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In connection with higher order leptonic weak interactions, divergent series containing an infinite number
of logarithmic factors are encountered. In order to have some understanding of series of this type, the prob-
lem of scattering by the singular potential -gr ln r is examined for the special case of zero energy. This prob-
lem has the advantage that the correct answer can be obtained by other means. Generalization to the po-
tential-gr "ln r with) )3 is also considered.

l. INTRODUCTION

ECENTLY, attempts have been Inade to obtain
some understanding of the corrections to processes

involving weak interactions. Lee and Yang' have de-
veloped for this purpose the $-limiting formalism for the
intermediate boson, and Feinberg and Pais' have
studied higher order weak interactions restricted to the
uncrossed ladder diagrams. In both cases, summation
of divergent power series is a necessary step. As a
possible check on this procedure of summing divergent
power series, Khuri and Pais' and Tiktopoulos and
Treiman4 considered the exactly solvable problem of
scattering at zero energy by the singular power poten-
tial gr ~, where X)3. In this case, summing the Born
series after first introducing a cutoff does indeed give
the correct answer. However, the relevance of this
model to field theory is by no means clear.

In connection with higher order leptonic weak inter-
actions, it has been proposed' to sum a divergent series
involving logarithmic factors. Although this procedure
does yield a definite answer taking into account all
possible Feynman-Dyson diagrams, summing such a
series must be considered to be even more dubious than
surriming a divergent power series of the kind mentioned
above. Indeed, while divergent power series have been
encountered in various branches of physics, divergent
series with an infinite number of logarithmic factors
seem to be something novel. It is therefore the purpose
of this paper to study a potential problem where aseries
of this variety appears. For the sake of definiteness, we
consider first the scattering by the potential —g~ 4 lnr,
where g&0 and hence the potential is repulsive near the
origin. Some generalization to other powers is discussed
in Appendix E. As in the earlier works, ' ' we restrict
ourselves to the case of zero energy.

The procedure is as follows. After introducing a cutoff
A ' in the radial coordinate, we expand the scattering
length in powers of the coupling constant g, with coeffi-

cients that depend on various powers of A and ink. In
Sec. 2, we rearrange the various terms and define the
series B (A) to be suniined. In Sec. 3, we study the two
simplest series by a method that can partially be
generalized to all e, as shown in Sec. 4. The result is that
none of the B„(A) approach any limit for the potential
without a cutoff. Some properties of these functions
B„(A) are given in Sec. 5 together with a comparison
with the case of higher order leptonic weak interactions
m.entioned above.

2. FORMULATION OF THE PROBLEM

We consider the radial differential equation

a'f/dr'+gr 4 (1nr)/=0, (2.1)

f(r,A) =r+g dr' r' ' lnr' min(r, r')P(r', A), (2.5)

which may be solved formally by iteration. Let

P, (r,A) =r,
and

(2.6)

/~i(r, A) =g dr'r' ' lnr' min(r, r'g„(r', A) (2.7)

with the boundary conditions f(0)=0 and f(r) r as
~ ~ ~. The scattering length A is defined by

A = lim„„[it (r) —rj. (2.2)

In order to use Born series, we introduce a cutoff A
—'.

Thus, (2.1) is replaced by

gr 1'nrlP (r A) fol r) A

0, for r(A ',
with the boundary conditions it (O,A)=0 and g (r,A) r
as r ~. Similarly de6ne

A (A) = lim, „LP(r,A) —rj. (2.4)

Equation (23) together with the boundary conditions
is equivalent to the integral equation

dr' r' ' Inr'iP i(r', A) . (2.8)
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In view of (2.6—2.8), A„(A) must be of the following
form:

We proceed to calculate F(x) and F'(x) approxi-
mately. The function F(x) satisfies the integral equation

n

A (A)=g"A.'" ' P a (lnA)" ".
m=0

(2.9)
F(x)—g dh'(x —x') lnx'F (x') =x.

0

(3.7)

B (A)= P a mg"A'" '(lnA)" "
then formally

(2 10) We formally iterate this equation by defining

Fp(x)=x, (3.8)

A(A)=P A„(A)= P B„(A).
n 1 m=o

(2.11)
F~i(x) =g dx'(x —x') lnx'F„(x')

0

(3.9)

A(A)= dr{[f(r,A)j '—1}, (3.1)

It is the purpose of this paper to study in detail the
behavior of B (A) for large A. For the sake of orienta-
tion and later comparison, in Appendix A we compute
approximately the scattering length 2 for small g.

3. PROPERTIES OF THE FIRST TWO TERMS

In this section, we compute explicitly Bi(A) and
Bs(A). In order that at least a portion of the considera-
tion can be generalized to all B„(A), we follow a some-
what devious sequence of steps. The more straight-
forward calculation, which involves no less algebraic
manipulation, is relegated to Appendix B.

We begin with a relation between the scattering
length A and the Jost function, ' as given by (C5) of
Appendix C:

for n &~0. It is then seen that F„(x) is the product of
x'"+' with a polynomial of order n in lnx. We shall keep
only the two leading terms:

F (x)~gmhpm+1[M (inx) +++ (lnx) n—ij (3 10)

With the formula

dx x" '(lnx)'

=p 'x& Q(—1)p ip p+s(lnx)"q!/p! (3.11)

for any non-negative integer q, the substitution of (3.10)
into (3.9) gives the recurrence relations

M„„i——[(2n+2) '—(2m+3) 'jM„, (3.12)
and

where f(r,A) is the Jost function for the potential cutoff
at A '. Let f(r)= f(r, ~), then j(rA) has the important ~,—[(2++2)—i (2++3)—i]AT

—(ted+1)[(2m+2)
—'—(2m+3)—'jM„. (3.13)

(3.2)
for r&A '.

It is convenient to use the variable
The solutions of (3.12) and (3.13) with the boundary
conditions Mo= 1 and Eo= 0 are

and define
M =[(2m+1)!j—', (3.14)

F(x,A)=r 'f(r, A),

F(x)=r—'f(r).
(3 4)

(3.5) X~= —[(2m+1)!7 '[e——,
' Q (2k+1) 'j. (3.15)

k=o

It follows from (3.1) and the differential equation for

f(r,A) that
A ——2

2 (A) = —
g dx Inx —F (x,A)

0 dg

which, by (3.2) and (3.5), can be simplified to

Summation over I gives, with the help of (B20),

F(x) x s 'sinhs —(21nx) ' cosh»

—s ' ds's' ' sinhs' cosh(s —s')
0

(3.16)

A (A) = —
g dx lnx[F'(x) j—'. (3 6) wl ere

s= (gx' lnx)'I'. (3.17)

F'(x) =dF (x)/dh= t!F(x)/clx

+s[1+(2 lnx) '$x 'c!F(x)/c!s; (3.18)' R. Jost, Helv. Phys. Acta 20, 256 (1947).

A comparison with the calculation of Appendix B shows
that we have avoided the simultaneous treatment of two

The derivative of F x is obtained from

variables by using the Jost function.
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A = —g dx (lnx) [cosh (gx2 Inx) '/'] —', (5.5)

order of e*, while the second term is of the order of ze*, It follows from (3.24), (3.21), and (3.20) that
as z —+~. More generally, the 12th term of P (x), that is,
the coefficient of (lnx) ", is of the order of s"e'.
Therefore,

0

B„(A)=B„{"(A)+O((lnA. )
—"'), (4.2)

where B„{')(A) is given by a generalization of (3.26) by
(3.24):

{1)(x) ( 1)++1

&( [(8/{)a&)"S"(geo)'/2 tanh(gcox2) 1/2]
) „ I». (4.3)

As x~at1, (4.3) gives, by dropping the hyperbolic
tangent factor, as A. —+~

{1)(A)
—

( 1)n+)g 1/2g1/2(lnA)1/2+O((lnA) —1/2) (4 4)

where C„' ' is the binomial coefficient. Consequently,

(A) = (—1)&+1C 1/2gi/2(lnA)1/2/O((inA) —1/2) (4 5)

as A. —+~.

5. DISCUSSIONS

The present situation differs greatly from that of a
power potential, where no approximation is made in the
sense that all terms are kept throughout the manipula-
tion. ' 4 Indeed, since all terms are kept, it is diKcult to
imagine any failure to obtain the correct answer. This is
not at all the case here, and it may be of some interest to
note that none of the B (A) approach a finite"limit as
A. —&~. However, observe that essentially the correct
answer is obtained if only Bp is retained with A reinter-
preted as g

'~'. Secondly, we may try to sum the right-
hand side of (4.5) over all N. Since by the binomial
theorem

which is evaluated approximately for small g in Ap-
pendix D. The result is

A= —g'/2e "'[1—-', e(2 ln2+y+1 —in2r)+O(e2)] (5 6)

where e is defined by (A3)—(A4). Numerically,

A = —g"'e "'[1—0.9094e+O(e )]
while (A9) gives

gi/2g —1/2[1 ——0 6352e+O (e2)]

(5.7)

(5.8)

A= A/o. , (5.9)

where o. is a positive constant. Analogous to (2.9) and
(2.10), we may expand the scattering length in terms
of A and ink:

n

(A)
—~nA2n —1 p {1 (lnA) n—m

m=P
(5 10)

B (A) = P a„g"A2" '(lnX)" ~. (5 11)

Thus for small g, the right-hand side of (5.5) gives the
6rst term correctly, while the second term is off by
nearly 50%.

Fourthly, the question may be raised whether the
results depend on the rather arbitrary definition of the
cuto6 A. For example, we may choose to use instead

N

P ( x)nC 1/2 (1 x)1/2 —2
—2x—1(g I)

—2(2A/') I

dx'(1 —x')-'/'-"(x —x') ~
0

(5 1)

Since B„(A) may be obtained from B„(A) by Taylor's
expansion, and

d(lnA)'/'/d(lnA) —+ 0

as A ~~, B„(A) also satisfies (4.5); i.e.,

B (A) = (—1)~+'c "'g'"(111A)"'+O((111A) '")

we have, by setting x= 1,

Q ( 1)~C 1/2=2 —2&(ATI)—2(2+) I

n=o
(5.2)

Hence, by Sterling's forlnula

1)nc 1/2 0
n=p

(5 3)

It is perhaps gratifying to find that a zero appears in
the sum of the asymptotic formulas of B„(A) to avoid
a result that is unambiguously in6nite.

Thirdly, let us de6ne the sum

as A. ~~.
Finally, since the motivation for the present investi-

gation comes originally from field theory, it remains to
discuss the relevance of this model, or the lack thereof,
to unrenormalizable field theory. We shall not enter into
the general, and presumably unanswerable, question of
the relation between problems of potential scattering
and 6eld theories; instead, we shall restrict ourselves to
a comparison of the present calculation with that of the
previous consideration on higher order leptonic weak
interactions. Even if we make the questionable identi-
fication of A with $ 1/2m, 2 the following differences still
come to mind immediately:

2 = lim g B " (A).
A—+oo m~0

(5 4)

7 The g used in Ref. 5 is the renormalized (. Since the scalar
particle with mass Q'"m is unstable against decay into vector
mesons, the value of g cannot be real. The fact that g is not real
seems to lead to numerous complications that remain to be studied.
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(1) Each of the infinite series considered is of the form where

(A")&&&Punction of (A' 1nA)7
Define

e= (lnr) —' (A4)

For Bp(A), p, =——,'; for the previous case, p=1. In
particular, (a) p, is negative here but is positive in the
previous case, and (b) p is an integer in the previous
case but is not so here.

(2) In the limit A —+op, Bp does not approach a finite
limit, while 6 does. '

It seems very dificult to assess the importance of the
difference (1).If we restrict ourselves to one power of r
in the potential, then it is not hard to construct some-
what more complicated examples of scattering by a
potential such that the difference (1a) is removed. Un-
fortunately, the removal of the difference (1b) seems to
necessitate the introduction of (lnr)' in the potential.
Whether this is worth doing is very questionable, since
the set of Feynman-Dyson diagrams taken into account
in the previous work' is a rather complicated one and
bears no conceivable relation to ladder diagrams or Born
series.

On the other hand, the difference (2) is almost
certainly of paramount importance. It should perhaps
be emphasized that, in the previous consideration, it is
rot a separate assumption that 6 approaches a finite
limit as $ ~ 0, i.e., G has to approach the limit given
there provided that F approaches a finite limit. And in
the series for F, there is altogether only one logarithmic
factor, which appears in the first term. Because of these
diGerences, this model of scattering by a potential fails
to throw any light on the problem of field theory. It is

tempting to speculate that perhaps logarithmic factors
may arise for very different reasons and accordingly
have different effects on infinite series.

Generalization of the present consideration to the
potential —gr ~ lnr is considered in Appendix E.
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APPENDIX A

In this Appendix we solve (2.1) approximately for
small g. With (3.3) and &p(x)=r 'P(r), (2.1) is equiva-
lent to

p (y)= p (y)+pe dy'p (y")e ~" "'~ »y'; (A3)

then g(y) satisfies d'pp/dy' —p=0 together with the
boundary condition pp(pp )=-0. Thus, g (y) = Ce "and

p (y)=-« "-le dy'q (y') e—~
&-&'~ lny'. (A6)

The constant C is given by

C= 1+-,'e dypp(y)e & lny,

ol

—g»(g')"'= g'

g'=v '=gln7.

(A10)

(A11)

Similar considerations may be applied to other problems
of scattering by a potential which di6ers from a strongly
singular repulsive potential by a slowly varying factor.

APPENDIX 8

In this Appendix, we derive (3.21) and (3.30) directly
from the f„of (2.6) and (2. /). Similarly to (3.4), let

pp„(x,A)=r 'P (x,A),

and A by
A= —r '(2C—1).

Finally, iteration of (A6) gives that

A = —g'/'e '@(1—-', e(ln2+y)
——;ePP~Py(ln2+&—1)P-37+O(eo)~, (A9)

where y is Euler's constant.
The physical content of this approximate procedure

is as follow's. Since lnr is a slowly varying function, we
approximate our potential —gr lnr by g'r, whose
scattering length is —(g')'i'. We determine g' by requir-
ing the two potentials to be equal at r= (g')'i'. Thus

q p(x,A)=1,d'q/dx' —g(lnx) op= 0, (A1)
and

where the boundary conditions are pp(0) = 1 and
p(pp) =0. The scattering length is A =dp(x)/dx~, =p.

Suppose a scale transformation is carried out on the
independent variable: x= vy. Then

(&2)

pp„+.i (x,A) =— dx' lnx' min (x,x') p„(x',A) (H3)

d' p/dy' gr'(lnr+lny) op= 0—.

We choose v- such that

(A2)
for e&~ 0. It also follows from (2.8) that

A„(A) =lim, . ox
—'q „(x,A)= (d/dx) pp. (x,A) ~.=o. (H4)

then
gv' lnr= 1. ;

d'q/dy' (1+e lny) op= 0, —

To g«Bp(A) and Bi(A.), it is sufficient to approximate
(2.9) by

(A) g"A.'" '(1nA) "La p+g (lnA) '7 (I13)
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Accordingly, we approximate ip„(x,A) by.-(*,A)-g-(-.*-(1-*)-[1+~.(1.*)-7
n—1

+p Ask+1+2m —2s—i(lnA)k+1(in+) n—i—1

and

g Q'"+'[ .+ (2N+1) '—)/(2m+1)!
n=p

dss ' sinhs cosh(Q —s), (820)

)& [p(k,e)+p(k, n) p(k, n) (1nx)-'
it follows from (818) that

In (85) and (86), aoi= i (I—1, I)=0. By (84),

P(N —1, n) = a„o and g(tt 1, &)—=&„i. (87)

The substitution of (86) into (83) gives, by (3.11),

Bi(A) coshQ —-', Bo(A) Q sinhQ

dss ' sinhs sinh(Q —s)

n„= (2e!) ',

p~, =p„—(4m+3)/(4m+2),

&(k m) = [(2n2k ,—1)!—) 'aq+io, ,

p(k, m+1) = p(k, e)—-', (2e—2k+1)—'

(88)

(89)
= sigA coshQ+Q ' dss ' sinhs cosh(Q —s), (821)

0

where Q is defined by (3.31).The substitution of (3.21)(810

into (821) gives (3.30).

&& (4n —4k+1), (811) APPENDIX C

~1(k,n) = ai,+i, i[(2is—2k —1)!) ',
n

P (2e—2k)!ai,i,o= —[(2++1)!)-',
k 0

and

(812) We develop here a relation between the scattering
length and the Jost function' at zero energy. At zero

(813) energy, the Jost function f(r) and the associated g(r)
for a potential V(r) may be deaned by the integral
equations 8

a„+i,i———[(2m+1)!) 'P„—(I+1)/(2is+1))
n—1—P (2n 2k) '(—P(k,n)[p(k, is) ,')+g—(k—,n)), (814)
k=p

and

f() d"(—'—)V(")f(")=1,

g(r) dr'(—r' r) V (r')g (r') =—r.

(C1)

(C2)

where (810)—(812) hold for k(e. Equation (3.21) Smce f(r) and g(r) satisfy the same second-order linear
follows immediately from (813). ordinary differential equation, they can be expressed in

Let terms of each other. For example, if f(r) NO for all r,

(2J—1) '
j=l

then it follows from (89) and (811) that

n = —e——01
n

(815)

(816)
Since the scattering length A is given by8

A = —lim g(r)/f(r),~p

(C3)

(C4)

p (k,e)= —(e—k——',)+-',a (81&) we get from (C3)

The substitution of (810) and (812) into (814) gives « I:f(r)7 '—1 . (CS)

P [(2!s—2k)!7 '[aigyl, i Qk+i o(!s—k ——',a. i,))
k=p

We remark parenthetically that (C.S) is a special case
of

= [(2m+1)!) '[e+-,'-o.„+(m+1)/(2is+1)). (818)

Since
A(k) = dr [f(—k r)] '—e ""' (C6)

Qsn& /(2~)!—
n=o

dss ' sinhs sinh(Q —s), (819)
where k' is the energy.

' A. Pais and T. T. Wu, Phys. Rev. 134, 81303 (1964).
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APPENDIX D

Here we evaluate (5.5) approximately. By (A3) and
(A4), we have

A =- —~i/'~ "/' dyL1+e lnyj

v=(X—2) ', (E5)

then (E4) can be converted into the integral equation

p(y) =2v"P'(v)$ iyi/2E'„(2vyx/2 —i)

Expansion in e gives
)& Lcosh(1+a Iny)'"y$ —' (D1)

2p6 ~y'(yy') "'I.(2vy("" ')

3=- —g"'e "' 1+a (/y Iny sech'y
0

(coshy —y sinhy)+O(c')

XK(2vy)"" ') p(y')y" —' Iny', (E6)

where I and E are the modified Bessel functions, and
y& and y& are, respectively, the smaller and the larger
one of y and y'. The erst terms of the right-hand side of
(A9) are generalized to

g
I/2~ —(/2

2(
dy lny sech'y — 0 ~'

(D2)

3= —(g/g) "v'"Ll' (1+v) 7
—'I' (1—v) {1—ev'L2 In v+ 2

—P(1+v) —g (1—v) j+O(e') }, (E7)

4 (s) = (d/ds) Inf'(s). (ES)

21—(1 21—)p(1+ ){-(' ) (D3)
&n the derivation of (E7), the following integral is used

where f is the logarithmic derivative of the gamma
This integral may be evaluated with the help of the function
known formula'

where |(s) is the Riernann zeta function. Differentiate
(D3) with respect to s and then set s= 0:

o'y lny sech'y== lnz —2 ln2 —y,

where use has been made of the facts {(0)= ——', and
t'(0) = —-', In(2m. ). The substitution of (D4) into (D2)
gives (5.6).

APPENDIX E

««»'~- «=2-'- t:~(1-.)S- L«-:—:.»
&& I'(k —

=.
' p+ v) I'(-',——,

'
p —v) (E9)

for 1—/)+2v) 0. &n fact, (E9) is a special case of the
Weber-Schafheitlin integral. For v=i~, (E7) reduces to
(A9) because of Gauss' theorem on p(s)."

(b) Analogous to (2.7)—(2.10), we define

4i(r, &)=g dr'r'ilnr' min(r, r')P„(r',A),

In this Appendix, we generalize the considerations of
this paper to the potential —gr ~ lnr, where X&3. The
generalization is straightforward in principle, but some-
what involved in the technical details. The same nota-
tion is used for arbitrary X as for the special case X=4.

(a) We repeat first the procedure of Appendix A. The
radial differential equation is

A„(A)=P„(~,A)

dr'r' ~+'(Inr') P„(r',A), (E11)

(E12)
d'iP/dr'+ gr "(lnr) P=—0

With x and (v defined as before, q (x) satisfies

(E1)

d'q/dx' gx" '(Inx) q =0. — — (E2)
(A) —Q g gnawn(x

—2)—1(InA)n —m (E13)

gr~—' lnv-= 1,

d"/dy -y"-'(1+ I.y).=o.
J/(x) —: &x'(x—x')x'"-' Inx'P(*') =*. (F14)

0then
(E4)

With J' (x) defined in the obvious manner, it is found
'Bateman Manuscript Project, IIigher Transcendental Func-

tions, edited by A. Erdelyi (McGraw-Hill Book Company, Inc. ,
New York, 1953), Vol. I, p. 32. ' See, for example, p. 19 of Ref. 9.

The boundary conditions are not changed. Again let The Jost functio~ p(x) satisfies
x=~y, but with v chosen to satisfy



SCAT I ERI N 6 8 Y SI N GULAR POTENTIAL —gr 41' r 8 1183

that for large x

F (x)—gnxn(k —2)+1(inx) nv2nLP (rt+ 1+v)rt ]7—I

XL1+O((lnx) ')7 (E15)

Since

dzs 'LI„,(z)7
—'=- —E„&(:)/I„&(z), (E20)

Thus, in the same sence as (3.16), we get immediately that

where

F(x)-r(1+v)x(-'-z) —"I (z) Bv(A) = 2v'"—'Ll'(v)7 —'(g in') "K„,(Q)/I„, (Q), (E21)

(F17) wheres= 2(gv'x" —' lnx)'t'
(E22)0= 2(gv'A' —' in')'t',

F'(x)-I'( ) (-', z)
—"+'I„,( ) .

Furthermore, (3.18) is replaced by
and that as A —+~,

F'(x) =dF (x)/dx= BF(x)/ctx

+(2 ) ~1+
)&F(1—v)C "(g InA)"+o(1), (E23)

(E19) where C„"is a,s before the binomial coefficient.
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Charged-Pion Photoproduction from Deuterium with Polarized Bremsstrahlung*
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Measurements have been made on the ratio of pion-production cross sections at right angles to and along
the photon electric-6eld vector. The positive and negative pions were Grst momentum-analyzed and counted
by means of a counter telescope. Data have been taken at 45, 90, and 135' in the c.m. system, and at proton
energies of 225, 330, and 450 MeV. A comparison of the data is made with the dispersion-relation calculation
of McKinley.

I. INTRODUCTION

HE photoproduction of positive and negative pions
from deuterium has been extensively studied in

the energy region from threshold to 500 MeV. ' In all
previous experiments, either the total cross sections or
the angular distributions were observed. The present
experiment concerns the asymmetry of the pions photo-
produced by polarized gamma rays. The positive pion
production from polarized gamma rays has been
studied in this laboratory' and the present experiment
is an extension to the study of negative pion produc-
tion from deuterium. Measurements were made at
photon energies of 225, 330, and 450 MeV.

The production asymmetry A is defined as (o J, 0 [])/
(o,+o.»), where &rs and o ~ ~ refer to the meson-production
cross section perpendicular and parallel to the plane of
polarization of the photon. The measurement of 3 for
positive pion production from hydrogen has shown some
disagreement with the dispersion-relation calculations,

*This work was supported in part by the Once of Naval
Research, the U. S. Atomic Energy Commission, and the Air
Force OfEce of Scientihc Research.

~ D. H. VVhite, R. M. Schectman, and B. M. Chasan, Phys.
Rev. 120, 614 (1960), and references therein.' R. E. Taylor and R. F. Mozley, Phys. Rev. 117, 835 (1960);
R. C. Smith and R. F. Mozley, ibid. 130, 2429 (1963).

and no reasonable set of pion-nucleon phase shifts can
make those calculations compatible with the observed
angular behaviors of the asymmetry. Moreover, the
introduction of yxp coupling does not improve the
agreement appreciably. The present experiment shows
the same discrepancy between the theory and the
measured values. The measurements were made at
energies su%ciently remote from the pion-production
threshold that the 6nal-state interaction can reasonably
be neglected. For photon energies between 200 and 500
MeV, the analysis of meson production from deuterium
in terms of free-nucleon cross sections has been demon-
strated to be satisfactory.

II. EXPERIMENTAL METHOD

A polarized bremsstrahlung beam, developed by
Taylor and Mozley, ' was produced by placing a thin
(0.003-in.) aluminum foil at the end. of the Stanford
Mark III linear accelerator. A beam of electrons
striking the foil produced bremsstrahlung polarized
perpendicular to the plane of emission. The polariza-
tion is a function of the angle which the photon makes
with the initial direction of the electron, reaching a
maximum at an angle of rnc'/Bv, where Fv is the initial
electron energy. We have calculated the polarization,


