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fields. This, in turn, leads one to expect that the proba-
bility p(r) of counting r photons in 5V will be given by a
Poisson distribution with parameter U, which is then
to be averaged over the ensemble of U. Thus,

(20)

Further details of the argument leading to (20) are
given in Refs. 10 and 11.

It will now be seen that the eth moment of r, i.e.,
of the counts, corresponds to the E„defined quantum
mechanically by (10), whereas the rtth moment of U,
i.e., of the classical integrated intensity, corresponds
to the quantum correlation L„give nby (11). The
moment-generating function for r is given by

M„(y) = Q exp(ry)P(r);
r=o

and from (20), and with the help of the well-known

properties of the Poisson distribution, we arrive at

(21)

by de6nition of the moment-generating function for U.
This relation is the semiclassical equivalent of the
quantum-mechanical equation (17).

The result illustrates once again that normal-ordered
operators correspond to correlations of the complex
field in the semiclassical treatment. As the relations
(17) and (21) hold for any state of the field, we see that
the semiclassical theory may sometimes be just as
accurate as the quantized field theory, while providing
some valuable intuitive insight into the physics of the
problem.
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The expansion of the field equations of general relativity in powers of the gravitational coupling constant
yields conservation laws of energy, momentum, and angular momentum. From these, the loss of energy and
angular momentum of a system due to the radiation of gravitational waves is found. Two techniques, radia-
tion reaction and Qux across a large sphere, are used in these calculations and are shown to be in agreement
over a time average. In the nonrelativistic limit, the energy and angular momentum radiation and angular dis-
tributions are expressed in terms of time derivatives of the quadrupole tensor Qg. These results are then ap-
plied to a bound system of two point masses moving in elliptical orbits. The secular decays of the semimajor
axis and eccentricity are found as functions of time, and are integrated to specify the decay by gravitational
radiation of such systems as functions of their initial conditions.

I. INTRODUCTION

HE existence of gravitational radia, tion was pre-
dicted by Einstein" shortly after he formulated

his general theory of relativity. Systems of moving
masses should emit gravitational waves in analogy with
the emission of electromagnetic waves by a system of
moving charges. Early attempts to calculate the energy
in these waves were based on the use of a pseudostress-
energy tensor for the evaluation of the energy fiux. One
disadvantage of this method is that one can always
choose a coordinate system in which the energy Aux
vanishes. ' This led to much scepticism about the reality

*National Science Foundation Predoctoral Fellow.
$ Present address: Department of Physics, University of

Washington, Seattle, Washington.' A. Einstein, Sb. Preuss. Akad. Wiss. 688 (1916).' A. Einstein, Sb. Preuss. Akad. Wiss. 154 (1918).
3 For a detailed discussion of the status of the theories of

gravitational radiation and their objections, the reader is referred
to the review article by F. A. E. Pirani, in Gravitation: An Intro-
duction to Current Research, edited by L. Kitten (John Wiley k
Sons, Inc. , New York, 1962), Chap. 6.

of gravitational radiation. Another disadvantage of the
calculation is that it is valid only for systems which are
not gravitationally bound. Thus, the important case of
gravitational radiation from binary stars remained un-
solved at that time.

Later, Eddington found the radiation from a system
by calculating the radiation reaction of the system on
itself. However, like Einstein s method, this is not valid
for gravitationally bound systems. For situations in
which the radiation is constant, the two methods agree;
for situations in which the radiation is time-dependent,
the answers differ. One can show that over a time
average of the motion the two answers are in agreement.
Analogous results occur in the theory of electromagnetic
radiation.

For systems in which the velocities of the masses are
small compared to the velocity of light, the calculation
of Einstein has been extended to include gravitationally

e A. S. Eddington, Proc. Roy. Soc. (London) A102, 268 (1922).
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bound systems. ' The problem concerning the choice of
the stress-energy of the gravitational field is still de-
bated. Also, the selection of certain preferred coordinate
systems and conditions is subject to much criticism.
One can 6nd references in the current literature which
describe the radiation from the system as carrying away
energy, ' bringing in energy, ' carrying no energy, ' or
having an energy dependent on the coordinate system
used. ' Clearly, a consistent picture of gravitational
radiation is desirable.

One approach to gravitational radiation is to consider
only exact solutions of the nonlinear 6eld equations of
general relativity. All such solutions found so far
correspond to unphysical systems. ' Therefore, one
usually employs some approximation procedure in
solving the field equations. The Geld equations are some-
times expanded in powers of the gravitational coupling
constant because of the weakness of the gravitational
interaction. In addition, one encounters expansions in
powers of the ratio of the velocities of the masses of the
system to the velocity of light, and also expansions in
inverse powers of distance from the system under con-
sideration. These approximation methods are not inde-
pendent. Throughout this paper we shall be concerned
only with solutions obtained using these expansions, and
not with exact solutions of the 6eld equations. We shall,
however, keep all terms of the expansions until they are
clearly negligible in the approximation in which we will
be working.

In Sec. II, the 6eld equations of general relativity are
expanded in powers of the gravitational coupling con-
stant, and from these, integral conservation laws of
energy, momentum, and angular momentum are ob-
tained. In Sec. III, these results are used to 6nd the
energy loss of a system radiating gravitational waves.
Two methods, radiation reaction and energy Qux across
a large sphere, are used in finding the energy radiated
by an arbitrary system. For a nonrelativistic system, the
radiation is given in terms of time derivatives of the
matter distribution of the system. In Sec. IV, the angu-
lar momentum loss of a system is found by methods
analogous to those used in the energy loss case. In the
nonrelativistic limit, the angular momentum loss can be
simpli6ed in the same manner as the energy loss. Section
V treats the system of two point masses moving in
elliptical orbits under their mutual gravitational attrac-
tion. The previous analysis is used to show that the
system must decay as a result of gravitational radiation
and that the changes in the elements of the relative
orbit can be found during such a decay.

~+V ggPV~ ~+GT jt4V ~ (2 &)

Letting g„„=8„„+h„„,we can expand the field equations
in powers of h„„ to get

~ov, xx ~ox, xv ftux, xo+~ov4e, xo l6'trGSov
& (2 2)

where

AP V hy V gSPVhy y ~

S„v is a combination of the matter tensor T„„and all of
the nonlinear terms containing the h„„.

S„„=T„„+Q X„„&"l, (2 3)

where X„„(~& is an expression involving the product of
k h„„sand their derivatives. This S„v is uniquely defined
by the field equations. The ordinary divergence of the
left side of (2.2) vanishes. Thus, we can conclude that

Syv, v=0
y (2.4)

and hence we can write integral conservation laws for the
quantities fS44dU, fS4;dV, and fe,;I,oe;$4t,dU:

544d U = 54;d5, , (2 5)

S4 dU= 5,;dS;,
dt

(2 6)

—c,,g ~;54A.dU= ~;~A: &~51 id5i
dt

(2 7)

On the right side of Eqs. (2.5) to (2.7), the volume
integrals have been converted to surface integrals.

In an approximation in which there is no matter or
radiation entering or leaving the system, the right sides
of Eqs. (2.5) to (2.7) vanish, and thus the integrals on
the left-hand sides of the equations must be conserved
quantities. In the approximation in which the velocities
of the masses are small compared to the velocity of light,
it is easy to show that, regardless of coordinate condi-
tions chosen, fSe4dV reduces to the usual expression
for the energy of the system, even in the case of gravi-
tationally bound systems. Likewise, fS4,d V reduces to
the negative of the ith component of the momentum of

II. CONSERVATION LAWS

We shall assume that the field equations of Einstein
are valid':

5 See, for example, L. Landau and E. Lifshitz, The Classical
Theory of Fields (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1959), Chap. 11.' P. Havas and J. X. Goldberg, Phys. Rev. 128, 398 (1962).

r L. Infeld and I. Plebanski, Notion artd Relativity iPergamon
Press, Inc. , New York, 1960), Chap. VI.

For an example, see J. Weber, General Relativity and Gravi-
tational 8"aves (Interscience Publishers, London, 1961), pp. 99—
105.

9 Greek letters take values from 1 to 4; Latin letters are re-
stricted to spatial components 1 to 3. The Kronecker delta 5» is
dehned by 844=1, 8» ——8» ——5» ———1, and 8„„=0for p, 4v. The
summation convention a„b„=a4b4—a;b; is employed, where a;b;
= a b. Ordinary di6erentiationis denoted by a comma: 8/Bx =,a.
Throughout most of the paper we shall set c=1. The antisym-
metric tensor e;, I, is defined so that e;;&=1 if i, j, k=1, 2, 3 or a
cyclic permutation thereof, —1 if i, j, k=1, 3, 2 or a cyclic
permutation thereof, and 0 if any two indices are equal.
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dtdtd0 Sm

Ni~qh„, )hi, q 3ni~vhv 4hi, j,
mentum radiation dis-Therefore, t e oh total angular momen

tribution is given by

4G
h;j= ——SijdU d'Q-~ d'Q-—9m;e e

dt
r h i, setting (ti, v) equal talto 4,m,)

of (4.10), 1in (4.10). In the last two terms o
integration by parts=S in which case an in eg~em= mj, j) in

us to btain

(4 15)+4mtnm

0

Fi „—— —I hg g
——h„p+ hI, i..

r

allows

"have beensforh' intermsof the '
d(4.12) use . e id. The integral over ang es is ri

This yields

Similarly,

+k
lC, ,

= A44 ÃkA44 444, k

r

'+k+m+e
h,

1 Sm—hg„——h4i+ —h„i.
r r r

(4.13)

d'Q-i d'Q-~
dt=——5c;,k d

dt
(4.16)

a rees with Eq. 4.9 .
ere

w )

in rod t ers stem, say a so""'g g yoi )

is onyly one parameter co w
'

e owever, two equa iotions dL;/dt andsystem. We have, owev
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dE/dt, to specify the secular change in co over one
period. It is easy to show that the two expressions give
the same secular change in co and are thus consistent. In
the case where the motion is not circular, the two
equations give us different information. For example, in
the case of two point masses moving in elliptical orbits,
we can predict not only the secular change in the energy
or semimajor axis, but also the secular change in the
eccentricity as well. This analysis will be carried out in
the next section.

IOO

IO

j
I

/
I

V. SECULAR CHANGES IN THE TWO-POINT
MASS SYSTEM

The results of the previous sections can be applied to
find the secular change in the elements of the relative
orbit of two point masses resulting from gravitational
radiation. The equation of the relative orbit of the
motion'4 is

r =a(1—e')/(1+e cosf) . (5 1)

If the plane of the motion and position of the orbit in
the plane is specified, then there are two parameters
necessary to describe the orbit: the major axis u and the
eccentricity e. In the Newtonian theory, they are con-
stants of the motion. In the general theory of gravita-
tion, they will be functions of time, which will be slowly
varying in the nonrelativistic limit. These parameters
are related to the total energy E. and the relative
angular momentum L through the following equations:

a = —Gmim2/2E,

L'= Gmi'm2'(mi+m2) 'a(1—e') .

(5 2)

(5.3)

In a previous paper, " the energy radiated from this
system by gravitational waves was studied in detail. It
was found that the time average of the energy emission
rate is given by

dE 32 G'mi'm, '(m, +m2) f 73 37 )
~
1+—e'+—e' ~. (5.4)

dt 5 c'a'(1 —e')'" k 24 96

dL 32 G"m, 'mm'(mi+m2)"'
~ ~(1+l"). (55)

dt 5 c'.,a'I'(1 —e')

Applying the analysis of Sec. IV, one finds that the
average angular momentum emission rate is given by

O.I

0 .2 ,6 .8

FIG. 1. The semimajor axis u as a function of the eccentricity e
in the decay of a two-point mass system. Here, c0 is chosen to
be 1.

de 304 G'mim2(mi+m2) t' 121
e /1+ e

dt 15 c'a'(1 —e')'~' ~ 304
(5.7)

The above equations are sufKi.cient to determine the
decay uniquely. Starting from a given orbit with
parameters ao and eo, Eqs. (5.6) and (5.7) in principle
give enough information to find a(t) and e(t). If we set
eo ——0 to find the decay of the circular orbit, either (5.6)
or (5.7) gives

(5.9)a(t) = (ao4 4Pt) it4, —
where

I 64 G'mim2 (mi+ m2)
t3=

5 c'

Hence, during a decay of the orbit for which gravi-
tational radiation is the only energy loss mechanism, we
can obtain the differential equation relating a to e

during the decay:

da 12 a Ll+ (73/24)e'+ (37/96)e4]
(5 g)

de 19 e (1—e') Ll+ (121/304)e']

7'.(ao) =ao'/(4P) .
The equations for (da/dt) and (de/dt) are deri~ed from Therefore, the system decays in a finite time T, given by
(5.4) and (5.5): (5.10)

(
da 64 G'mim2(mi+m, ) $ 73 37

~
1+—e'+—e4 ~, (5.6)

dt 5 c'a'(1 —e')'t' k 24 96 )
'4 For an elliptical orbit, a denotes the semimajor axis, e the

eccentricity, and P the angular coordinate in the plane of the orbit."P.C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).

Consider the case of circularly orbiting binary stars
for which we neglect deformation, mass Row, and other
radiation processes. We may predict the lifetime of the
system for collapse as a result of the radiation of
gravitational waves. For binary star systems in which
each component has a mass equal to one solar mass, we
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where ci=cp(425/304)' /"' = 1.1352cp. Thus, for all
practical purposes, one might neglect the complicated
factor and just consider a(e) to be given by

a(e) =cpe""'/(1 —e') . (5.12)

lO
From (5.11) and (5.7) we can write the equation

giving the time decay of an eccentric system exactly.
Since e —+ 0 as a —+ 0, e(t) may be considered rather than
a(t) in finding T(ap, ep), the decay lifetime of the system:

IO

(
de 19 P

(5.13)
dt 12 c ' [1+(121/304)e']""""P

The lifetime T(ap, ep) is then given by the integral

12 co4

T(ap, ep) =——
19

.2 .6
e, — =

,8
ep dee29/19[1+ (12 1/304) e2]1181/2299

(1 e2)P/2
(5.14)

FIG. 2. The ratio of the lifetime of an eccentric system to that of
a circular one plotted against the initial eccentricity. This ratio is
independent of the initial value of the semimajor axis.

obtain the following lifetimes. For a separation of 10
solar radii, the period is 4.5 days, and the lifetime for
decay is 3X10"years. For two white dwarfs (radii

10' cm) separated by 10" crn, the period is 0.0045
days and the lifetime 3)(10' years. For the extreme
case in which the same two stars are just touching, the
lifetime becomes only 50 years.

In order to get the decay time for an ep/0, we must
solve the pair of equations (5.6) and (5.7). First we can
find a(e) for the decay from (5.8). The integration of
this equation is tedious but straightforward. We find

a(e) to be
pe 12/ 1 9 1 2 187P/2299

a(e) = 1+ e', (5.11)
(1—e') 304

where cp is determined by the initial condition a=co
when e= ep. Figure 1 displays a(e) versus e. For small e,
this reduces to

a(e) =cpe' /" e'«1

and for e near 1, this becomes

a(e) =ci/(1 —e'), (1—e')«1,

12 co4

T(ap, ep) =——
19 P p

cp
dee29/19 — e 48/19

This is approximately equal to ap'/4P, agreeing with the
lifetime found for the circular case, Eq. (5.10). For ep

near 1, the lifetime becomes

T(ap, ep) = (768/425) T, (ap) (1—ep') "'.
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The solution for arbitrary ep can be obtained by nu-
merical integration, whose results for T(ap, ep)/T, (ap)
are plotted against ep in Fig. 2. One can easily see that
for a given initial major axis, the time of collapse de-
creases rapidly as ep —+ 1. This should not be surprising
since, for fixed a, dE/dt is proportional to (1—e') "' if e

is near 1; and in general, the system spends most of the
decay time in a state for which a=up.


