Fp~ (1520))=m[Fi*(1385))+m .

For Am=3m„, we have the following relations:

mr —mzz ——m[Xizz*(1512))—m. =3m„
=316.8 MeV. (128)

The second of the relations (128), which involves
1V&zz" (1512),follows directly from Eqs. (108) and (125).

For Am=4m„, we ha, ve the two relations [cf. Eq.
(»6)]:
nba —nor ——m[Vz*(1660))—nz[iVz~z*(1238) ]= 4m„, (129)

in addition to the Am=4m„cases which can be deduced
from Eqs. (126) and (127).

It appears from the preceding results [Eqs. (107)—
(129)7, that the muon plays essentially the same role
as m and ~, in connection with the mass differences.
Thus the quantities m„, 2m„, 3m„, and 4m„each appear
several times in the mass

differences

spectr z, in the
same manner as the quantities nm and ng (zz= integer).
This result is, of course, very surprising, since the muon
is known to have only weak interactions. However,
at this point, it should be remarked that the constant f~:

which has been extensively used above does not corre-
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spond to the mass of a physically observed particle, so
that the formulation of the mass values in terms of m
and ~ is also somewhat unexpected.

One can ask the question as to whether the particle
masses can be expressed in terms of m and m„(instead
of m and»), by using 'the expression

m=am +bnE„, (130)

where a and b are integers. It turns out that this is
possible (with the restriction that —4&a&16, —3&b
& 8, analogous to the restrictions on p and q in Fig. 1).
One has to make use of Eqs. (101) and (102) in the
conversion from Eq. (42) to Eq. (130) for the individual
particle masses. The deviations from the experimental
mass values are about the same as for Eq. (42) [&6
MeV). However, aside from the many sequences which
involve values of hm= em, which are the same as in
Fig. 1, there exist essentially only two sequences which
involve hm=nm„, i.e., Eqs. (126) and (127). Thus
Eq. (130) appears to be rather artificial as compared
to Eq. (42), which reveals the existence of no less than
6 sequences with km=a~.

m[1V@P(1922)]—m[~i(2*(1532)]—m[E*(1175))—m„=m[F'0*(1405))—m„
—m[$3@*(1625)]—m[$3(2*(1238))

=390 MeV. (132)

It is seen that the common mass difference represents
also the Q value for the K„2 decay.

The mass diRerence m& —m„equals 2m, as shown

by Takabaysi, ~ and therefore all eight relations (131),
(132) can be written in the form of Eq. (82), e.g. ,

m[iVw&*(1922))=m[ &/2*(1532))+-,'m. , (133)

m[7 o*(1405)]=m„+-,'m„.

In connection with (132), we note that m[E*(1175))
= 2m„, as will be discussed in Part (F). It may be noted
that the (p, q) a,ssignment for m~ —m„ is (—4, 4), i.e.,
m~ m„=4» —4m Thu—s the .(p, q) doublet for m~ m„—
is somewhat similar to that for the ABC particle,

E. Particle Pairs With Mass Difference
~m=390 MeV

In this section, we will give a brief discussion of the
cases where the mass difference m& —m2 equals mz —m„
=390 MeV. There are altogether 8 mass diGerences
which are essentially equal to 390 MeV (=4»—4m ).
Four of these have been given above, in Eqs. (112) and

(121), namely:

mx m„=—m[K '(888)) mx =—mp m[K*—(725))
=mn —m„. (131)

The other four mass differences with values =m~ —m,
are as follows:

namely (—3, 3). In both cases, we have q= —p. It
follows from these assignments that

mN ~y= 3mABC ~ (135)

We have investigated the possibility that the eight
pairs of particles involved in Eqs. (131) and (132) may
have a common feature, in terms of the quantum
numbers I, 8, and S. We have found that in all eight
cases, we have the relation

2d,I=DB+hS, (136)

F. The Mass Relations mb ——Xm.

It has been found that for several pairs of strongly
interacting particles, we have the relation

(138)

where ) is a simple fraction. We will first consider the
cases where X is half-integral (i.e., X=—,', 5„or —,'), and
quarter-integral (i.e., X=3/4, 5/4, 7/4, 9/4, or 11/4).
Later, we will consider cases where A is equal to some
other simple fractions.

The cases with X=x2(26+1) and X=~(2m+1) are
listed in Tables IV and V, respectively. In each table,
the last column gives the calculated value of mb,
as obtained from nb=)m, . It is seen that the agree-
ment with the experimental value of mb is in all cases
to ~4 MeV, and usually to ~2 MeV. In this com-
parison, we have not included the uncertainties of
the experimental values of m and mb. In all cases, the
agreement is within the limits of experimental errors for
particles c and b.

In some of the cases, the relation (138) follows di-
rectly from the (p,q) assignments. As an example, the

where AI, 68, and AS are the change of I, 8, and S,
respectively, in going from the state with higher mass
to that with lower mass. We note that DB+DS could
also be written as AV, where F is the hypercharge.

In applying Eq. (136), we must take the state with
S=+1 for the E, E*(725), E*(888), and E*(1175)
particles. For the baryons, we always use the particle
and not the antiparticle state (i.e., we use B=+1).
For the p, meson, we must take I=O. As an example,
for mq —m[E*(725)), we have AI=+-', , AB= —1,
65=+2, so that both sides of (136) equal +1. For
m[F0*(1405))—m„, we have AI = 0, DB= —1,
AS=+1. In connection with Eq. (132), it is assumed
that the isotopic spin of E*(1175)is I= ', , as reported-
in Ref. 24.

Equation (136) leads us to consider the following
derived quantum number:

F=I—,'(B+S)—. — (137)

The relation (136) obviously implies that Fr=F2 for
the two states belonging to each pair. For all of the
presently known strongly interacting particles, one
6nds that F is either 0 or 1.
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Particle o (m.„,)
co (782)
ilT(939)

v (1019)

ASC(290)
E(496)
Z*(725)

ASC(290)
q (549)

Particle b (ta, v)

Z*(1175)
Ys*(1405)
=g(s~ (1532)

E*(725)
¹is*(1238)
Yf)*(1815)

&(1019)
¹ i s*(1922)

mb, pa lc

1173
1408
1529

725
1240
1813

1015
1922

TABLE IV. Pairs of particle states related by the equation:
'/Ãg =Xm4b, vrhere X = ~~ -'„or —,'. The calculated mass of particle b is
given in the last column of the table. (All values are in MeV. )

larger than 4. These relations may seem somewhat
arbitrary at first. However, many of them follow from
our previous results (Tables IV and V), or from the

(p,q) assignments. Moreover, after most of this work
was completed, it was realized that a few of these mass
relations could also be derived from Takabayasi's
results. '

These additional mass relations are listed in Table
VII. Results are given for X=6/5, 7/5, 8/5, 9/5; 13/10;
10/9, 20/9; and 9/8. The four cases with X= 13/10 and
the equation m&/m„=20/9 are of some interest, since
they may indicate that the relations (101) and (102)
involving the p, Ineson are not accidental.

We note that although the relation (cf. Table VII):

relation m„= (13/10)m„ (146)

w, —z b=mb —m, =ln) . (142)

Equation (142) is of the same form as that which defines
a sequence of 3 particles in the mass spectrum (ms —ms
=ms —ns,).

For X=9/4, the mass relations are of particular
interest:

m[lVs~s*(1922)]= (7/2)m„, (139)

(cf. Table IV) is a consequence of Kq. (4), and m, =4m .
In a similar manner the relation

m«= —,'m[1Vi)s*(1485)] (140)

follows from the (p, q) doublets, namely (3,3) for A and

(4)4) for X„s*.
Tables IV and V show that there exist several triplets

of particles a, b, c, such that

m, /ms ——ms/m. =X.

Thus [ABC, E*(725), Fe (1815)]form a triplet with
X=5/2, and Q, 1V, E*(1175)] and [tf, X(960), 0]
represent triplets with X=5/4 and 7/4, respectively.
There are altogether at least 9 such triplets among the
observed particle states. A list of the triplets is given in
Table VI.

It may be noted that if in Eq. (141) one considers the
corresponding values of lnm (to be denoted by vr), one
obtains

was found independently, it could have been derived
from the results of Takabayasi. ' In Table I of his paper,
it is shown that m„= 10«s and m„= 13«s, where «s=—«/3
= 78.2 MeV. Thus it follows that m„/m = 13/10.
Similarly, the relation

mg ——(8/5)m. (147)

could also have been derived from Ref. 9, since
mr=16«s, so that mg/m„=8/5.

It is of interest to determine how many particle
masses are related to the mass of a given particle by
means of the relations of Tables IV—VII. As an example,
one finds for the q meson, eight derived particle masses,
and for the ~ and Ã, Gve and seven derived mass values,
respectively. Thus for the co, the derived masses are
those of the nucleon () =6/5), p(X= 13/10), E*(1175)
(X=3/2), f(X=8/5), and I's*(1405) () =9/5). It should
be also pointed out that the cases of Tables IV—VII
constitute only a part (perhaps 1/2) of the total
number of mass relations where the denominator D~
of X is suitably small (D«(10). In any case, the mass
relations given here establish already a large number of

TAsx.z V. Pairs of particle states related by the equation:
ms=Am, where X=3/4, 5/4, 7/4, 9/4, or 11/4. The calculated
mass of particle b is given in the last column of the table. (All
values are in MeV. )

ms ——(9/4) mrs, (143)

m[Ãsis (1238)]= (9/4)m„, (144)

m[1V„se (1688)]= (9/4) m, . (145)

In this case, only Eq. (144) follows directly from the

(p,q) values. The relation (143) has already been dis-
cussed above [see Eq. (95)]. It was shown that (143)
is satisfied well within the limits of error of m~. Equa-
tion (145) is also satisfied very accurately. It has been
calculated that with a random distribution of niasses,
the probability for the agreement obtained with X= 9/4
in Eqs. (143)-(145) is 0.02.

We will now present some additional mass relations
of the form mb=Xm, where the denominator of X is

3/4
3/4
3/4

5/4
5/4
5/4

7/4
7/4
7/4

9/4
9/4
9/4

11/4

Particle u (m.„p)

j(1255)
EiIs" (1485)
Zgs* (1625).(»0)
N(939)
N II2*(1688)

&(549)
X (960)
f(1255)
Z(496)
& (549}
f (750)

n(549)

Particle b (n,„,)
N(939)
X(1115)
a (1220)

N (939)
X+(1175)
9 (2112)

X(960)
n(1679}¹(s(2196)

X(1115)
N8i2*(1238)

(1688)

NIin*(1512)

&&b, calo

941
1114
1224

938
1174
2110

961
1680
2196

1116
1235
1688

1510
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TABLE VI. Triplets of particle states (u, b,c) whose masses
are such that m, =bcmf, =P'm~.

5/2
5/4
7/4
6/5
9/8
9/8

4/3
2

Particle u

ABC
p

E*(1175)

IC~(1175)

Eaig~ (1238)

Particle b

E*(725)
E

X(96O)
Yo (1405)

S ( *(1647)
a (io90)

Particle c

Y,*(1815)
Z*(1175)

iv *(16ss)
Y,*(1405)

¹ )2*(1485)
1V

Iles*(2197)

E1ig*(2197)
E I {2197)

connections between the different particle states. As an
example, given the values of m„, m„, and m~, the present
mass relations enable one to obtain the masses of the
following 14 additional particles: 7r, E, p, X(960), y,
K*(1175)) 8, Egp*(1238), f, I'p*(1405), kg(p*(1512),
1V&~2*(1688), cV&~p*(1922), and 1V&&&*(2197).

VVe could write down many additional mass relations
of the type m&=Km, if the denominator of P is made
larger. Here we have restricted ourselves to the simplest
of such relations, and we have found that they could be
derived in several alternate ways in many cases.

IV. CONCLUSIONS

In this section, we will attempt to summarize the
results which have been obtained, and their possible
implications.

(1) The mass rela, tions

relations for the compound of particles j. and 2 to have
the same quantum numbers as particle 3. Thus the
relations (76) must be regarded as mainly empirical.

As mentioned above, it appears that the coef3icients

p and q of Eq. (42) do not have a direct connection with
the quantum numbers I, J, 8, and S.Aside from several
other similar situations, this result is derived from the
two cases in each of which two particle states with the
same quantum numbers I, J, 8, 5, and parity I' have
different mass values. Thus p and g cannot be unique
functions of I, J, 8, and S.The relation between (p,q)
and (I,J,B,S) seems to be at a deeper level, in the
following sense. The underlying theory of the strong
interactions might an extension of the present SU3
scheme. ' Such a theory would probably determine
which representations of the SU3 group correspond to
observed particles, e.g. , whether the 27-fold repre-
sentation exists in nature. From this theory, one might
expect to predict on the one hand, the values of p and

q, and on the other hand, the values of I, J, 8, 5, and
parity of each particle.

(3) It has been found that the mass of the jc meson
enters into several additive relations: mp ——m~+mp,
where the other two particles, e.g., 1 and 3, are strongly
interacting. To the extent that a theory could explain
the additive relations (76), it therefore seems that, in
some sense, the muon derives its mass from the strongly

TABLE VII. Pairs of particle states related by the equation:
mq=xm„where X=6/5, 7/5, 8/5, 9/5; 13/10; 10/9; 20/9; and
9/8. The calculated mass of particle b is given in the last column
of the table. (All values are in MeV. )

m3 mj+mQ (76)

has been shown to exist in numerous cases. This relation
has the same form as that for a particle production
threshold, or for a composite particle with very small
binding energy (quasinucleus). However, in the ma-
jority of the cases, the quantum numbers I, J, 8, and
5 of particles 1 and 2 do not have the appropriate

follow in a natural manner from some empirical ob-
servations on the mass spectrum, in particular, the fact
that there are many cases of equal mass differences for
different pairs of particles, and the related existence of
sequences of particles with the same mass spacing hm.
In a general way, Eq. (42) demonstrates the underlying
quantized nature of the mass spectrum. Moreover, the
relations of Eq. (42) show that the mass, and in par-
ticular, the coefficients p and q cannot be completely
determined from a knowledge of the other particle
properties, i.e., from the values of the quantum numbers
I, J, 8, and S. The existence of the various sequences
shows the interrelations of the mesons and the baryon
states, i.e., of bosons and fermions. These interrelations
are essentially empirical, and they do not seem to have
been predicted by the present particle theories.

(2) The mass relation

6/5
6/5
6/5
6/5
6/5
6/5
6/5

7/5
8/5
s/5
8/5

9/5
9/5
9/5
9/5

13/10
13/10
13/10
13/10

10/9
10/9
10/9
10/9
2O/9

9/8
9/8
9/8
9/8

Particle u (m, . )

(7s2)
q (1019)
E*(1175)
E,~ *(1238)
Y,+(1385)
Y,*(1405)
g (,*(1512)

E*(725)
or(782)
q (1019}
37 ~ *(1485)

or (782)
N(939)
a(1220)

(1319)

or {782)
X(939)
f(1255)
x, &

*(16ss}

E (496)
z {1115)
XI(2*(1512}
Y,*(1520)

& (549)

x{1115)
y {1255)
K*(1175)

(1319)

Particle b (m. ~)

X(939}
a(122o)
Y,*(1405)
X ] *(1485)
Y (166O)
XI(g*(1688)
Yo (1S15}

q (1019)
f(1255)
1V3(g*(1625)
E3~2*(2375)

Yo*(1405)
&1&2*(1688)
¹(2~(2197)
X8]2*(2375)

p(1019)
8 (1220)
Ã, ( *(1625)
~,(.*(»»)
g (549)
Xgi2*(1238)
n(1679)
XI(2*(1688)
8 (1220)

f(1255)
Y,*(14O5)
-„-(1319)
S1(2*(1485)

mb, calc

938
1223
1410
1486
1662
1686
1814

1015
1251
1630
2376

1408
1690
2196
2374

1017
1221
1631
2194

551
1239
1680
1689
1220

1254
1412
1322
1484
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interacting particles. This possibility is made plausible
by the fact that m„ is much closer in order of magnitude
to m than to m, .

(4) The mass relations

(138)

seem to be in accordance with the expectation that all
strongly interacting particles are, in some sense, equally
fundamental. We note that Eq. (138) is symmetrical
in 'm, and mb, since we can equally well write:
m, =(1/X)mt, . In connection with the discussion fol-
lowing Eq. (147), which involves the i!, co, iV+14 other
particles, we could consider any of the 14 particles,
e.g. , iVi~~*(1688), and express the other 16 mass values
in terms of mLWi~2*(1688)). Thus, if we would assume
that the 16 ma, ss relations nub

——Am are exactly valid,
irrespective of the values of m, and m„ then if we would
make the mass of any one particle equal to 0, the
masses of all other 16 particles would also vanish. In
this sense, the relations (138) seem to indicate that the
existence of any one particle and its mass implies the
existence and mass of a large number of other particles.
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APPENDIX

In connection with the validity of Eq. (42), i.e.,
m= pm +q~, we have made a statistical study in order
to determine the probability I' that a random distri-
bution of masses would give the same agreement with
Eq. (42) as is observed. As would be expected, this
probability is negligibly small ( 6X10 ').

We note that there are 32 strongly interacting
pa, rticle states which are known at present. " This
number includes the three recently discovered reso-
nances: ¹~2*(1485),X(960), and K*(1175). In our
comparison with a random distribution, we must
exclude 5 states, namely m, iV, X@2*(1625),iVi~2*(2190),
and AS~2*(2360). For m and E, the masses must be
excluded from the comparison, since m and a=md�/4
a,re directly used in the mass equation. Moreover, the
experimental mass values of X3/2*(1625) Lshoulder of
the m.+p cross section), 1Vi~2*(2190), and iVg2*(2360)
are not known with su6icient accuracy to make a pre-
cise comparison with the values given by Eq. (42).

An inspection of the experimental and calculated
mass values (Tables I—III) shows tha, t the remaining
27 particle sta, tes can be divided into two groups, as

' This number does not include the recently reported resonances
0-, A1(1090), Am(1310), lVII~*(1647), and I'*(1760), which were
included in Fig. 1 after the main part of this paper had been
completed. The inclusion of these states in the statistical study
would not materially affect the 6nal result for the probability I'
!:Ea (A2lj.

follows: (1) those for which the difference 8m=—~m.„,
—m«i,

~

is less than 4 MeV (20 states); (2) those for
which 5m exceeds 4 MeV (7 states). The maximum
8nz=7. 9 MeV is obtained for I'0*(1520). The 20 states
in category (1) are the following: p, o~, p, f, ABC,
X(960); E) X*(725), E*(1175); 1Vp2*(1238),
¹p*(1512),¹)2~(1688),F3(g*(1922); ¹(p*(1485)) A,

Z, 0, I'o*(1405), , and i~~*(1532). The seven states
in category (2) are: p, E*(888), 3, V,*(1385),
I'0*(1520), 7'i*(1660), and I'0*(1815). In the com-

parison of m..~, with m, „we have used Rosenfeld's
experimental value' whenever it is available, and we

have disregarded the uncertainties of m,„,.
We have calculated all mass values of Eq. (42), for

which p and q are integers subject to the condition
—3~P~+16, —2~q~+6, and for which m lies
between 0 and 2500 MeV. There are altogether 136
mass values in the region determined by the restrictions
given above.

The region of 25m=8 MeV around each of the 136
calculated values would subtend a total region of
136&8=1088 MeV if there were no overlap between
the 8-MeV bands pertaining to diRerent (p,q) values.
As a result of the overlap, the total subtended region
is decreased from 1088 MeV to 1035.2 MeV. Since the
total mass interval considered is 2500 MeV, the sub-
tended region represents a fraction 1035.2/2500= 0.4141
of the total mass interval. It has been pointed out by
Robinson" that if the allowed region constitutes a
fraction. f of the total mass region, then with 27 ran-

domly distributed masses, the probability that at least
20 of them will fall into the allowed region (5m~4
MeV), and seven may lie anywhere in the total mass
interval is given by

27 271
fn(1 f)27—n

~=2o (27—I) !pg!

This equation can be derived by noting that the
a priori probability that a particular set of e mass
values will fall in the allowed region, and that the
remaining 27 —e values lie outside this region is simply
given by f"(1—f)" ". We must multiply this proba, —

bility by the number of ways of choosing e objects out
of a, total of 27; i.e., by 27!/L(27 —e)!e!).Finally, we

must sum over all values of e between 20 and 27, to
include the cases in which more than 20 mass values are
in the allowed region.

It is found that the first term in the sum (A1), i.e.,
the term with v=20 predominates. With f=0 4141, .
we obtain

271 7 0.4141
(0.4141)"(0.5859)" 1+—

20 17 1 21 0.5859

7 t 6q 0.4141 '
+(—) I

—
I( ) +" (A2)

D. K. Robinson (private communication).
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The square bracket of Eq. (A2) has the value 1.289.
The factor preceding the square bracket is 4.624&10 ',
thus giving P=5.96X10 4 (3.4 standard deviations).
Hence the probability that a random distribution of
masses would give rise to the observed agreement with
Eq. (42) is negligibly small, as was expected.

We have also made a calculation of the probability
of obtaining the results concerning the mass differ-
ences Am —m„and Am —390 MeV, if the mass distri-
bution were random. For this purpose, we first calculate
the probability of a given mass difference Am on the
assumption that the masses are randomly distributed
between 0 and 2500 MeV. We let x=—Dm/(2500 MeV).
For a mass difference hm, the smaller mass can take
on any value between 0 and 2500—Am, since the larger
mass cannot exceed 2500 MeV, according to our
a,ssumption. Hence the relative probability of a given
value of Am is 2500—Am, or in terms of x, it is: 1—x.
In order to normalize to 1, we must take P(x) = 2(1—x),
so that J94 P(x)dx=1.

For the muon mass, m„=105.6 MeV, we have:
@=0.0422, so that P(x)=1.9156. In the experimental
mass spectrum we have five mass differences in a 2

MeV region extending from 105 to 107 MeV. This
region, when weighted with the probability P(x),
corresponds to an eRective fraction f, :

f = X1.9156=1.532X10 '.
2500

(A3)

Similarly to Eq. (A1), the probability which we must
ca,lculate is given by

n=496 496 t

(A4)P.= 2 f n(1 f )496 n-
n=6 (496—96)!49!

Here 496 is the total number of mass differences among
the 32 strongly interacting particle states considered
here. As in the case of Eq. (A1), the term with lowest
99(=5) predominates. With f,=1.532X10 ', the term
v=5 equals 0.976X10 ', and the total probability
P,= 1.108)&10 ', which would correspond to 3.3
standard deviations.

In a similar manner, one can calculate the proba-
bility that eight values of Am would be closely equal
to 390 MeV with a random mass distribution [cf. Sec.

III, part (E)]. However, in this case, the situation is
slightly more complicated. If one uses the best experi-
mental values, and disregards the experimental errors,
as has been done previously, then of the eight mass
diRerences of Eqs. (131) and (132), only five have
values in the region 390—392 MeV. These are [JC,p],
[E~(888),E], [A,E*(725)], [iV,g], and P'p9*(1922),

4~9*(1532)].For the remaining three pairs [E*(1175),
49], [I'9*(1405),99], and [F6/9*(1625),iV6/p(1238)], the
mass differences are 393, 386, and 387 MeV, respec-
tively. Of course, it should again be pointed out that
the masses of some of these states are not known to a
very high accuracy, i.e., to 2 MeV, in particular
K~(1175) and 1V6~9*(1625). Nevertheless, in our calcu-
lation of the probability, to be denoted by Pb, we will
use only the 6ve pairs with Am=390 or 392 MeV. For
the center of the region, Am=391 MeV, we have:
@=391/2500=0.1564, whence P(x) =2(1—0.1564)
= 1.6872. The eRective fraction f6 for the 2-MeV region
is therefore

f6 = X 1.6872 = 1.350X 10 '.
2500

Since the mass difference 390 MeV does not corre-
spond to the mass of an observed particle, we must
calculate the probability that four pairs will have a
mass difference which is equal to a predetermined value,
i.e., the mass difference of the fifth pair (e.g. , 99949

—996„).

Hence the probability P b is given by

496t
P6 f n(1 f )496—n

=4 (496—96)!96!
(A6)

The term with m=4 predominates, and gives
4.26X10 '. For the total probability Pb, one obtains
4.91&10 ', which would correspond to 2.8 standard
deviations. Both the probabilities P and Pb are very
small, so that the equality of the mass differences both
for m„and for 390 MeV=4~ —4m is probably physi-
cally signiQ. cant.

It may be remark. ed that if we had seven pairs in the
interval from 390 to 392 MeV (instead of five), the
probability P6 would be decreased to 6.93X10 ' (4.0
standard deviations).


