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Amylitude Bound in Ladder Graph Models. II*
GEoRGE TIKTQPQULos AND S. B. TREIMAN

Palmer Physical Laboratory, Prirlcetoe University, Prirlceton, Sex Jersey

(Received 2 July 1964)

A procedure described earlier for bounding ladder-graph scattering amplitudes is applied here to two
models: exchange of pairs of scalar particles (bubbles), and exchange of vector particles. The forward-
scattering absorptive amplitudes are bounded from above. Apart from logarithmic factors, the correct ampli-
tudes are known to grow with energy like S, and our results determine upper bounds on the exponents 0..
For the case where the exchanged particles are massless, our upper bounds in fact coincide with the exact
results forn as given in the literature.

I. INTRODUCTION

''N a recent paper, ' we discussed a technique for
~ - setting bounds on the absorptive part of an ampli-
tude for scattering of spinless particles in a ladder-graph
model. The essential idea is this: The absorptive
amplitude satisfies a Bethe-Salpeter integral equation
of the Volterra type, in which the kernel and inhomoge-
neous term are both positive. The amplitude is thus
bounded from above (or below) by the solution of a
comparison equation in which the kernel and/or
inhomogeneous term have been majorized (minorized).
Sounds can then be obtained by a trial function pro-
cedure, as discussed in our earlier work.

In Ref. 1 we were concerned with finding an upper
bound for the forward (t= 0) scattering amplitude in a
ladder model involving a trilinear scalar interaction.
Of special interest was the asymptotic behavior in the
limit of large scattering energy s. In this limit, the
amplitude varies like s Is&, where n(0) is the leading
singularity in the angular momentum plane for the
crossed channel reaction at t =0. Subsequently,
Nakanishi~ has succeeded in finding an exact solution
to this problem for the special case where the rungs of
the ladder correspond to massless particles. For this
situation our upper bound on n(0) exactly coincides
with the true result.

Two other ladder models for scattering of spinless
particles have been much discussed in the literature. ' '
One involves the exchange of pairs of scalar particles
(bubble exchange) according to a basic quadrilinear
scalar interaction. The other corresponds to exchange
of a vector particle. Both models have been studied in
detail for the case of forward scattering. In the limit
of large energies, the amp1itudes behave like s, apart
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from logarithmic factors which reQect the existence of
fixed cuts in the crossed-channel angular momentum
plane. Exact expressions for the exponent 0. are given
in the literature' ' for the special situation where the
exchanged particles have zero mass.

Our purpose in the present paper will be to test the
amplitude-bounding techniques of Ref. 1 on the above
models, namely, to determine by these methods upper
bounds on the absorptive amplitudes, hence on the
exponents n. We do not restrict ourselves to the case
of vanishing masses for the exchanged partic1es.
However, for the situation where these masses are zero,
we can compare our bounds on n with the known
expressions; and here we 6nd that our bounds in fact
coincide with the exact results for each of the two
models under discussion. From these comparisons, it
therefore appears that the bounding techniques of
Ref. 1 are, in fact, quite useful in practice.

A special remark is in order here concerning the
vector exchange model. The vector particle propagator
is properly given by (iI'—k') I(8 S

—k ke/p, '). In the
cited literature, however, it has been replaced by the
first term (1Is—k') I5 S taken alone. This is of course not
physically legitimate, unless the vector particle is
coupled to a conserved current and unless one considers
simultaneously graphs other than those which just
correspond to the simple ladder. Nevertheless, for the
purposes of our present concern we shall adopt the
vector exchange model in this form, the more so because
it permits us to compare our bounding techniques with
results available in the literature.

FIG. 1. The Set of
graphs under con-
sideration.
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II. EXCHANGE OF BUBBLES

We consider forward scattering of spinless particles
w1tll IIlollleIlta p and 0, in the ladder approximation
corresponding to Fig. 1, which involves a quadrilinear
scalar interaction. The heavy lines describe particles of
mass m; the exchanged particles (wavy lines) have
mass p.
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is an upper bound for Ap, i.e., Ap($) &p($) for all $ in
(/J, b). This follows immediately from the convergence
of the iterative series and the positivity of E and y.

For the present situation we take a trial function
of the form

p(u, r) =cu /(ur+m)e,

substitute A(s', p") for A(s', p") under the integral in
Eq. (1), since there p" runs over negative values only.
We then 6nd

g2 ( 4@2)1/2 1 g )2
A(s, m')&

~
1—

~
+—

~
Ls(s —4m')) '"

322ri s j 2 162r'j

where c, n, P are real parameters to be determined from
the inequality
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This must hold for I~& 4p' —m' and for 0 &&r ~& 1.
Setting u=4p2 —m', we obtain the condition

c (4//2 m2)—~ (4/22) //& g—2/32pr .

For the rest, it will be sufhcient in order to satisfy
Eq. (4) if we require (i) that the first derivative of the
left-hand side of Eq. (4) with respect to u be positive
at u=4p2 —m'; and (ii) that the second derivative be
positive for all u& F2—m'. The requirement (i) leads to

c(( +n1)/(4/' 2m') —P/4/—2') (4/2' m')~—+'(4/2') e

& g2/32pr. (5)
The requirement (ii) gives
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For large values of s, the right side grows like s 0.

Without affecting the exponent here, we can simplify the
above expression by making some further majorizations.
Using the inequalities

$— —$—
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The integration is elementary and we find the following
suf5cient condition on the parameters n and P:

( —P) ( —0+1)P(8+1)& l(g/16 ')' It follows that

e'4p j(s-4p )

dx(x+m2)-t p/2& '.

«= —1+(1+g/4v2~2)'/2 (6)

with Pp=np/2. The smallest, value for the parameter c,
correspondingly, is

g2 (4/ 2)np/2

Cp=
322r (4/p2 —m2) ~p

For p2&~0 we have thus obtained the bound

The smallest value of 0. which is compatible with our
inequalities is

A (s,m2) & B(s)s ',
where B(s) is a bounded function of s/lim, „B(s)WO)
and np is given by Eq. (6). In fact, apart from logarith-
mic factors, s~o is the asymptotic behavior of the exact
solution for p, =0 obtained by Baker and Muzinich' and
by Cosenza et al. ' For small values of the coupling
constant g, our result for np also reproduces the (mass-
independent) exact weak-coupling limit obtained by
Sawyer. '

III. EXCHANGE OF VECTOR PARTICLES

g ( 4p, )~p (s—p —m )p'p

A(.,p')& I I I I
-=A(.,p).

32~Em2 —ppj 5 4„2—m2 j
We consider next the ladder approximation for

scattering of scalar particles of mass m, with vector
mesons (mass /tp) as the exchanged particles. The propa-

In order, finally, to obtain an upper bound for the gator for the vector particle is taken to be (/p2 —p2) '5 e.
absorptive amplitude A(s,m') on the mass shell, we The integral equation for the absorptive (off-mass-
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shell) forward amplitude is

A (s,p') =-
2rg2 (p2 —2m' —2p') 8 (s—u2)

at the following inequality for the "trial function"
|p(u,x):
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where A'4)(s, p2) is the absorptive part of the fourth-
order ladder graph. Following exactly the same steps
as for the trilinear interaction model of Ref. 1, we
arrive, in terms of the variables

u=s —p' —m',

As mentioned in the Introduction, the vector meson
propagator used here is not the correct one, unless the
vector meson couples to a conserved current and unless
one includes also compensating graphs. The artificiality
of the present model can be seen in that the (general-
ized) unitarity condition does not imply termwise
positivity of the iteration series solution of Eq. (7).
Nevertheless, the present model has been much dis-
cussed in the literature because of its (relative) mathe-
matical simplicity. We can, at least, guarantee positivity
of the absorptive amplitude by insisting that p~)&2m.
In fact, for convenience in what follows, we shall
restrict ourselves to the special case p =&2m.

The quantity

)I (s,p') =A (s,p')+27rg'p'f) (s u')—
satisfies the equation

g2
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the corresponding value for P being Pp o/p/2
——Expl. icit

expressions for Cp and pp (which go along with n=o, p)

could be written down but they are not of great interest
here. We are mainly interested in the behavior of the
absorptive amplitude for large values of s. Our bound
on the mass-shell absorptive amplitude can then be
written

A(s, m') &8(s)s p,

where np is given by Eq. (10) and B(s) is a bou22ded

function Llim, ~B(s)AOj which we do not bother to
display. Thus, we find an upper bound Ap on the expo-
nent of a possible power law behavior of the absorptive
amplitude at large energies. It is noteworthy that our
bound ep in fact coincides with the exponent correspond-
ing to the exact solution for the special case @=0, as
obtained by Cosenza et al. '

This corresponds to Eq. (10) of Ref. 1, with x=ru. The
trial function f is an upper bound to )p if the above
inequality is met.

A convenient form of trial function is (p) 0)

)p(u)x) = cu (x+m')'$9(x p) x—e——'+e(e —x) p
—~—'j

a form for which the integrations of Eq. (9) are
elementary.

It is a matter of straightforward manipulation to
show that the parameters n, P, c, p can be chosen to
satisfy Eq. (9) for all x&~0 and u&~4@2—m2. The smallest
possible value for n is


