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Interference Effects in Multimeson Resonances*
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The problem of interference effects in "cascade" decays of multimeson resonances is discussed; that is, de-
cays of the form X~ F+ (I mesons) followed by F~ (rii mesons). Interference effects occur whenever there
is more than one way to form the state F+e mesons out of the final (m+n)-meson state. For example, there
will be interference between the two modes

A' —+
p +7l

P +2t
~ 21.++2t- +21-0.

This case is discussed in detail, and results are presented for the 8-meson decay. The effect of experimental
resolution is evaluated.

I. INTRODUCTION
' 'N recent publications, evidence has been reported for
~ - the existence of two new resonances tentatively
called A and B."Their principal decay modes are

A+ -+ Ir++P' —+ Ir++Ir++Ir
(1.1)8+ -+ Ir++I0 —+ Ir++Ir++Irs+Ir .

The determination of the quantum numbers of
multipion resonances has been considered by many
authors. ' Practically all these tests are based on angular
correlations among the outgoing pions. However, the
observation that in both the decays in (1.1) there are
two identical particles raises the possibility of observing
interference effects which could be helpful in estab-
lishing the quantum numbers. 4

More generally, we shall discuss in this paper the
problem of interference sects in "cascade" decays of
multipion resonances; that is, decays of the form

followed by

Interference effects exist whenever there is more than
one way to form the state I'+Nir out of the final
(IIZ+Is)ir state; they are not confined to cases in which
there are identical particles. For example, if the A has
I=2, there will be interference between the three modes

p++Ir '
A0 —+ p-+Ir+ ~ Ir++Ir-+Irs.

For the sake of clarity, w proceed directly in Sec. II
to the discussion of the specific example A+~ Ir++p0.
In Sec. III the inhuence of the experimental resolution
on the observation of interference effects is considered.
We show that it is impossible to observe these eGects
unless the resolution width is less than or comparable to
the decay width of the particle Y. The width of particleI can be large, but in this case one must be careful to
plot the data as a function of suitable variables. In Sec.
IV we consider the decay 8+—& Ir++oi. In the Appendix
we discuss the general tensor methods used to write
down correct amplitudes for the processes (1.2).

II. INTERFERENCE EFFECTS IN THE
DECAY A+ ~ m++y'

In the deCay 2+-+ Ir++p0 interferenCe effeCtS OCCur

betWeen the tWO pOSSibilitieS 2+ —+Iri++p0, ps~ ms+

+Ir and A —i its++ p0, p0 —~ Iri++Ir . We Shall eValuate
these effects for all spin and parity values through J=2,
and for the two possible values of the isotopic spin
I= 1, 2. We follow the usual procedure of writing down
the simplest decay amplitude consistent with the
quantum numbers assumed, paying particular attention
to the requirements of statistics. The results can con-
veniently be expressed in terms of the density distribu-
tion on the Dalitz plot of the A decay. The plot shows
two p bands, with the interference effects occurring in
the region where the bands cross.

A. The Isospin Matrix Element

p0+ s.0 A properly symmetrized decay matrix element can be
formed from the sum of three terms represented dia-

(If the 2 has I=O, the last mode is forbidden. ) grammatically in Fig. 1. The indices i, j, k aIe the
isotopic spin indices of the pions in the Cartesian

*Work suPPorted in Part by the U. S. Atomic Energy Com- representation, and are related to states of given charge
mission.

t' Alfred P. Sloan Foundation Fellow. in the usual way:
' M. Abolins, R. L. Lander, W. A. W. Mehlhop, N. H. Xuong,

and P. M. Yager, Phys. Rev. Letters ll, 381 (1963).' G. Goldhaber, J. L. Brown, S. Goldhaber, J. A. Kadyk, 3. C.
(2.1)Shen, and G. H. Trilling, Phys. Rev. Letters 12, 336 (1964).

'C. Zemach, Phys. Rev. 133, 31201 (1964); F. R. Halpern,
Phys. Rev. Letters 12, 252 (1964);M. Ademollo, R. Gatto, and G.
Preparata, ibid. 12, 462 (1964).

Interference e8ects involving unstable particles have been (1962), by R. H. Dalitz and D. H. Miller, Phys. Rev. Letters 6,
considered by C. Bouchiat and G. Flamand, Nuovo Cimento 23, 13 562 (1961);and by C. Zemach, Phys. Rev. 133, 31201 (1964).
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FIG. 1. The three possible modes of the decay A —+ m+p -+ 37)-.
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The complete matrix element of Fig. 1 is then

(2.3)

M =P(si) Mi, 23(5-„5;g—5,-g5,j)
+P (s2)M2, ig (5.—,5, i,

—5-.i5;j)
+P($3)M3,2i(5.-j5;j,—5.-,5ji.) . (2 4)

Evaluating this for the charge configuration A+ —+ x~+
+ir2++m. , we obtain the result

M =Ml 28P($1)+M2 18P($2) (2 5)

Consider first the case I~=1.Then the isospin part of
the matrix element for the diagram in Fig. 1(a) is
formed by first combining pions 2 and 3 into a p meson
with isospin index r, giving a factor ie„jj, (-we place bars
over indices of incoming particles); then combining the
p with pion 3 to form the A (isospin index a), giving the
additional factor ie-„;.The result for this diagram is then

P(si)Mi, ~3(5gj5;i—5gj5jj), (2.2)

where M~, 23 is a function of the momenta appropriate
to whichever Jp is considered, and where P(s) is the p
propagator. Bose statistics require that M y, 32= —My, 23.

We use the notation

for the charge configuration A+ ~ iri++ir2++m is the
same as the previous result, Eq. (2.5). This result could
indeed have been written down without going through
the preceding isospin formalism, since we know that
regardless of the isospin of the A, the matrix element
must be symmetric under the interchange of the two m+

mesons.
More complicated cases can occur, however. Consider,

for example, the decay A' —+ ~++n +pro. Let the indices
1, 2, 3 refer to the ~+, m, and m', respectively. If I&= 1,
then Eq. (2.4) gives the result

M=M1 23P($1)+M2 18P($2) . (2.7)

B. The Spin Matrix Elements

For each possible J~ value of the A we shall use for
M],23 the simplest expression consistent with the as-
sumed quantum numbers. Pions 2 and 3 are combined
to form a p, giving a factor e, (p2 —pa). Then the ap-
propriate expression is written down for the A ~ p+ir
vertex. Finally, the sum over polarization states of the
p is done. The results are shown in Table I, where we
have introduced the notation A =pi+ p2+ p3. The
quantities P„... are tensors formed from the production
variables, and satisfying the conditions of transversality
(A "P„...=O), tracelessness, and symmetry, in all their
indices.

For the p-meson propagator P(s) we choose the
following convenient normalization of the Breit-Wigner
form:

The absence of a term M3, 2~ rejects the fact that the
decay A ~ p+7ro is forbidden if Ig=1. This should
provide a good test for I~. If I~=2, the result is

M=Mi, 23P(si) —M2, i3P($2)+2M3, 2iP($3) . (2.8)

Note that the sign of the interference between the first
two terms is opposite to the sign for the case Ig=1.

which is shown diagrammatically in Fig. 2.
Proceeding in the same manner for the case Ig =2, we

find for Fig. 1(a) the result

L2 (i'eTsj k5i b+185j Ia5ia) 3559&ij kjP(si)M'i, 23 y (2'6)

s—m, '+ir,

C. The Dalitz Plot

(2 9)

where a, b are the isospin indices of the A. The fact that
this matrix element contains only I~= 2 follows from
its being traceless and symmetric in a and b. The com-
plete matrix element M is again the sum of the contri-
butions of the three diagrams of Fig. 1, and the result

The most convenient variables to use for displaying
the interference between the two terms in Eq. (2.5) are
s~ and s2, which are the standard Lorentz-invariant
Dalitz plot variables. The physical region in the s&s2

plane is given by the inequality

sis2$3+tpl~ (WA 'jim ) (2.10)
It' Il'+ If+
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FIG. 2. The two possible
modes of the decay ~+—+ ~+
+PO ~ 7r++7)-++71=.

where s3, defined in Eq. (2.3), is related to si and s2 by

si+s2+s8 ——W'~'+3m~'. (2.11)

The quantity 8'& is the invariant mass of the three
pions. We reserve the notation m~ for the center of the
A-meson peak. The density of events in this region is
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TABLE I. The simplest matrix element for various values of J
for the decay A ~ ~&+p followed by p ~ +2+m.3. The quantities
I'„... are tensors formed from the production variables.

TmLE II. The direct and interference terms in A-meson decay, to
be used in evaluating Eq. (2.22).

JP
JP

0
1+
1+
1

2
2+

A ~ p+m, vertex

&P'P&

eP I'
(s.-pl) (I'Pl)
&I.vt eI' "ep "P1 "A '
PI"~p'I'I

PIaI ~"gpv),ug pv PI~A
~

(P2—Pv) Pl=-', (sl —sv)

(Pv —Pl) &
(Pv-Pv) Pl(I' Pl)
&I vt eI'"PIPP2"P3'

Pl"(Pl —Pl) "&"
PI I' "&"~.PI "P2"P3

0 D (sl,sv) = (ss —sv)'

I(sl,sv) = (ss —sl) (ss —sl)

D(sl, sv) =4yv'+pl'+2T
I(sl,sv) =2yv'+2pl'+ 2 T

D($1&$2) =2pl (Sl Sv)

I(sl, sv) =T(sv —sv) (sl—sl)

proportional to Z, where

d4p lf4p g(p 2 m 2)g(p22 m 2)

&&8I (A —p, )2—s,)5L(A —p, )2—s j
x&I (~—pl —p2)' —m 2$

I M I ' (2.12)

2 = (vr2/4SA) F(st,s2),

Evaluating this expression in the rest frame of the A,
one obtains

(2.13)

D (sl,sv) =4yl'pv' —v

I(slpv) = 4yl pv —+T

D($4$2) =2pll+4v'pl +6pl pv +2T
I(sl&sv) =5pl'pl'+ (5/4)T'+2T(pl'+ps')

D(sl, sv) =2yl'(4pl'yv' —v')

1(s„s,) = —&44I pI22 —~~

of width j, Since D and I are in general slowly varying,
we set 3 = 1 hereafter, and evaluate variables multiplied
by a 5 factor at mp', obtaining

where

F(S1,S2)=
Sx'

d01d025(V —cos&12)
I
M I',

(2 1&)

F(sl,s2) =D(m, ',s2) 5 (sl —m, ', r,)+D(m, ',sl)

X5(s,—m, ', r,)5($2—m, ', I',) . (2.22)

T=2plp2I sl+S2 ~A mv +2F1F2 l

and
&;= (WA2+m '—s,)/2WA. (2.15)

D(sl, s2) =
8m'

d011f025(F cos|)12)(M1 22) (2.1/)

I(sl, s2) =
8~'

d01d025(Y —cos012) (M1,22M2, 12) . (2.18)

We have also defined the resonance function

5(X,r) = (r/vr)/(X2+r2),

8(X,O) =5(X) .

The correction factor A(sl, s2) is given by

(2.19)

(2.20)

h(s„s ) = 1+(s,—m, ') (s —m,2)/I', '. (2.21)

The second term is negligible unless D(sl, s2) or I(sl,s2)
changes by a large percent of its value over an interval

The quantity k;; is just the energy of pion i in the A rest
frame. For M=1, one finds F=1, the familiar fact that
phase space is uniform over the Dalitz plot.

Substituting Eqs. (2.5) and (2.9) in the definition of
F, Eq. (2.14), we arrive at the following expression:

F(sl,s2) =D(st, s2)8(sl —m, , r,)+D(s2,$1)5($2—m, , r,)
+ 2~r,I(s„s2)S(s,—m, ', r,)

X5(s2—m, ', r,)d, (sl,s2), (2.16)
where

~A+I A

PEA—~A

F(slls2l~A)~(II A mAl rA)DVA l (2.23)

where I,A is the half-width of the region about ms~ from
which events are taken.

Note that the interference effects are maximal for the

This expression has a simple physical meaning: The first
two terms give two p bands on the Dalitz plot, corre-
sponding to the two decay modes A+ —+ p++vrl+ and
A+~ p++vr2+; the last term, resulting from the inter-
ference between these modes, contributes significantly
only in the region where the two bands cross. Outside
this region the two x+ are distinguishable, since it is
possible to say which one came from the p decay. H the
unstable particle is long-lived, the interference effect is
important only over a small region of the Dalitz plot,
and very good experimental resolution is required to
observe it. We shall discuss this point in more detail in
the next section.

In Table II the functions D(sl, s2) and I(sl,s2) are
given for the various J~ considered. The quantity y is
the square of the three-momentum of pion i in the 2
rest frame y,'=E,.2—m~'. The normalization of D and I
in Table II is arbitrary; i.e., constant factors common to
D and I for a given J~ have been removed.

Before these results can be compared with the experi-
mental data for a broad resonance such as the A, it is
necessary to perform an integration over the mass
spectrum of the A; i.e., to calculate the quantity
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The density of events F(s&,s&) in the p bands of the
Dalitz plot for A decay, given by Eq. (2.22), will be
changed by the resolution into the function F(s~,ss),
where

F(sr, ss) = dsr Jss b( sr—sr, R)

D

20 30 40 50 (
s, inunits of mn.

60
I

70
I

80

FIG. 3. Distribution of density of events expected along a
p-meson band, s2 ——mp', in the Dalitz plot of the decay of the R
meson (see Ref. 6), for the I quantum number assignment. The
solid line neglects the effect of experimental resolution, while the
dashed line is the result for a resolution full width of 25 MeV (see
Sec. III).

0 and 1 cases; constructive for the former, and de-
structive for the latter. The interference effects, as well

as the significant variation of the matrix element, can be
displayed by plotting the variation in density along a p
band; i.e., F(st,m, '). This plot, for the 1 case, is shown

by the solid line in Fig. 3. Graphs of all the J~ we have
considered can be found in a recent paper by Lander
et al. '

III. EXPERIMENTAL RESOLUTION

We have thus far idealized the problem by assuming
that the experimental resolution width is small com-
pared to the decay widths of the particles X and I".We
shall now investigate the effect of relaxing this restric-
tion. Assume, for simplicity of subsequent calculations,
that the resolution function. is b(x xp, R), defined by
Eq. (2.19).That is, if the true value of some variable x
is x0, the observed variable x will be distributed ac-
cording to the probability distribution 8(x—xs, R), with
a resolution width E.Then a given theoretical prediction
f(x) will be "smeared" by the experimental resolution
into its "resolution transform" f(x), where

r,
D(m ' m ')y2—I(mp' mp')r' (3.4)

where r'=I', +R. Note the factor r,/r' which multi-
plies the interference term. If E)&F„no interference
effects can be observed, as one would expect. Figure 3
shows the effect of typical experimental resolution in the
favorable case of R —+ w+ p. Figure 4 shows the effect on
the unfavorable case 8 —+ 7r+to to be discussed in the
next section.

Even in a favorable case such as A —+w+p where

Xb(ss' —ss, R)F (sr', ss') . (3.3)

If one then assumes that D(s&,ss) varies slowly enough
that it can be taken to be constant over a region of the
size of the resolution width one obtains

F(sr,ss) =D(m, ',ss)b(sr —m, ', r,+R)+D(m, ',sr)

Xb(ss m, s—
, r,+R)+27rr, I(ws, ',m, ')

Xb(s,—m r,+R)b(s, —~ r,+R) .

Io order to see the effect of the resolution on the ob-
servation of the interference term consider the density
along a contour following one of the p bands,

1
F (s,,m, ') = D(m, ',sr)+

wr' (s —~ ')'+r"

f(x)= dx'b(x' —x, R)f(x') . — (3.1)

By contour integration we 6nd that the resolution
transform of a Breit-Wigner function representing a
resonance of width I' is itself a Breit-Wigner function,
but with width r+R; that is,

b(x,r) =b(x, r+ R) . (3.2)

5 R. L. Lander, M. Abolins, D. D. Carmony, T. Hendricks, N.
H. Xuong, and P. Yager (to be published).

I

10 20 30
I

40 ( 50
sl in units of mII~

60 70

Fxo. 4. Distribution of density of events expected along an co

band, s2=m ~, in the decay of the 8 meson, for the 0 quantum
number assignment. The solid line neglects the e6ect of experi-
mental resolution, while the dashed line is the result for a resolu-
tion full width of 20 MeV, and a band half-width I, (see Sec. III)
of 15 MeV.
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2I.
P (Sy)$2)d$2

= U(L, r')D(m„s, si)+8(si —m, ', I")

F,((R, the interference effects can be obscured if
statistics force one to look at a broad band about
ss=m, 2. If we integrate Eq. (3.3) over a band of width
2I about s2=m, ~, we find

1 ~~2+I

Pro. 5. The two possible
modes of the decay 8+—+ sr+

+co ~ ~++sr+++ +x'.

'tto &- m+

pe ) Pg/Pp &+
/

%~/ /P)
/

/
/

B+

(a)

ro H- F+
~Pe ) Ps/» .~+

/ /
2, I/ / P~

/
/

/
t'

Bt

(b)

where

X )D(m, s,m ')+2 2rr U(L, r')I(m, ',m ')$ (3 5)

and where

Eo= (mz'+m ' —m, ')/2m', (4 5)

U(L,r') = (1/~L) tan —'(L/r') . (3.6)
~,=r,/2m„»= (1—E,/m )r, .

One can see from these equations that the interference
term becomes small when L,)&I',.

where E, is the energy of the p in the three-pion c.m.
system,

(4.2)Ep (sg+mp' —m ')/2Wg——,

and where

W =E + (m '+E '—m ') '" (4.3)

Integrating over the mass spectrum of the A we obtain

1 ) r,
dW~5(W~ —mg, rg) 5~ W~ —Wg,

2E, k '2E,

t'
~~ m —w„r,+

2E„ E
'

2E i

IV. CHOICE OF VARIABLES

Ke have seen how interference effects are smeared
out when the resolution becomes comparable to the
width of particle F. The width of particle X has, on the
other hand, no significant relation to the observability
of the interference effects, as long as the Lorentz-
invariant mass variables si and s2 are used. Often, how-
ever, one displays the data by means of the Dalitz plot
in terms of the energies E~, E2. The purpose of this
section is to point out that such a choice of variables
obscures the interference effects unless X is a very
narrow resonance. The reason is evident from Kq.
(2.15) which gives the kinematical relation between s,
and E;. The quantity Wz enters into this relation.
Therefore, the width of the A will Inake the p peak in the
variable E~ appear broadened. To evaluate the effect
quantitatively we must express 8(s~—m, ', r,) in terms
of E~ and 8'~, then integrate over the A mass spectrum.
Evaluating slowly-varying terms at the peak of the 5

function we find

( I'p
S(s,—m, , r, ) = S~ W~ —W„', (4.1)

2E, & '2E, '

The width of the p in the variable E2 is thus y,+yg. For
the case of an A meson of width =350 MeV, the term
y~ is about twice the "natural width" y, . The band
structure of the Dalitz plot in Ej and E2 will-be almost
completely obscured. One would expect that inter-
ference effects will also be obscured, and a detailed
evaluation shows that this is indeed the case. YVe shall
not reproduce this evaluation here, since the difhculty
we are describing in this section need never occur as long
as the Lorentz-invariant mass variables are used.

where

M = I'(Si)M2, 234+I'(S2)M2, )34,

~1 (P2+P3+P4)
$2 (Pl+ P3+P4)

(5.1)

(5.2)

6It appears that the A is not this broad, but is really two
peaks: S. U. Chung, O. I. Dahl, L. M. Hardy, R. I. Hess, G. R.
Kalbfieisch, J. Kirz, D. H. Miller, and G. A. Smith, University of
California Lawrence Radiation Laboratory Report UCRL-11371,
April 1964 (unpublished)

V. THE DECAY B+ —+ m++u

The existence of two possible decay modes of the 8+,
namely, 8+~ 2r~++~; co ~ 2rs++2r +2rs and 8+-+ 2r2+

+~; u —+2r,++2r—+2rs; gives rise to the possibility of
interference effects in a manner similar, in principle, to
the one described in Sec. II for the decay of the A+
meson.

The fact that one has to consider now four pions in
the final state, however, makes the calculation of the
interference effects a somewhat more difficult task.
Also, the choice of the best set of variables in which to
plot the data to show those effects is not straightforward.

Iri order to clarify the steps we followed in our calcula-
tion, we shall present first, in some detail, the case
corresponding to the decay of the 8+ if it had quantum
numbers J~= 1+. The generalization for the other
possible J~ assignments is straightforward and the
results, only, will be shown on Table 4.

Since the 8+ meson is an isotopic vector, the relevant
isotopic spin vertex operators are simply 5~;, for the
diagram of Fig. 5(a) and 83;2 for the case of Fig. 5(b).
Therefore, the total matrix element for 8+ decay is
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P(s,) are the 4o meson propagators corresponding to
each diagram and M, , b,~ is a function of the momenta
appropriate to the J~ considered. Then

~
M

~

' can be
shown to have the same form as Eq. (2.16) exchanging
I', for F„everywhere. This fact makes it clear that a
convenient set of variables to plot the data is the plane
(si, s2), in complete similarity with the case of the 3+
decay. In this plane the interference effects will show in
the region where the two co bands cross.

The 8+ decay rate is proportional to

JP

0
1
$+
1+
2

Matrix element

P&"fl
~ „z,f1Ppp, &+~

I'/4f

(~.P~") (P~"f )
P~"f"I'~.

TABLE IIT. The simplest matrix elements for various values ofJ for decay 8 —+ vr&+~ followed by co ~ m&+xa+2i-4. The quanti-
ties I'„... are tensors formed from the production variables. The
vector 8 is the four-vector associated with the 8 and f„is defined
in Eq. (5.4).

Z = g d4p, b (p 2—m.')
The integral can now easily be reduced to

X&'(PI P2 P2 P4—&

fa eaPy4P2 Pa P4

Then for J = 1+(l=0) we have:

& , I242= P'f
~

(5.4)

(5.5)

Following the procedure described in Sec. II we shall
use for M1,234 the simplest expression consistent with the
assumed quantum numbers. Pions 2, 3, and 4 are com-
bined to form the co giving a factor

7r2 1
G(si, s2,s24) =—— dQIdQ2h(PI p2 F)C—', (5.12)

s~ Sx

D(si, s2) =—96 Zg) 1=—Q D X, (5.14)
7I P Zsgd$18$2 spy &=1

2plp21 sl+$2 WB $24+ 2EIE2
q (5.13)E;= (WI42+m ' s~)/2WI—I.

Finally one obtains:

where P is a vector associated with the production
variables of the 8+ and having the property P B=o.
Then

M=5(si —m„', F„)e p„4P p2ppa'rp4'

+b(s, m„', I'„)e—,p, sP pipppp4'. (5.6)

'+ (x—4m. ')'~2
&S gn —1

Di = —m 'SI+E2'(Wn —Ei)'+-'(m 'p '+S,p ')

(5 15)

Now the part of
~
iV I' contributing to the direct term

D(si)$2) IS

I
/l'fn I'= e-p74P P2pp2"P4""i P"P2"P2'P4 (5 /)

Defining Q=P2+P4 and E= ,'(P2 P4) one can in—tegra—te
over d'Q and d4E obtaining

(s24—4m. ')2I2

ZD d$24dsid$2 G(SI)$2q$24) q (5.8)
24 (»4)'"

where

G(si, s2,s,4) = d'prd'P28(PI' —m. ')&(P2' —m.')

Xac(a—p, ) —$I75L(a—p2)' —s27

x5C(a —p, —p, ) —.„7xc, (5.9)

C = 4 p,44„„,.P P&P2PP2" (8 Pi)'—
X(&—p ).. (5.»)

Evaluating C in the rest frame of the 8+ one obtains

C= P'm 'si+—2(P pi)(P P2).(B—pi) p2

+m '(P—Pi)'+s, (P P2)'

+P'L(&—Pi) P27' (5 11)

and
rr= si+s2 sa+ 2E,E2. —(5.17)

In a completely similar way one can calculate the
interference term I(si,s2). Then the final expression is
obtained simply using Eq. (2.22).

The physical interpretation of this formula is similar
to the case of the A+ meson as described in Sec. II. Of
course, here also, due to the fact that the width of the

The integral of Eq. (5.15) can be done analytically, obtaining

a L+
&a = & (~ "m '&" '&x')5 —cpm '"

infra,
8 0

(I 4m )~ j/P (I 4m 2)1/2j

5=(x(x—4m ')g'",
& "=1/(n+1),

~a P= —2(2n+3)/n(n+1),
&a 2"=12/n(n+1)(n —1),

+-~ (~+
(n+1)n (n 1) ~ (s+1)—

+;E2(WII Ei)o+ (5-/12)o', —
(5.16)

D2 = —-', E2 (Wn —E,)—-', o,

D2 ——5/12,
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TABLE IV. The functions D;(sl,ss) and I;(sl,ss) for the different values of Ja considered.

0 D1=p1 p2 40'

D2 ———,'o.

D3 = ——,
'

D(S1,S2)

Il = D1

I2 = —D2

I3= —D3

I(S1,S2)

Dl =-s,pP(sl(ps' —2m ')
+-s'(2Es(WB —El)+o js) —slo' /12

Ds =
1 osl —-', plsL2Es(Wa —El)+oj

D3 = 6p1 —TgS]

D, = —m ssl+Ess(WB —El)s+—'(m spls+slpss)
+-',Es(WB El)o+ (5/1—2)o'

Ds sEs (W——a E—l)— slr- —
Ds =5/12

Dl =pl (pl ps so )/3
Ds =opls/6

Ds ———yl /12

D1 ——~10-'+81'-+C1

D2 ———2~ 10-—~1

D3 =31
A, = (18yls+sl)/120

8,= (7/15) plsEs(WB —El)
Cl ——pl')4m 'yl'+3slps' —10m 'sl

+10Ess(WB—El)'j/30

Il —o /24+ o /12 (I''1Es sa) +o—[sa (m E1Es—) +pl ps g/6—plspssE1Es/3

Is ——os/24+(sa ms)o—/6+ttsa(E1Es m) ——plsps j/6
Is = fo 2E11.'s—+4m' 2saj/—24

14= —1/24

Il — l(sB sl ss) (sa —2m ')+ (WaE1—m ') (WaEs —m ')
+-,'pl'(WBEs m )+sps (WBE1 m ')
+-s'o(WB (El+F1)—2m, ')

Is= ——,'(2sa —2m ' —sl —ss)+s'Lo —Wa(I-'1+Es)+2m 'j
Is = —5/12

Il =o (os—4plspss)/24

Is = plspss/6 —o'/8

Is =o/8
Is —1/24——

0 1 ~1~2 Pl P2 ~~1~2
Il = ——+o' —(sa —2m ')+—+

240 15 120 10

P1 P2' P1 P2 81+~~2

(sa —2m ')+o — ——(sa —2m ')
30 20 12

+-', (WaE1 m) (WaEs m')—+1/15J pls (W—BFs ms)—
+pss(WBE, m')j—
19

I2 =—0' —0'T

240

2(S~—m ') E1L~2 E1L'2
+ +—(sa —2m.')

15 10 12

60

—-', (WBFs—m ')(WBE,—m ')

7 spy —2m ' 11
I3= ——~+- —+—~1&2

48 15 120

I4 = 17/240

1 P1 P2——[pl (WBEs—m ) +ps (Wajl —m )7+
15

8+ is about 100 MeV one has to perform an integration
similar to Eq. (2.23) in order to compare this result
with the experimental data.

In Table III we give the form of the vertex operators
corresponding to the different J~ values of the 8+
considered in this work. Finally, in Table IV we show
the results D(st, s2) and I(st,ss) obtained for those
quantum numbers.

As mentioned at the end of Sec. II, one can in this
case, plot the variation of density along an ~ band; i.e.,
F(st,sl„'), to compare with the experimental data. The
results are shown in Fig. 4.

APPENDIX

In this appendix general methods are given for con-
structing the decay matrix elements for the cascade
process

X~ l'+Z,
I' —+ mx)

Z —+ s7r.

The particles X, I", Z, and m have integral, buto ther-
wise arbitrary spin and isotopic spin. Tensor methods
will be used in the construction of the required invari-
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ants in space-time and in isospin space. The particles
X, V, and Z are assumed to have spins S„S„,and S„
parities 8„8„,and O„and isotopic spins I„I„,and I„
respectively. First the decay of X is discussed and then
the decays of T and Z including symmetry effects.

The isotopic spin I of a particle will be described by
an Ith rank tensor in isotopic spin space, symmetric and
traceless in all indices. Such a tensor has 3 components.
However, if two components can be transformed into
each other by a permutation of the indices, they must
be equal by the symmetry requirement. Each index
takes on only the values i, 2, and 3 and so the com-
ponents may be classified by the number of 1's, 2's, and
3's. Those with the same distribution of i' s, 2's, and 3's
can be perrnuted into each other and are equal. Of the I
indices a may be i, where a is any integer from 0 to I;
of the remaining I—a, b may be equal to 2, where b is an
integer from 0 to I—a, and the remaining I—a—b must
be equal to 3. Thus there are

a=o b=o

= (I+1)(I+2)/1X2,

independent components in a symmetric tensor of rank
I.The trace of such a tensor with respect to any pair of
indices is the same and is a symmetric tensor of rank
I 2. The trace —has (I 1)I/1X2 com—ponents and
must vanish thus imposing (I 1)I/1X2 condi—tions on
the original tensor. The total number of independent
components is then

(I+1)(I+2)/1 X2 —(I 1)1/1 X2 = 2I+1—

as was to be expected.
In a similar way the spin S of a particle will be

described by an Sth rank symmetric, traceless, trans-
verse tensor. This tensor has 4~ components of which
only (S+1)(S+2)(5+3)/1 X2X3 are independent by
symmetry. The requirement of tracelessness imposes
(s—1)s(s+1)/1X2X3additionalconditions. Thisleaves
(s+1)' independent components. Transversality is the
requirement that the scalar product of the momentum
vector of the particle with any index of the spin tensor
vanish. This condition is obvious in the rest frame. This
gives an additional S' conditions on the symmetric
traceless tensor since the contraction leads to a sym-
metric traceless tensor of rank S—i. The total number
of independent components is (5+1)'—S'= 25+1.

The spin tensors for X, F and Z are denoted by $, q,
and t and the isospin tensors by x, y, s. The indices will

be suppressed as much as possible. The momenta of the
particles X, F', and Z are p+q, p, and q. The decay of X
into P and Z is described by constructing a scalar in
isospin space from x, y, and z, the Levi-Civita anti-
symmetric three-index symbol e;jA, and the Kronecker
8;j. Since there is only one way to add three angular
momenta to get 0, provided they satisfy the triangle

inequality, the result is unique. The spatial part of the
matrix elements is made by constructing a scalar or
pseudoscalar from the tensors $, g, and f, the vectors p
and q, antisymmetric four-index symbol e and the
metric tensor 5. There are now more materials to work
with and the answer is no longer unique. Only the
simplest scalars (fewest powers of p, g) will be exhibited.

The following standard terminology of tensor algebra
is used: the tensor product c of two tensors a;,...;, and
b q1...q 1S

Contraction of a pair of indices means equating them
and summing from one to three or one to four with the
appropriate minus sign.

The isotopic spins I„ I„, and I, must satisfy the
triangle inequality

so that
2v+1 case (i)

2v case (ii)

where v&0. In case (i) make the tensor product of y, s,
and e and contract an index of y and one of z with two
from e. In case (ii) make the tensor product of y and s. In
both cases v indices of y and v indices of z are contracted.
The remaining indices of y and s and, the e in case (i), are
contracted with the indices of x. If I„&I„zmust have
enough indices to do all the contractions with since

I,&I„I,&I,+—2m+1 (i)

v+-,'(i)
I,&

v (ii)

Several examples are given below.

(a) I,=I„=I,= 1: e,;gx~y;s~,

(b) I,= 2, I„=1,I,= 1: x;;y,s;,
(c) I,=1, I„=2,I,=1:
(d) I,=1, I„=I,=2:

Xsy jjZj )

&i&ijayjlzA ))

(e) I,=5, Iy=5, I,=3: x.g, d.,y;;g, g s„„e,p.8g;8, g8(,8, .
The spatial part is constructed similarly, except that

S, S„, and S, do not necessarily satisfy the triangle
inequality. If they fail to satisfy the triangle inequality
the deGcit may be made up by using the momentum
vectors p and q. This is equivalent to derivative cou-
plings in Geld theory. There are three cases to consider
depending on the relative magnitudes of 5, 5„,and S,.
These are

0&S„—5,&5,&5„+5, case (i) (Triangle region)

5,&5„—5, case (ii)

5,)5,+5, case (iii).
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In the triangle region the same procedure as was used
with isotopic spin may be used. If an e is required
(S„+S,—S, odd) then the fourth index is contracted
with (q+p) which is just the X mass in its rest system.
This result corresponds to no orbital angular mo-
rnentum, and is only suitable if the intrinsic parity of X
is the product of the intrinsic parities of I"and Z. If this
is not the case a P-wave F', Z matrix element may be
constructed by introducing one factor of q

—P. Since
there is one unit of orbital angular momentum 5, the
total angular momentum of Y and Z may be found by
combining the spins ri and f' to S,—1, 5, or S,+1, and
then adding the unit of orbital angular momentum to
give the required total S,. Some of these three possi-
bilities may fail if 5,=0 in which case only 5,+1 is
possible, or if S,—1& ~5„—S, ~, etc. The values 5,—1,
S„and 5,+1 are constructed by the previous prescrip-
tion. The resulting tensor in each case is symmetrized.
In the case 5,—1 the tensor product with (P—

q) gives
the required answer and the symmetrization is un-
necessary since all indices are eventually contracted
with $ which is symmetric. For 5, the tensor product
with e, and (P+q) is formed and one index of the
symmetrized tensor, the indices of p+q, and p —

q are
contracted with three indices of c. In the case S,
+1,(P—

q) is contracted with an index of the sym-
metrized tensor. In each of the last two cases it is
unnecessary to explicitly carry out the symmetrization.
If ri has a free indices and f has b free indices, any index
in the symmetrized tensor appears a/(a+b) times in rl

and b/(a+b) times in f'. For example, the symmetrized
version of ri;rt ~ is reft, gl, +rl, g;+rl; g;].A contraction
of an index of the symmetrized tensor T with the
vector V is

j.
L (n. ~)i+be(f I')3

(a+b)

where the dot product means contraction of the index of
V with any index of the tensor. To illustrate the problem
consider combining 5„=3, 5,= 2 to an 5, of 4 with one
unit of orbital angular momentum. The case when q
and g are combined to give 5, is simple

(P q)sgvvbiagplvgypb88

In the next case g and f are first combined to give S,= 4

n~"t, .e-..(P+q) '
The free indices are P pp and q and the tensor should be
symmetrized in them. This would give rise to 24 terms.
Next the tensor product with e, (P+q) and (P—

q) is
forrrled

(1/24) (n».f,.'-, (P+q).+ ")e»:(P+q) p(P q)-. —

Now the free indices are gpss and x. The + signifies
the other 23 permutations. The X will occur on the f' and
e as well as on the g in these other permutations.

Finally, the result is contracted with $.

(1/24)$apy8 ('gxavt p evv rvy(P+q)r+ ' ' )
Xe».s(P+q) p(P q)—.

s- ~1 ~1tapy8Lg gapv5 v vev are+ 4 gap'vf Xvevvry+ S '/akron paev are j
X ere.s(P+q)s(P —

q) „(P+q) r r

The last line follows since the indices nPy are equivalent
as they are the indices of the symmetric tensor $. The
index X occurs in the diferent terms in the ratio 2:1:1
as given by the lemma above. Finally, ri and f are
combined to give S,+1 by simply forming the tensor
product

ghpv pa ~

This must be contracted with (P—
q) symmetrically

thus the final result is

t-p»(3~-p~l »(P q)~+2~—-p~l ~.(P q).). —

In case (ii) or (iii) 5„—5,—5, or 5,—5„—S, units of
angular momentum are required to "close the triangle. "
In case (ii) the tensor product rig(P q)

—(P—
q) when

there are 5„—5,—5, factors (p —
q) and these factors

are contracted with g and the usual process carried on
the remaining tensor. Similarly, in case (iii) S,—5„—5,
factors (P—

q) are added to the tensor product and then
the contraction of all indices of g, t, and the (P—q)'s
with the indices of $ is done. These matrix elements are
suitable for definite relative parity of I, I', Z

8,=8+,(—1)~

5„—5,—5, case (ii)
0

S,—5„—5, case (iii)

Ii this relation is not satisfied another power of
(P—q)a(P+q) and an e, and these together with an
index of g or f are contracted against an e. This com-
pletes the discussion of Xv 7'+Z.

The matrix elements for I' —& mx is constructed in a
similar way as a product of an isotopic and spatial part.
However, since the m mesons satisfy Bose statistics only
certain combinations of space and isospace are per-
missible. The isospin of each pion is described by an
isovector t;. The tensor product of m of these is taken.
A coeflicient c(ai a„bi b ) is constructed to con-
tract with this tensor product. The b's are the indices of
the pion isospin. c is symmetric and traceless in the
s a's and they are contracted with the indices of y and 7
isospin tensor. The behavior of c under a permutation of
the indices b is like a specific representation of the per-
mutation group. For I„=0 and 1 these coe@cients have
been given' for m=1, 2, 3, 4. Here they are listed for
I„=2, 3, 4 and for m= 2, 3, 4. The generalization for
larger numbers is simple but tedious. These coeKcients

s Francis R. Halpern, Ann. Phys. (N. Y.) 7, 146 (1959).
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are not normalized.

c'(alas, blbs) =8(albl)5(asbs)+5(albs)8(asbl) —P(alas)&(blbs).

c'(alasasblbsbs) =8(albl)5(asbs)5(asbs)+5(albl)&(asbs)5(asbs)+&(albs)&(asbl)&(asbs)+6(albs)5(asbs)g(asg, )
+5(albs) 5(asbl)8(asbs)+b(albs) b(asbs)5(asbl) —

—8,P(alas) 5(asbs)b(blbs)

+&(a,as)5(ash s)5(b lb 8) +5(alas)5(ash, )5(b sb 8) +5(a,a 8) &(asbl) &(bsbs)

+8(alas) 8(asti 2)5(I5158)+5(alas) 5(asl8)'5 g ll 9)+5(gsa3) 5(albl) 8(b958)

+5(usus) 5(albs) 8 (blbs)+5 (asas) b(albs) 5 (blas) ].
cls'(alas, blbsbs) = [5(albl) «(asbsbs)+b(asbl) &(albsbs) —8(albs) «(asbsbl) —5(asbs) «(albsbl)].

Cs" (alas, blbsbs) = [25(a,bs) «(asblbs)+25(asbs) «(alblbs) —5(albl) «(asbsbs)
—&(asbl) «(albsbs) —5(albs) «(asbsbl) —5(asbs) «(albsbl)].

]}
c'(alaspli'185854) +18{5(albl)8(asls)tI(bsb4) —85(alas)5(blbs)5(bsb4)}.

cl"(alas, blbsbsb4) =
+ 8{6 (a lb 1)5 (ash 8)5 (bsb4) —0 (a lb 1)5 (ash 4) 5 (bsb3) —0 (albs) 8 (asbs) 5 (MI)

+ds (ali 8) ~ (asi 4) ds (illa' 3) 2'tI (alas) I
8 (b lb 8)5 (b sb4) —28 (b lb 4) 5 (b sb 8) +5 (bsb 4)8 (b lb 8)]}.

cs '(alas/ li sb3&4) =Q 8{& (ali 1)Il (as&s) & (bs&4) —& (ali 1)III (ash 4) 5 (bsbs) —5 (albs) 5 (ash 8)5 (blb 4)

+Il(ali8)ll(asi'4)~(i'li'8) stI(alas)l Il(iIliIs)5(bsb4) —25(blb4)5(bsbs)+5(blbs)P(&8&4)]}

cl (alas blbsbsb4) = [5(albl)5(asbs)+tI(albs)8(asbl)]5(bsb4)+[5(albs)5(asbs)
+5(albs) 0 (asbs)]5(b, b4) —8&(alas) p(blbs)5(bsb4)+ & (blb4)b(bsbs)) .

cs (alasP1468I54) [6(algal) '5 (a258) +5 (albs)8 (asll) ]'5 (l5854)+ [5(a,bs) 5 (asb4)

+8(alb4)5(asbs)]5(blbs) —-'8&(a,as)5(b,bs)6(bsb4) .
c3 (alas/ li si 8214) p(ali 1) Il (asi 4) +~ (ale 4) ~ (asi 1)]~(E'258) + [5(albs)B (asll4)

+~«1&4)~(as&8)]&(&1&8)—8&(alas) [~(&1&4)&(&8&s)+&(&14)&(bs&4)].

c'(alasasa4P1526354) +24 &(abl)&(as~2)~(as&8)&(a4&4)
—(2/7)gs 8(a,as)+is 8(b,bs)8(asbs)8(a4b4)+ (8/7) [+88(alas)8(asa4)][Ps 5(b,bs)8(bsb4)].

The sums are to be taken over all distinct permutations of the indices, the total number of permutations is indi-
cated by the numerical subscript on the summation sign.

cl"(a lusus, blbstI sb4) =Ps{0 (a ill) 8 (asbs) «(asbsb4)+ 5 (albl) 0 (asb4) «(asbsb4) —8 (albs) 5 (ash 4) «(ash, b 8)
—5 (albs) 8(asb4) «(asblbs)] —88(alas) [8(blbs) «(asbsb4)+5(b, bs) «(asbsb4)

—5(bsb4) «(asblbs) —8(bsb4) «(ash, bs)]}.
css (alasas 515858l 4) +8{Ii (albl)8 (asbs) «(asbsb4) + II (albl) 8 (asb4) «(asbsbs) —8 (albs) 5 (asb4) «(asblbs)

8~(alas) [Il (i 1~8) «(asilsil4)+2&(as&s) «(&1&dl4)+8(b,b4) «(asbsbs) b(bshe—4) «(ash, bs)]}.
cs"(a,asasb, bsbsb4) =+8{5(albs)5(asbs) «(asblb4)+8(a, bs)8(asb4) «(asblbs)+5(a, bs)8(asb4) «(asblbs)

—5~(alas) P(&2&3) «(as&1&4)+b(asbs) «(b2blb4)+h(bsb4) «(ash, bs)

+5 (bsb4) «(alblbs)+ & (ash, ) «(b4bsbs)

E;=2,;k;,
0
[(n —i)/ (88—I+1)]'"
—[(I—i) (88—i+1)] '~'

i)j i~m
'.=j i~m
i(j iQm
2= m.

In these formulas k; and E; are four-vectors. The
indices i and j identify the vectors and do not refer to
components. The over-all center of mass is given by
E =0. Appropriate spin tensors are made from E~,
E2 ~ ~ .E ~ is the rest system and then transformed into

In a similar way it is necessary to make a spin tensor
from the momenta of the mx's, k~, k~ k .The following
combinations effect the transition to the X center of
nlass.

a general coordinate system by the rule

Kj k ~ «k lv, v (+vv) v ~

The types of combinations to be formed are similar to
those listed for isotopic spin although the symmetry
properties are more dificult to treat, since the
E,i = 1 ~ m —1, have fairly intricate transformation
properties under permutation. Each E; may be used an
arbitrary number of times. The exact combination to
choose is to be Axed by the symmetry requirement that
can be treated adequately for any realistic case but is
rather diKcult to prescribe in general. Some examples
are given by Henley and Jacobsohn. '

'E. M. Henley and B. A. Jacobsohn, Phys. Rev. 128, 1394
(iw2).


