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(d,Li®) Reactions in C%?, O'%, and F'° at 14.6 MeV*
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It was found that in the bombardment of light targets such as C2, 016, and F° with 14.6-MeV deuterons,
many-nucleon transfers often occur with relatively large cross sections. Differential cross sections are pre-
sented for the ground-state transitions C!2(d,Lif)Be8, 0(d,Li%)C!2, F¥9(d,Li®)N5, and F¥(d,Be%)C2, All
angular distributions show pronounced structure. The (d,Li%) reactions leading to the ground states of N5,
C2, and Be8 show asymrretry with respect to§=90°, and have total cross sections on the order of 1-4 mb. The
similarity of the angular distributions and a relatively minor sensitivity to energy variations suggest that a
direct reaction mecharism predominates. Preliminary DWBA (distorted-wave Born approximation) calcu-
lations by Drisko, Satchler, and Bassel show qualitative agreement with the data, and support this view.
Unique identification of the heavy reaction products was obtained by energy analysis in conjunction with
simultaneous analysis of a second parameter, which was either the magnetic rigidity or the time of flight of
the heavy ions. Both experimental procedures are described in detail.

I. INTRODUCTION

T has been known for some time'? that for light
nuclei, shell-model wave functions can be rewritten
in a cluster form. These ‘clusters” are groups of
nucleons with the correct symmetry properties (angular
momentum, etc.); otherwise they do not necessarily
resemble the corresponding free nuclei. The resemblance
may improve when residual forces are introduced
between the nucleons of the cluster. Attractive residual
forces tend to enhance relative s states, and it has been
calculated® that in heavy nuclei this can lead to a
considerable increase in alpha-like clustering. Many
arguments have also been advanced for the existence of
alpha-like clusters in light elements,*? and several
recent experimental tests have been reported.’

Not all probable clusters are alpha-like. Li® for
instance, seems to have large widths for alpha-plus-
deuteron cluster states.? It has also been viewed as an
alpha plus two nucleons.® Li” has a large probability to
be found in the form (triton cluster + alpha cluster).”
If clusters in various light nuclei are indeed similar to
the corresponding free nuclei or at least to one another,
the exchange of such clusters in nuclear reactions should
be greatly enhanced over the transfer of the same
number of uncorrelated nucleons. Information on
cluster transfers would enhance our knowledge of the
structure of parent or daughter nuclei, and permit
interesting cross checks with theoretically predicted
wave functions. Theoretically, the study of cluster

* This work was supported by the National Science Foundation.
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transfers and the interpretation of experiments becomes
practical if the interaction—to a good approximation—
can be described as a direct reaction. We can then use
the distorted-wave Born approximation (DWBA), and
make calculations that treat the pickup of preformed
clusters existing in a suitable potential well.® Once all
optical-model parameters are known, such direct re-
action calculations should yield spectroscopic factors
which are simply related to the fractional parentage
coefficients for the cluster in the target and ‘“daughter”
nuclei.

It is not always possible to know a prior: that a
certain reaction will be predominantly direct (in our
operational definition). We shall have to investigate
experimentally in each case whether this assumption is
tenable. There are many examples for (p,f) and (p,)
reactions to low-lying final states that all show the
characteristics of direct interactions, although the
pickup of more than one particle is involved. Hence the
transfer of two neutrons and two protons, especially in
the form of an alpha-like cluster, might be well de-
scribed as a direct a-pickup reaction. The simplest
reaction of this type is the (d,Li®%) reaction (Li® and He®
are extremely unstable). As mentioned above, the
“daughter’” Li® has a high probability to be found in an
alpha + deuteron state, and pickup reaction cross
sections should be reasonably large if the target nuclei
have large widths for alpha clusters. This, indeed, seems
to be the case for a number of light targets.? It might
also be true for heavier elements,!® but Coulomb barrier
effects so far have limited our investigations to light
nuclei.
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II. EXPERIMENTAL PROCEDURE

The investigation of many-particle pickup reactions,
such as (d,Li®), presents several experimental problems:
Cross sections are small, Q values are negative and the
ranges of the reaction products are very short. In
addition, one faces the problem of unique identification
of the heavy reaction products of interest. This gener-
ally necessitates a complicated detection system and
high beam energy. The Pittsburgh fixed-energy cyclo-
tron provides an analyzed deuteron beam of typically
0.3 pA at about 15 MeV. This energy is comparable to
some (d,Li%) Q values, and our investigation has to be
confined to favorable cases, e.g., nuclei with small
negative Q values that also have reasonably low Cou-
lomb barriers. Hence, the necessity to work with light
target nuclei such as F1 O and C2. Because of the
short range of heavy fragments in matter, target
thicknesses generally had to be kept to about 0.2
mg/cm?. The preparation of thin targets was only
moderately difficult; for it had been ascertained
experimentally that high-Z backings, in particular Ni
and Au, produced no appreciable heavy fragment
background. C*? and CaF were deposited on 100-ug/cm?
Ni foils, while oxygen targets were prepared by oxida-
tion of thin Ni foils. The thickness of the targets was
measured by weighing, as well as by comparison of
elastic-scattering cross sections obtained from these
thin targets with those from moderately thick commer-
cial foils such as Mylar (for C*? and 0'®) and Teflon (for

C2 and FY). Handling of the incident-deuteron beam
and charge integration was accomplished in a con-
ventional manner.! The energy spread in the residual
deuteron beam was about 80 keV.

Various methods of identifying Li® particles were
used. The first one, measuring the energy deposited by
heavy particles in a limited-range counter (ion chamber
with variable gas pressure), was discarded after it
became apparent that other heavy particles (such as
Be?) of comparable energy were produced in appreciable
quantity.’? A more successful method of particle identi-
fication consisted of simultaneous momentum and
energy analysis of the charged reaction products. For a
given position (Fig. 1) in the focal plane of the magnet,
the energies of the charged particle groups, reaching
a solid-state counter are restricted to

2% (Bp)?

m

(mks),

HR. S. Bender, E. M. Reilly, A. J. Allen, R. Ely, J. S. Arthur,
and H. J. Hausman, Rev. Sci. Instr. 23, 542 (1952).

2 Qur preliminary results for F¥(d,Li®)N' for E;=15 MeV
given in Refs. 8 and 9 were obtained with such a limited-range
counter. Our more accurate 2-parameter analyses yield cross
sections that agree qualitatively, but not in detail, e.g., the newer
data (Fig. 8) yield cross sections that decrease less strongly with
angle. We attribute this discrepancy mostly to the need for a large
background subtraction in the limited-range data. Some of the
difference may be due to the fact that the earlier data were taken
near Eq¢=15 MeV, while our recent experiments were performed
at £4=14.5 MeV.
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Fi6. 2. Typical spectrum from a solid-state counter at the focal
plane of an analyzing magnet, for fixed Bp. The energy of the
detected charged particles is proportional to Z2/m. The continuous
background is mostly due to neutron and y-ray induced reactions
in the detector. [For the magnitude and energy dependence of
neutron induced reactions in Si counters see, for instance, G.
Andersson-Lindstrém, Ph.D. thesis, University of Hamburg,
1964 (unpublished).] This spectrum was observed in an O%4-d
run (Ref. 9). It is shown because it simultaneously contains
several interesting heavy groups.

where m= A X (proton mass). Thus, for Bp=constant,
transmitted particles have only discrete energy values,
each value signifying a different mass or charge state.
A typical spectrum seen by a small solid-state counter
mounted in the focal plane of the analyzing magnet is
shown in Fig. 2. As can be seen, all groups for values
Z2/A>1 are well resolved and easily identified by their
72/ A number. For Z?/A~1 we might have either H'*,
He*+ Be**** etc.; hence this value would become
useful only if the groups are dispersed by a thin ab-
sorber. For Li*++ we have Z?/4=1.5. The closest
neighbors in magnetic rigidity are OYH+++ with
72/ A ~1.56 and O'7+++++ with Z2/4 ~1.47. These peaks
“could have been resolved from that at Z2/4 =1.5 since
the counter had about 19} resolution at 6 MeV. In
practice, oxygen ions do not present a problem, since
their recoil energies remain smaller than that of ground-
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Fic. 3. Total energy spectrum of Li#*++ particles from the re-
action C2(d,Li)Be?, obtained from 31 spectra of the type shown
in Fig. 2. The width of the “sharp” peak reflects the target thick-
ness rather than resolution of the detection system. The con-
tinuum is mostly due to Li® ions from the 3-body breakup of the
(C2+d) system. Errors shown are statistical. The dashed line
marks the ground-state peak.

state Li® particles. Hence, Li***+ particles would be
uniquely identified. The Q values for various nuclear
reactions are easily available!®; thus it is easy to com-
pute the values of Bp for which various particle types
will be seen. It is then not hard to change B in small
steps through the range for which the ions of interest
are allowed, and obtain a complete energy spectrum.
One such spectrum for C'2(d,Li%)Be® at 61,,=30° is
shown in Fig. 3. The Li® peak due to the ground-state
transition is well resolved from those Li® ions which do
not leave the daughter (Be®) in its ground state. Pre-
liminary cross sections obtained in this fashion were
reported earlier.®

The difficulty that remains in the magnetic analysis
approach is to estimate the percentage of Li® ions that
enter the magnet with triple ionization. It is found
empirically that the charge state of Li® ions changes
somewhat with energy, but above 1 MeV per nucleon
at least 709, of the Li° ions seem fully stripped. We
assumed that typically 809, of the Li® ions were fully
stripped. Allowing a £109, error for our estimate, we
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found good agreement with time-of-flight data subse-
quently obtained.

For doubly ionized Li® ions the magnetic rigidity
parameter Z2/ A equals 0.667. Here we face the obvious
ambiguity between He®++ and Li**+. Furthermore, this
point is often affected by broad peaks from C!**++ and
CB+++ recoils and by neutron background (for low Li¢
energies), so that acceptable measurements for Lit++
could be made only at a few angles. We therefore found
it advantageous to employ a third experimental
approach, that of simultaneous energy and time-of-
flight analysis. This method does not depend on the
ionic charge, but rather on the ion’s mass; hence, for a
given energy E and flight time 7, all ions of like energy
and mass are selected. If various reaction products of
like mass are possible (HeS, LiS or Be?, Li etc.), Q
value considerations usually can determine the origin of
certain groups. If the ambiguity persists, a combination
of both methods discussed or the insertion of absorber
foils may be needed. In practice a two-dimensional
analysis of counts versus energy and time of flight
proved quite adequate for our (d,Li®) experiments.
(d,He®) reactions were either energetically forbidden or
unfavorable, and it seems safe to assume that Be®
reaction products will be suppressed on account of
higher Coulomb barriers, more negative Q values, and
very short lifetimes.

The natural beam pulsation in a fixed-frequency
cyclotron makes fast-time-of-flight work very simple:
Energy-analyzed deuterons from the Pittsburgh cyclo-
tron strike the target in intervals of 87 nsec for a dura-
tion of less than 4 nsec. An 8-MeV Li® ion traverses 1 m
in about 72 nsec, a Li” ion in 67 nsec, a Li® ion in 62
nsec, and an alpha particle in 51 nsec. Hence, time-of-
flight work which makes use of the natural beam pulsing
is feasible under these conditions. We derive a fast
cyclic (T or “Stop”) signal from a plastic scintillator
(NE102) that detects deuterons elastically scattered - s
through a small angle (see Fig. 4). A slightly damped o £
ringing circuit of 87-nsec period averages over fluctu-
ations in the number of elastically scattered deuterons,
so that a (stop) pulse is available every 87-nsec (T).
The event (start) pulse is obtained from a 50 mm2, thin s g
(200 p) Au-barrier detector that also serves for energy “:—“-\:r_;@‘——@———
analysis. Pulse shapers and a fast amplifier provide the BTy
time-of-flight start signal 7 (see Fig. 5). The event
(T1) pulse turns on a tunnel diode which stays on until
the next T’ pulse turns it off (in less than 87 nsec). The
total charge ¢ in the output pulse is proportional to
(T'y—To+const) nsec. Typically, g~ (100—T), where i
T is the time of flight. The very short duration of the Ly
time-of-flight charge pulses permits théir direct con- C)
version into a pulse height spectrum P.H.~ (100—7T) 7
by amplification by a slow amplifier which has a rise
time 73>88 nsec.

In the present experiment the energy spectrum was
fed into the F side and the simultaneous time-of-flight
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states are unstable against particle emission, and the
excitation of the 7'=1 level at 3.56 MeV is inhibited by
isospin selection rules and/or the Coulomb barrier
effect. For the ground-state transitions C2(d,Li®)Bes3,
01%(d,Li%)C2, and F9(d,Li®)N'5, angular distributions
were measured. Absolute differential cross sections are
shown in Fig. 8. For F¥+4d we also observed the
F19(d,Li")N" and F*(d,Be?)C' reactions. The F*(d,Li7)
reaction is strong, about half as probable as the (d,Lif)
reaction. In addition an appreciable number of Li” ions
emerge in their first excited state (at 0.478 MeV).
Other many-particle transfers energetically possible for
F194d are F9(d,He®), F¥(d,Be”), F¥(d,B1). The unique
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F16. 7. Spectra of mass 6 particles (Lif) as obtained from energy-
time-of-flight analysis. Dashed lines mark the ground-state groups
of interest. Peak widths are due to target thickness, not detector
resolution. (a) C2+-d run. The over-all energy resolution is better
than that shown in Fig. 3, since more efficient particle analysis
permitted the use of thinner targets. (b) Typical energy spectrum
of mass 6 particles from O*-}-d. Note the absence of groups that
could be due to excited states of the Li® ions. (c) Typical energy
spectrum from F¥+-d. The F¥(d,Lif) ground-state group is well
resolved. The large peak at lower energy is due to C** contamina-
tion of the target.
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F1c. 8. Angular distributions, in the center-of-mass system, for
three (d,Li®) reactions. Time-of-flight data are indicated by solid
dots, magnet data by open circles. Bars indicate relative experi-
mental errors which are mostly, but not exclusively, due to
statistics.

identification of these reactions requires better resolu-
tion than was available in the present experiment. The
T-particle transfer F9(d,Be’)C? was energetically
favorable (Q=-0.28 MeV) and easily observed.

In Figs. 8, 9, and 10 all known random experimental
errors are indicated by error flags. Where possible, an
explicit comparison with data obtained from magnetic
analysis? has been made. Systematic scale errors are not
well known and are not shown. Very thin targets often
were neither flat nor uniform so that their average
thickness had to be found indirectly. We assign a
probable error of =309, to our thickness determina-
tions. The measurement of integrated charge was re-
producible to better than 59, and the error in the
absolute calibration is believed smaller than 109.
Geometrical errors were negligible, as were errors in the
counting loss corrections for all but the smallest angles.
We assign an over-all uncertainty of =4339, to our
absolute cross-section scale. :

The energy of incident deuterons could be measured
accurately, but could not easily be reproduced from day
to day. Hence, the given values of the bombarding
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F1c. 9. C2(d,Li%Be8 data compared with a DWBA calculation
(Ref. 8), which assumed direct pickup of a preformed o cluster
(in zero range approximation). The theoretical curve is arbitrarily
normalized.

energies Eq(lab system) represent averages over various
runs for the same reaction. Some individual runs had
energies that differed by as much as 100 keV from the
typical values quoted. Preliminary excitation curves
indicate that changes of 24100 keV in bombarding
energy do not cause significant changes in the (d,Li®)
cross sections.

Background subtraction presented no problem in the
time-of-flight work. In the magnetic analysis experi-
ment, low-energy Li® groups were sometimes affected
by neutron background and proper allowance for the
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cally favored and easily observed.
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resulting uncertainty was made in the random errors
given. Target impurities and contamination presented
no problem for the data shown, but did inhibit the
search for excited states of Li® and other heavy groups
of lower energy. Target contamination usually occurred
after prolonged use of the target, and was found to be

mostly due to C* [see Fig. 7(c)] and O [Fig. 7(a)].

IV. DISCUSSION OF RESULTS

Inspection of the differential cross sections for the
three (d,Li%) reactions reported (Fig. 8) permits a few
general observations: (a) Considering that these
reactions involve the transfer of 4 nucleons, and are
somewhat impeded by the Coulomb barriers, the
experimental cross sections are larger than one might
have expected. [Compare for instance, with (p,a) cross
sections' which often are comparable or smaller. ]

(b) All three reactions show similar angular distri-
butions. They are forward peaked and have an oscilla-
tory shape.

(c) All minima are fairly regularly spaced (40°-50°
apart) and seem to move closer together and to smaller
angles with increasing 4.

While these systematic features, admittedly, may be
accidental and do not prove the predominance of a
direct interaction mechanism, they certainly encourage
further analysis by such methods as the distorted-wave
Born approximation.!® Drisko, Satchler, and Bassel
reported some rough predictions for (d,Li®) reactions in
light elements, using the DWBA approach and guessing
at the optical parameters for deuteron and Li® scattering
from the light elements involved.® One of these pre-
liminary calculations for C'2(d,Li%)Be® is reproduced in
Fig. 9 together with our latest experimental data. We
notice both a gratifying qualitative agreement and
disagreements in detail. Maxima and minima occur
about at the right places. But the minima predicted are
much deeper than found experimentally. The experi-
mental angular resolution was A9~0.5° and the targets
were very thin. Thus it is unlikely that limited experi-
mental resolution led to a filling of the minima. It is
possible that there are still noticeable compound nuclear
contributions to the scattering cross section (as is the
case in many other reactions involving such light
nuclei).!#1617 Or else, some refinement of the DWBA
calculations (more realistic deuteron and Li-scattering
parameters, finite range interaction) may lead to pre-
dictions resembling the data more closely. Both possi-
bilities are under further study.

In an earlier investigation of C2(Li%d)O' for Li

4 See, for example, R. L. Dangle, L. D. Oppliger, and G.
Hardie, Phys. Rev. 133, B647 (1964).

15 R, H. Bassel, R. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Report ORNL-3240, 1962 (unpublished).

16 W. W. Daehnick and R. Sherr, Phys. Rev. 133, B934 (1964);
W. W. Dacehnick, bid. 135, B1168 (1964).

17, B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev.
133, B1421 (1964).
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energies near 3.5 MeV, strong variations of cross section
with energy were found.!® However, at such low energies
a dominance of compound nuclear reactions is not
surprising. Our center-of-mass energies are much higher
and contributions from direct interactions should be
greatly increased. Preliminary measurements of (d,Li%)
excitation functions at 61,,=30° for 13<E;<15 MeV
in this laboratory show no drastic sudden cross section
changes with energy, and thus support this assumption.
Other (d,Li%) experiments have been reported for
BY(¢,Li%)Li® for deuteron energies up to 13.5 MeV.?
The inverse reactions Li%(Li%d)BY, Li7(Li%d)BY,
BU(Li¢,d)N", B1(Li%d)N'® were investigated at lithium
energies of about 2 and 4 MeV.%:# The authors of Refs.
19 to 21 do not draw definite conclusions with regard to
the reaction mechanism, but suggest that direct inter-
actions contribute noticeably to the reaction cross
sections. Our results certainly agree with such an
interpretation.

Once the reaction mechanism is well understood,
(d,Li®) reactions and other direct many-particle transfer
reactions should be of great usefulness in the further
investigation of the structure of nuclei. They should, in
particular, help in the quantitative study of “clustering”
in nuclei. We have evidence, some of it shown in Figs. 2
and 10, that large groups of nucleons (up to 7) can be

18 J, M. Blair and R. H. Hobbie, Phys. Rev. 128, 2282 (1962).

¥ D. S. Gemmel, J. R. Erskine, and J. P. Schiffer, Phys. Rev.
134, B110 (1964).

2 G, C. Morrison, Phys. Rev. 121, 182 (1961). )

2 G. C. Morrison, N. H. Gale, M. Hussain, and G. Murray,
Proceedings of the Third Conference on Reactions between Complex
Nuclei, Asilomar, 1963, edited by A. Ghiorso, R. M. Diamond,
and H. E. Conzett (University of California Press, Berkeley and
Los Angeles, 1963).

AND L. J. DENES
transferred with relatively large cross sections in the
deuteron bombardment of light nuclei. C'2 and O do
not have many open reaction channels, but F** and O
do (for the latter we have preliminary data). F¥94-d
yielded He?, Li% Li’, and Be® in order of decreasing
cross section. O'84-d yielded Het, Li® Li7, and Li8 (See
Fig. 2.) On the other hand, we have not been able to
uniquely identify He® ions for either target although
they are energetically allowed. This may mean that
there is very small probability for the formation of H*
cluster in He® and possibly in O'8 and F¥ as well.
Summing up, it seems fair to say that many-particle
transfer reactions such as (d,Li®) promise to develop
into useful spectroscopic tools. We plan to check the
systematic features mentioned above by extending our
preliminary excitation functions, and by investigating
more target nuclei, preferably heavier ones. Preliminary
measurements and calculations show, however, that
there is little hope of carrying the investigation with
15-MeV deuterons beyond Al*”. The Coulomb barriers
of higher Z targets inhibit the (d,Lif) reaction dras-
tically, so that accurate angular distributions cannot be
measured. It would be necessary to continue experi-
ments with deuteron beams of 20-40 MeV in order to
investigate medium-weight nuclei, or to see transitions
beyond those leading to the ground state with some
probability.
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