
P H YSI CAL REVI EW VOLUM E 136, NUM 8ER 4 B 23 NOVEM BER j. 964
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We have recalculated the structure-dependent part of the decay 7i- —+ e+v+7, using the conserved vector
current hypothesis, in order to derive information on the axial-vector-current form factor. Earlier calcula-
tions of Bludman and Young have been extended by including, as a phenomenological parameter, the axial-
vector contribution relative to polar-vector, and by calculating integrals of the decay rate over various
portions of phase space likely to be measured. The experiments can be analyzed in terms of the xp coupling
to the axial-vector current. We conclude that the recent experiments of Depommier et ul. establish the
presence of such axial-vector structure contributing to the decay, but that one cannot assign this component
to a weak-interacting vector meson rather than to strong-interaction structure.

I. INTRODUCTION

'HE radiative pion decay 7r -+ l +v+y (where l
is e or tt) has been studied as a source of in-

formation on weak-interaction structure by a number
of authors. ' ' The earlier work by one of us emphasized
the possibility of distinguishing structure-dependent
(SD) radiation from uninteresting inner bremsstrah-
lung, and of testing the conserved-vector-current
hypothesis. With these aims in mind, the simplest
assumptions were made about the axial-vector-current
contribution, based upon the idea that nucleons made
the principal contribution to this current. Since then,
meson states of lower mass, which are more important,
have been discovered. The conserved-vector-current
(CVC) theory has been established, and experiments
have been performed' demonstrating the presence of an
axial-vector contribution.

The present work is therefore devoted to an analysis
of the axial-vector-current contribution and of the
information on it that is obtainable in radiative decay
experiments. Besides such experiments, the axial-
vector current can also be studied through neutrino
experiments.

II. AXIAL-VECTOR-CURRENT CONTRIBUTION
TO RADIATIVE DECAY

The radiative decay amplitude can be written
as a sum of three terms which are separately gauge-
invariant:
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where IB is the inner bremmstrahlung term, SDA is the
structurally-dependent axial-vector term, and SDV

is the structurally-dependent vector term:
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[Our metric is one in which the fourth component of a
four-vector is imaginary. P, k, p, P" and tt, 0, m, 0 are
the four-momenta and masses of z, y, l, v, respectively.
e„ is the photon polarization vector. F„„=(2ko) '"
X(e„*k, e„*k„—), F„,= ,'e„„),pFzr, l„=-(mtm„/EtE„)'t'N(l)
X7„(1+go)e(v), a„.= ',i(y„y„y„y„). O-ur uni—ts are
such that e'/4sr=n=1/137, GM '=1.02X10 '.j

In the above expression, f is the amplitude for
nonradiative n decay, rela, ted to the sr —+ l+v partial-
decay rate by

II't.= (f-'/4 )t m'i:1 —(mlt )'j' (2 3)

In (2.3), we exclude the contribution of the one-pion
intermediate state because this is included in IB.

The polar- and axial-vector-current matrix elements

(7i V„(0) i7r)=ia(2Po) '"F„„P„, (2.6)

(yiA„(0) iver)=ib(2Po)
—'"F„,P„, (2.7)

define form factors e, b, which are functions of the
momentum transfer s= —(P—k)', and which are real,
assuming time reversibility.

The CVC hypothesis implies'4 '

ia(0) i
=4(2srW e)'~'e 'tt 't' (2.8)
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where W' o is the rate of the decay pro ~ 7+y. Neglect-
ing any momentum dependence of a(s), SDV and I&
have now been determined.

In the next section we will sketch what enters into a
calculation of b(s). First, however, we extend the results
of Ref. 1 by computing various quantities in terms of a
phenomenological b (s) .
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In place of F„„and its dual P„„,we introduce f„„+=7„„P—„„and F„„=F„„+P„„,which are amplitudes for
positive and negative helicity photons, respectively. In terms of these noninterfering amplitudes and the param-
eter y(s)=—b(s)/u(s), Eq. (2.1) reads

sGu 1+y) (1—y)
(ply, out[m )= [S„„—i [S„„+ P„/„

2Pp'" 2 I 2

ef~m (rrlt5l„) psPp z(rs„
+ i i (Z„,++a„„-)u(l) + (1+vs)e(~) (2 9)

2(2PO)'" PA. -(p &)(P &) 4p. &

From Eqs. (2.8) and (2.9), the differential decay rate with respect to photon energy k and electron energy Z is
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where x=2k/la, and y= 2P/lj, have th—e range
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Using W» ——(1/2.55) &&10' sec ' ' and W, o= 10"sec ', '
we obtain

AsD ~9 sec

Arn —6300(ns/p)'A sQ,

A rNT 160(m/p)'A so.
(2.13)

For the electron mode, the interaction (INT) terms are
small compared with SD, except in the region where
the denominator is small (small x and y, or angle
between k and p small); in this region, IB will also
become large, and will dominate over both INT and SD.
Thus, for the electron mode, the INT term may be

7 W. H. Barkas and A. H. Rosenfeld, University of California
Radiation Laboratory Report UCRL-8030 Rev. (unpublished).

G. von Dardel, C. Dekkers, R. Mermod, J.D. Van Putten, M.
Vivargent, G. Weber, and K. Winter, Phys. Letters 4, 51 (1963).

neglected. In what follows, only SD terms will be
considered, and the approximation (m/p)s=0 will be
Qlade.

Equation (2.10) then becomes symmetric between
electron and neutrino energies y and s—=2E"/p = 2 —x —y:

d WSD/dxdy= ~ snL(1+y)'(1 —s)'(1—x)

+ (1—y)s(1 —y)'(1 —x)j. (2.14)

The terms proportional to (1jy)' and (1—y)s in
O'8' are due to photons of left and right helicity,
respectively. These contributions vanish respectively
for neutrinos and for electrons of maximum energy.
This is a consequence of the left helicity of the electron
and the right helicity of the neutrino in x decay. If
one of the leptons is of maximum energy, then both
the other lepton and the photon must be emitted in the
direction opposite to it. Angular-momentum conser-
vation then requires that the photon spin be opposite
to the total lepton spin. The photon helicity must
always be the same in sign as that of the lepton op-
positely emitted. Thus, only a left-helicity photon can
be emitted when the electro' is moving antiparallel to
the photon direction; for the emission of a right-
helicity photon to occur, the memtr&so must be Inoving
antiparallel to the photon. As a result of this, the
(1—y)s term cannot contribute substantially except
in the region of small y, where IB dominates.

In any experiment, the partial decay rate O'H/'»

integrated over certain energy or angular intervals is
measured. In obtaining the following formulas, the
dependence of p on s, or the photon energy k, is neg-
lected. From Eq. (2.14), the SD decay rate for all
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events such that x&I, y& I' is

1

dx dy((pWsD/dxdy) =A sD{(1—y)'—(1—X)'(1—V)'

+ (1+y)'—'(1—X)'(1—F)L1—2X+3X'+2(2X—1)7+2F']} (2.15)
for X+Y~&1.

The differential decay rate with respect to electron energy and the angle between electron and photon momenta
d'W/d&dQ has been previously given. s The differential decay rate per unit solid angle for those events at a given,

angle for which x~&X is

/d'Wsn) A sn (1+y)sXs
L(35/6)+-')t( —10+35X)+)~'(15+20X—(7/4) X')

s k dQ ) m. 2Xs(1—)tX)s

+sXs(—(32/3) —30X+8X'—(7/6) X')+-'X4 (-'+4X—3X'+-"X'—-'X')]
(1+v)' X' 2( )X y-

+ (1—X) (—35+45),—7)t'+)ts) ——
~

ln(1 —)tX)+
e,4 -(1—)tX)s Ask 1—) Xl

(1—7)'(1-))'X'
+ t —(5/3)+ s)t (—(16/3) —5X)—-')t'( ——',—2X+-'X')]

2(1—)tx)e,s

(1—v)' - X' 2 )X ~-
+ (1—)t)'(—10+8)t—V) ——In (1—)tX)+ — ~, (2.16)

8)t' (1—)tX)' )I.' 1—XX)

where X= sin'(0/2), 0= angle between electron and photon momenta.
Integrated over all electron energies, we have

dWsn/dQ= dx(d'Wsn/dxdQ) = (Asn/4s){ (1+y)'t:,',X '(420—750K+380)I.'—47Xs)

+X '(1—X) (—X'+15K'—45)t+35) In(1 —)t)]+(1—y)'(1.—X)L-', )t '(30—39)t+10X')

+X '(1—X) (10—8)t+)t') ln(1 —)t)]) . (2.17)

The (1—y)' and (1+y)' terms vanish at X=1 (0=180') and at X=O (8=0'), respectively, because of angular
momentum conservation, as previously discussed.

The total decay rate for all events with ) )A. (0) O~ where 2A.= 1—cosO') is

1

dQ(dWsn/dQ) =2s- 2d)t(dWsn/dQ) = (A so/2) {(1+7)'I:s'A '(1—A) (84—114A+34A.'—A')

+2A '(1—A)'(7 —6A.+A') ln(1 —A)]+ (1—y)'t (1—A)'A. s(4—4A+ sA')

+2A '(1—A)'(2 —A) ln(1 —A)]) . (2.18)

. III. CONCLUSION

A. Phenomenologica1 Analysis

Assuming the validity of the conserved vector-current hypothesis )Eq. (2.8)], an experiment on structure-de-
pendent s-~ e+v+y is essentially a measurement of the parameter y, i.e., the amount of axial structure. Since
Wsn depends on (1+y)' and (1—y)', a single measurement of the SD radiation leads to an equation quadratic
in y which has two solutions. One might hope to determine a single 7 by looking at detailed energy spectra and
angular distributions, or by measuring the circular polarization of the photon. (The various equations of the
preceding section may be useful in this respect. ) However, this is likely to be dificult since, as previously noted,
the (1—y)' contribution is large only in the region where IB is large and dominating the entire SD. This means
that one is measuring mainly the magnitude of (1+y)', which will yield two possible y's of different absolute
values.

Equation (10) in Ref. 1. All the formulas in Ref. 1 from Eq. (9) on are in error and should be corrected by multiplication by a
factor 2 (i.e., replace Gr' there by 2G&'). If W 0=0.5)&10"sec ' (d'Wsn/l&ZQ) fgQo/W» ——7.0X10 s (1+y)'/4 sr '. Figure 2 of Ref. 1
is substantially correct with this value of S' 0.
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For the energy interval studied by Depommier et at. ,s for example, Eq. (2.15) gives
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d Wan=[5. 4X10 (1+y) +04X10 (1—7) )W if W~o=0.5X10 s sec (3 1)

d WHD= [10.9X10 (1+y)'+0.8X 10 '(1—y)'jW„„ if W~o= 1X10"sec (3 2)

Depommier et al. quote

y=1.0 or —2.T if H/~o=0. g)&10' sec '

y=0.4 or —2.1 if H/ o=1&10"sec-' (33)

has 6= —1 and T=1 and spin-parity 0, 1+, 2 .
Suppose it is 1+, that its width (I'~ ——150 MeV) can be
neglected, and that its pole dominates the dispersipn
relation for (OIA„(0) Iny). Then if

As mentioned above, a single experiment is unable
to choose between the two possible solutions for y.
The fact, emphasized by Depommier et al. , that one of
the y values (+0.4) obtained is compatible with a
weakly interacting vector boson of mass =1400 MeV
and no strong axial structure, may be suggestive, but
must be regarded with great caution. Another y value
which fits the same experiment (—2.1) is compatible
with no strong axial structure only if the boson mass is
=600 MeV. '0 More importantly, the abundance of
meson resonances suggests the possibility of important
strong interaction contributions to (y I

A „(0)I ~). We
will now estimate how such mesons may contribute.

B. Strong Interaction Contributions to SDA

Any analysis of the matrix element (2.2) depends
upon a knowledge of states n c.ontributing to the weak
axial-vector current and the electromagnetic coupling
of these states. The following analysis is in the spirit
of current pole-dominance weak-interaction calcu-
lations and is meant to be illustrative only.

We assume, as is reasonable for a vertex function, an
unsubtracted dispersion relation for (GAIA„(0) In.) or
(0 I

A „(0)I

s.p). Then the absorptive part is given by

Al s(OIA„IO) I~~)= —(2~)'sg. (OIA. (o) I~)
XII T I~q)3'(P+k —Q„), (3.4)

where T is the electromagnetic transition operator.
This weight function receives contributions from
intermediate states e of 1=1+ and T=1, G= —1
(assuming normal G-conjugation behavior for the axial-
current operator).

The recently discovered" A meson of mass Mg = 1090
MeV decays into x+p, and not into E+E;, so that it

"The values of p quoted in Ref. 6 if W~&=0.5)&10' sec
(1.0, —2.'/) yield, with no strong axial structure, boson masses
of 1000 and 610 MeV, respectively.

"G.Goldhaber, J. L. Brown, S. Goldhaber, J. A. Kadyk, B. C.
Shen, and G. H. Trilling, Phys. Rev. Letters 12, 336 (1964). The
spin-parity assignment 0 is apparently preferred over 1+ accord-
ing to the Dalitz plot analysis by S. U. Chung, O. I. Dahl, L. M.
Hardy, R. L Hess et oL, Phys. Rev. Letters 12, 621 (1964).

(A I
T

I 7ry) =ie(4PsQs) '"Mg 'Ag„~F„„e„'*Q„, (3.5)

(OIA„(0) IA)= (2Qp) "'M~'A. gi„e„' (3 6)

(where Q„and e„' are the momenta and polarization of
the A meson, and the A's are appropriate coupling
constants), we obtain

b(s) =e&~iA~„„M~/(M~' s) =e&si—„&~~,M~ '. (3.2)

The coupling constant A~ ~ can in turn be related
to the coupling of the A to xp.

(A I T[sp)=t, (8QpPpkp") '"Mg '

X{A .,I
(k" Q)(e'* ")-(k" "*)(Q e")1

+Xg,[k'"(e'* e")j) . (3.8)

Here k„" and e„"are the momentum and polarization
of the p. The form of (8) assumes conservation of the p
current (B„j„&=0);it corresponds to:

(A I j. I )-~.-,[(k" Q) .'*- (k" '*)Q j
+Xz „[k'"e„'*—(k" e'*)k„), (3.8a)

with e" k"=0. Form factors A~ ~, X~ ~ can be defined
for (A I

j„' Im.) analogously to (3.8a); these will be
functions of t= —ks= —(Q ——q)'; hz ~(1=0) is the Az r
of Eq. (3.5); at 1=0, X does not contribute. If we
further assume

(pI j„'"IO)=(2ko") 'Isem, '(2y, ) ' „"*, (3.9)

with y„'/4x =—',," and use unsubtracted dispersion
relations for A~ ~, X~ ~, we obtain

A.g ~(0)=Ay p/27„ (3.10)

fi= eA~„IA~i„/2y pM~ . (3.11)

This analysis is intended to suggest that the strongly
interacting particle contribution to the axial-vector-
current structure may be significant. The experimental
data establishes the existence of some kind of axial-
vector structure comparable in order of magnitude to
the polar-vector structure.

"M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters g, 261 (1962).


