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Physical Significance of Operators in Quantum Optics*
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The relation between normally ordered and unordered products of creation and annihilation operators is
examined, and it is emphasized that the former correspond to counting correlations and the latter to counting
moments. Both can be measured. It is shown that there exists a particularly simple relation between the
generating functions for the two kinds of products. This relation can also be obtained by semiclassical con-
siderations, which give more insight into its signilcance. The result provides further indication of the very
close connection between the semiclassical and quantum-mechanical theories of optical coherence.

1. INTRODUCTION

HERE has recently been a good deal of discussion
of the relation between the principal elements of

the newly developing quantum theory of optical
coherence and of the older semiclassical theories. ' "
A close correspondence between the two has already
been noted.

The quantum theory makes extensive use of con-
figuration-space creation and annihilation operators
A, t(x) and A;(x) defined by

A, (x) =P d'k exp( —ikx)as, ,es, ;

and its Hermitian conjugate. Here a&,, is the annihi-
lation operator for a photon of momentum Ak and spin
s, and eJ...is the complex unit polarization vector. The
principal elements of the theory, as it has developed so
far, are the expectation values of normal-ordered
products of creation and annihilation operators"

iq slritr+i "ltr+, sr(x"l.' ' 'xiv +iv+1' ' 'xN+M)G(N, M) .

= &Ati (») Atu (xmas)Asu+i(»+i) AsN+M(»+sr)) ~

which have recently been shown~' to be equivalent to
the corresponding correlation functions of the classical
theory. ~ ' It was pointed out by Glauber' that the
G ~;,...;„,;,...;„(xi x,xi x„)are measures of the n-
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fold coincidence counting rate for photoelectric detectors
sensitive to the j&, ~,j components of the radiation
field at the space-time points xl, ~, x . As

A (x)A;(x)d'x (3)

is the number operator for photons in a volume bv at a
given time, it follows that

G &"&(xx)d'x

By analogy with (4), it is at first tempting to look on

2. MOMENTS AND CORRELATIONS OF COUNTS

As G;;,,;&' "(xixs,xixs) is a measure of the correlation
between the numbers counted at x& and x~ with some

's T. F. Jordan, Phys. Letters (to be published)."L.Mandel, Proc. Phys. Soc .(London) ?4, 233 (1959).

~ G"... t" "&(xi x~,xi x~)dsxi ~ d'x„

5V

as the nth moment of the number operator E.That this
cannot be the case was recently pointed out by Jordan, "
who showed that G;; ""(xxxx)—[G ." 'i(xx) j' is
negative for certain states of the field. As a result,
Jordan suggested that a theory of quantum optics
ought not to be confined to normal-ordered operators.

In the following, we wish to emphasize that normal-
ordered and alternating or unordered operators both
correspond to "observables, " but that they have a
different physical significance. An E-point counting
correlation, even for coincident points, represents a
different measurement from an Eth moment of counts.
The first calls for the use of coincidence detectors (or
their equivalent), while the second does not. We shall
show, moreover, that there exists an interesting relation
between the ordered and unordered operators, whose
meaning is not immediately obvious. Surprising though
it might seem, this relation was already anticipated by
semiclassical considerations of photoelectric counts, ""
which lend it an immediate physical interpretation.
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detectors, it should come as no surprise that, for states
which are eigenstates of the number operators aA, ,ta~ „
the correlation between the counting fluctuations is
negative. For, when the total number of particles is
determined, the more counts are registered by one
detector, the fewer can be registered by the other. A
contradiction only appears to arise when the space-time
points x& and x2 coincide. But the difficulty is apparent
rather than real, for the result must vary smoothly
as x~~ x2. One would therefore expect the correlation
Gtssl —LGo '&]2 between the counting fluctuations at
two detectors to be negative for states which are eigen-
states of the number operator. This simple example
shows that there is a physical distinction between the
measurement of correlations of counts and moments
of counts. The latter can be derived from a simple
counting histogram obtained with one detector, whereas
the former can only be measured with coincidence
detectors.

Let us explore the relation a little further. For
simplicity we allow the two detectors registering
photons within 8U to (almost) coincide, and observe
that the correlation C between the fluctuations registered
1s

(A;t (x)A, t (x')A, (x)A, (x') )d'xd'x'

(A,t (x)A, (x))d'x, (5)

With the help of the equal time commutation rules

LA, (x),A j(x')]=0=PA, t(x),A t(x')],
LA, (x),A;t(x') ]=P (x—x'),

we readily find that

(7)

U, (x)=Q d'k exp( ikx)e—,, ,e2, ;

with Fourier amplitudes vI„-, are the corresponding
eigenvalues. For these states ((»)2)=(E). The co-
herent states therefore mark a transition from positive
to negative counting correlations.

3. HIGHER ORDER MOMENTS AND
CORRELATIONS

so that the correlation C is positive, negative, or zero
according as the numbers Ructuate more than, less
than, or as in a Poisson process. For an eigenstate of
the X operator, ((»)2) vanishes and C is negative.
For the mixed state of a typical thermal radiation field,
it is well known" that ((»)2) exceeds (cV), so that C
is positive. On the other hand, it is easy to see directly
from definition (5) that there may be states for which
C will vanish. Among these states are the "classical"
or "coherent" eigenstates"

~
{v2,,6) of the A, (x) oper-

ator used by Glauber' ' and Sudarshan, 4' for which the
complex classical fields' 8

It should be clear from the foregoing that the count-whereas the expectation value of the squa, re of the
ing correlations are described by normal-orderednumber operator, according to 3, is
operators, whereas the alternating operators Ajt(x)
XA j(x)A jt(x)A j(x) . describe the counting moments.

(A .t(x)A .(x)A .t(x)A .(x))dsxdsx (6) We shall now examine the higher order Products of
operators and the relation between them.

We denote by E the eth moment of the counts in some volume 8V at a given time

(A, (xi)A j(x&) A, (x~)A, (x„))d'xi d'x„, 22=1, 2, 3, etc. , (10)

and consider the relation between E„and the correlation

L = ~ ~ ~ (A, t(xi) A, t(x„)A,(xt) A;(x„))d'x, d'x„.

Clearly K'i ——Li, but in general K„NL . With the help of the commutation rules (7), we may transform (10) to

Kn ' ' ' (A j (xi)LA j (x2)A j(xl)+~ (xi x2)] ' ' LA j (xm)A j(xn—1)+h (xm xn —1)]Aj(xn))d xi ' 'd xn

'4 For a more general discussion of this question see Ref. 11.
"

( fez, })is to be interpreted as Q ~s2, ,). The states are labeled by the corresponding eigenvalues.
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fields. This, in turn, leads one to expect that the proba-
bility p(r) of counting r photons in 5V will be given by a
Poisson distribution with parameter U, which is then
to be averaged over the ensemble of U. Thus,

(20)

Further details of the argument leading to (20) are
given in Refs. 10 and 11.

It will now be seen that the eth moment of r, i.e.,
of the counts, corresponds to the E„defined quantum
mechanically by (10), whereas the rtth moment of U,
i.e., of the classical integrated intensity, corresponds
to the quantum correlation L„give nby (11). The
moment-generating function for r is given by

M„(y) = Q exp(ry)P(r);
r=o

and from (20), and with the help of the well-known

properties of the Poisson distribution, we arrive at

(21)

by de6nition of the moment-generating function for U.
This relation is the semiclassical equivalent of the
quantum-mechanical equation (17).

The result illustrates once again that normal-ordered
operators correspond to correlations of the complex
field in the semiclassical treatment. As the relations
(17) and (21) hold for any state of the field, we see that
the semiclassical theory may sometimes be just as
accurate as the quantized field theory, while providing
some valuable intuitive insight into the physics of the
problem.
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The expansion of the field equations of general relativity in powers of the gravitational coupling constant
yields conservation laws of energy, momentum, and angular momentum. From these, the loss of energy and
angular momentum of a system due to the radiation of gravitational waves is found. Two techniques, radia-
tion reaction and Qux across a large sphere, are used in these calculations and are shown to be in agreement
over a time average. In the nonrelativistic limit, the energy and angular momentum radiation and angular dis-
tributions are expressed in terms of time derivatives of the quadrupole tensor Qg. These results are then ap-
plied to a bound system of two point masses moving in elliptical orbits. The secular decays of the semimajor
axis and eccentricity are found as functions of time, and are integrated to specify the decay by gravitational
radiation of such systems as functions of their initial conditions.

I. INTRODUCTION

HE existence of gravitational radia, tion was pre-
dicted by Einstein" shortly after he formulated

his general theory of relativity. Systems of moving
masses should emit gravitational waves in analogy with
the emission of electromagnetic waves by a system of
moving charges. Early attempts to calculate the energy
in these waves were based on the use of a pseudostress-
energy tensor for the evaluation of the energy fiux. One
disadvantage of this method is that one can always
choose a coordinate system in which the energy Aux
vanishes. ' This led to much scepticism about the reality
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of gravitational radiation. Another disadvantage of the
calculation is that it is valid only for systems which are
not gravitationally bound. Thus, the important case of
gravitational radiation from binary stars remained un-
solved at that time.

Later, Eddington found the radiation from a system
by calculating the radiation reaction of the system on
itself. However, like Einstein s method, this is not valid
for gravitationally bound systems. For situations in
which the radiation is constant, the two methods agree;
for situations in which the radiation is time-dependent,
the answers differ. One can show that over a time
average of the motion the two answers are in agreement.
Analogous results occur in the theory of electromagnetic
radiation.

For systems in which the velocities of the masses are
small compared to the velocity of light, the calculation
of Einstein has been extended to include gravitationally

e A. S. Eddington, Proc. Roy. Soc. (London) A102, 268 (1922).


