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Application of NjD and Determinantal Methods to Yukawa Potential Scattering*

MAx LUMi:NG

Urtieersity of California, Sal Diego, La Jolla, California

(Received 26 June 1964)

The S , P ,-and D-wave -amplitudes for the Yukawa potential are found by the N/D method. The solution
with the 6rst and second Born cuts gives a reasonable approximation to the exact amplitude in the low-
energy region for potential strengths up to values strong enough to give an S-wave bound state. The solution
yields a fair prediction of the S-wave binding energy. The first- and second-order determinantal solutions are
also obtained. Because of the distortion of the left-hand cut, the determinantal method gives less reliable re-
sults than the N/D method.

I. INTRODUCTION

S INCE it was 6rst introduced by Chew and Mandel-
stam, ' the X/D method has been used extensively

to calculate relativistic partial-wave amplitudes for
processes involving strong interactions. In applying the
method, it is necessary to start with some known infor-
mation about the discontinuities of the amplitude across
the left-hand cuts, i.e., across the branch cuts located
below the threshold. In principle, if the discontinuities
across all the left-hand cuts are known, one could find
the exact amplitude by the 17/D method. However, in
practice, one is only able to specify the branch cuts close
to the threshold which arise from the exchange of one or
two particles, while the discontinuities of the other cuts
arising from many-particle exchanges are dificult to
obtain. As an illustration, consider nucleon-nucleon
scattering. The exchange of a single pion of mass p
gives rise to a branch point in the partial-wave ampli-
tude at k'= —ts'/4, where k is the momentum in the
center-of-mass system. The exchange of two, three,
etc., pions gives rise to branch points at 4'= —p, ',
—9ts'/4, etc., which lie progressively farther away from
the threshold. The assumption is generally made that
the behavior of the amplitude in the physical region
k'&0 is influenced largely by the characteristics of the
"nearby" cuts, while the eGects of the more "distant"
cuts involving exchange of many particles may be neg-
lected. This assumption is based on the intuitive
reasoning that an analytic function is determined
through the Cauchy integral formula by a sort of
Coulomb effect, with the branch cuts being analogous
to line charges; so nearby cuts have more inhuence than
the distant cuts. '

One of the purposes of this paper is to examine this
assumption by applying the 1V/D method to a case of
potential scattering whose amplitude has a similar
analytic structure, and see to what extent is the ap-
proximation valid. In potential scattering, the partial-
wave amplitude can be found exactly by solving the
Schrodinger equation; thus, the 1V/D solution with the

*Work partially supported by the U. S. Atomic Energy Com-
mission.

s G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
'G. F. Chew, S Matrex Theory of Strong Inter-actions (W. A.

Benjamin, Inc., New York, 1961), p. 6.

approximation of neglecting "faraway" cuts may be
compared with the exact solution. It has been shovrn by
several authors~' that the scattering amplitude for the
Yukawa potential satisfies a simple Mandelstam repre-
sentation similar to the representation for relativistic
amplitudes; that is, the scattering amplitude f(ks, t)
is an analytic function of k and t except for singulari-
ties along the real axes of these variables. t= —2k'
X (1—cosg) is the negative momentum transfer squared.
For real t'e', f(k', t) has a pole at l ts' c=oming from the
first Born term, p being the inverse Yukawa potential
range. In addition, it has branch points at t=(stts)',
e= 2, 3, . , and each of these comes from the eth Born
term. These singularities give rise to branch points in the
partial wave amplitude at lP= —ts'/4 —ts' —9p, '/4
etc., where the branch point at ks = —et(rtts)' comes from
the eth Born term. We note that the analytic structure
of the partial-wave amplitude is similar to the relativis-
tic case; there is a sequence of branch cuts in the region
k'(0 and a branch cut due to unitarity in the region
k'&0. In analogy to the relativistic problem, we keep
only the nearby left-hand cuts and use the E/D
analysis to 6nd an approximation to the amplitude.
First, we take only the nearest branch cut from the
first Born approximation, which is analogous to con-
sidering only single-particle exchange in the relativistic
case. Next, we consider both the first and second Born
cuts, which is analogous to considering single- and two-
particle exchanges.

We note that a similar work using potential scattering
to check the E/D approximation was done by Bjorken
and Goldberg'; however, they studied only the case of
S-wave scattering by an exponential potential. In that
case, the amplitude has a sequence of poles along the
negative k' axis instead of a sequence of branch points
as we have in the Yukawa potential and relativistic
problems.

Another purpose of this paper is to investigate the
determinantal method by applying it to the Yukawa po-
tential. This method of approximation has frequently

3 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and
S. B.Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).

e A. Klein, J. Math. Phys. 1, 41 (1960); J. Math. Phys. 1, 274
(1960).' J. Bowcock and A. Martin, Nuovo Cimento 14,, 516 (1959).

e J.D. Bjorken and A. Goldberg, Nuovo Cimento16, 539 (1960).
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been used in relativistic calculations in place of solving
the integral equation required by the exact 1V/D
method. First, we consider only the first Born cut, in
which case we are able to 6nd an explicit determinantal
solution for arbitrary angular momentum. Next, we
construct the higher order determinantal solution by
using information from both the 6rst and second Born
cuts. The results are compared to the E/D and exact
solutions.

A well-known difficulty with the E/D method when
applied to partial waves with E&0 is the problem of im-

posing the threshold condition. The basic reason is that
the vanishing of the amplitude at the threshold for /) 0
is a result of cancelations coming from effects due to all
the left-hand cuts. If we put into the X/D formalism
all the left-hand cuts, we automatically get a solution
satisfying the threshold behavior. But as long as we are
forced to neglect faraway cuts, we must impose the
threshold condition by some artifice. A common method
is to divide the amplitude by the threshold factor k"
and do X/D on the new amplitude. The result is that
the dispersion integrals for the new amplitude now di-
verges and a cutoff is required. This amounts to ap-
proximating the right-hand cut by a cut of 6nite length.
Here, we apply 'the same type of cutoff procedure to
treat the higher partial-wave amplitudes for the Yukawa
potential and compare the results with the exact solu-
tion. The use of cutoffs in dispersion integrals is a com-
mon practice in relativistic X/D calculations. It is re-
quired not only because of the threshold problem but
also because of the spin of exchanged particles. It
necessarily introduces an artificial branch point at the
cutoff energy. The assumption is tacitly made that if
the cutoff is su%ciently far away, it would not inhuence
the low-energy behavior of the amplitude. In this paper,
we study this assumption by comparing the cutoG solu-
tion with the exact solution.

Another object of this work is to 6nd a suitable X/D
approximation that will work well for different / values,
primarily the 6rst few low values of /, which can be ex-
tended to noninteger values of /, and can be used to
trace Regge trajectories.

In Sec. II, we review the known analytic properties
of the partial-wave amplitude for a Yukawa potential
and derive the X/D equations. The case of including
only the erst Born cut is discussed. In Sec. III, we study
the addition of the second Born cut to the X/D method.
In Sec. IV, we derive an exact solution to the 6rst-order
determinantal method for the Yukawa potential for
arbitrary I. We also work out the second-order deter-
minantal solution which uses information from the
erst and second Born terms. In Sec. V, we give the re-
sults of our analysis and the conclusions of this work.

v -plane

1st Born br. pt.

3rd Born br. pf. 2nd Born br. pt.

9 2i4 2 lj2/4
]I

bound state pole

—unitarity cot

FIG. 1.Nearby singularities of the Vukawa
partial-wave amplitude.

where u(r)/r is the radial wave function and u(r) satis-
6.es the boundary condition

u(r) r'+'. r -+ 0 (2.3)

k is the momentum, and we denote k' by the symbol v.
The partial-wave amplitude is de6ned as

e"&&"& sinai(v)
(2.4)

(v' ') cotbi(v) iv'~'—

which is related to the scattering amplitude by

f(v, cos8) = Z(21+1)fi(v)Pi(cos8) . (2.5)
l

The exact values for the phase shifts 8i(v) can be ob-
tained in the usual manner by solving Eq. (2.2) numeri-
cally, subject to the boundary condition (2.3).

It has been proved by several authors' ' that the
analytic continuation of the function fi(v) into the
complex v plane has the following properties:

(1) It is an analytic function of v in the cut plane
shown on Fig. 1.

(2) fi(v) is real when v is real and —u'/4(v(0. Or
equivalently, f&(v) satisfies Schwartz s reRection princi-
ple across the real axis

(2.6)

so the discontinuity across the cuts is given by

f, (v+ie) fi(v ie)—= 2s I—m fi(v+ie) . (2.7)

where we have chosen units such that A=2M=1, M
being the reduced mass of the scattering system. The
radial Schrodinger equation with this potential has the
form

d'u(r)
+Lk' —l(l+1)/r'+g'e "'/r$u(r) =0, (2.2)

dr

II. N/D EQUATIONS

We consider the attractive Yukawa potential

V(r) = g'e &"/r— (2.1)

(3) fi(v) has branch points at v= —i4y', —p', —9y'/4,
, —~(up)', . If we denote the Born series for the

partial-wave amplitude by
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Imfg(v+ie)
—'= —v'" v& 0. (2.13)

where bg&"&(v) is the zzth Born term of O(g'"), then the
discontinuities across the left-hand branch cuts are
given by

Im fg(v+ze) = Imbg&l&(v+ze), —gg2(v( —-'gg2

= Imbg &'&(v+ie)+Imbg&2&(v+ze)

9~2/4(v ( ~2

= Imbg&'&(v+ie) yImbg ' (v+ie)
+Imbg&2&(v+ie), —4gg2( v( —9gg2/4 (2.9)

and so forth. (Refer to Fig. 1.)
(4) For values of g', gg, and l such that a bound state

exists, fg(v) has a pole on the first Riemann sheet (physi-
cal sheet).

The above analytic properties form the basis of our
analysis. In addition, we also know that fg(v) must
satisfy the unitarity condition. Unitarity requires
simply that the phase shift be real in the physical
region, which we define as v+ie, v)0. For the phase
shift to be real, fg(v) must have an imaginary part which
is given by

Imfg(v+ie) =vlgz[ fg(v+ie) (2 v&0. (2.10)

It follows from (2.7) that there is a branch cut in the
region v&0, the so-called unitarity cut. The purpose of
the X/D analysis is to evaluate this cut, given, informa-
tion about the left-hand cuts.

Let
fg(v) —=&g(v)/Dg(v), (2 11)

where Zg(v) contains only left-hand cuts and is analytic
everywhere else; Dg(v) contains only the unitarity cut
and is analytic everywhere else. It can be proved that
fg(v) can always be written in this way. From the
identity

Imfg(v) '= —Imfg(v)/I fg(v) I
',

and (2.10), we have

We will call this the "potential function, "since it is the
input to the X/D equation which is analogous to the
fact that the ordinary potential is the input to the
Schrodinger equation. The function Bg(v)DI(v) con-
tains the correct discontinuities required by the iV
function along the left-hand cuts, but it also contains a
right-hand cut coming from Dg(v) which we must re-
move; therefore,

1 " Bg(v') ImDg(v')
Eg(v) = Bg(v)DI(v) d—v'—- (2.17)

In this equation, we have set Eg(~)=0, which is re-
quired by the fact that fg(~)=0 as seen from Eq.
(2.4). Substituting (2.14) and (2.15) into the above
equation, we have the following integral equation for
the Ã function:

1 " Bg(v') —Bg(v)
Xg(v) =Bg(v)+— dv' (v') cVg(v') . (2.18)

p V V

Imfg(v+ie) =Imbg~' (v) I (—Igg . (2.19)

This means that between ——
p,
' and —

p,
' the dis-

continuity of fg(v) is exact, while for v( —gg2, the dis-

continuity is only approximate. The 6rst Born approxi-
mation for the scattering amplitude is

If we were given the exact Bg(v) describing completely
all the left-hand cuts of the amplitude, then the X
function we obtain from solving this integral equation,
when substituted into (2.15) and (2.11), would give us
the exact amplitude.

As in the relativistic case, it is not possible to specify
all the left-hand cuts. As a 6rst approximation, we con-
sider the whole left-hand cut to be the same as the first
Born cut; that is, instead of (2.9), we assume

Therefore,

ImD, („+z,) (v)'g'Pg(v) I ~& 0
or

1 " v"g2EI(v')
Dg(v) = 1—— dv'

7l p

(2.14)

g2
f"&(v, cose) =

gg2+ 2v(1 —cos8)

Its partial-wave projection is

(2.20)

where we have normalized the D function such that
Dg(~)=1. The D function is real for negative real
values of v. If it vanishes, the amplitude has a pole at
that energy, which corresponds to a bound state.

Let us de6ne the following function which is analytic
everywhere except for cuts along the negative real
axis, and whose discontinuities across these cuts are
equal to that of the amplitude.

1 —v "4 Imfg(v')
Bg(v) =— dv' . (2.16)

7r V V

bg"'(v) =—' d(cosg) f&I&(v, cost&)Pg(cose)

=—Qg 1+—
I

2v 2vl

(2.21)

where Qg(s) is the Legendre function of the second kind.
For integer i, Qg(s) is analytic everywhere in s except for
a cut between s= &1;hence bg &I&(v) is an analytic func-
tion of v with a cut from v= —

~p,
' to —~. In accordance

with assumption (2.19), we let

7 Reference 2, p. 48. B (v) =bg"'(v) (2.22)
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does not vanish faster than O(v ' '~') as v —&~. Vsually
1V&(v) contains terms of order 1/v multiplied by factors
of (lnv), as one may see from Eq. (2.34). We define the

1 " bi"'(v') —bi"'(v) new potential function containing the left-hand cuts of
+— dv' (v')'"1V&(v') . (2.23) f,(v) by

7l p

Equation (2.18) becomes

1Vi(v) = bi~'&(v)

1 -v'" Imfi(v')
Bi(v) =— dv'— (2.33)For a short-range potential, due to the centrifugal

potential eGects, the amplitude must satisfy the thresh-
old behavior

V P

Following a similar derivation as before, one finds the
integral equation for 1Vi(v)

Since D&(v) —+ constant as v —+ 0, this requires that the
X function satisfies the threshold behavior

17i(v) ~ v', v~ 0.
From the relation'

(2.25) 1 " Bi(v') —Bi(v)
+— dv' v"+'"tVi(v') . (2.34)

/
7? Q V P

&ti' (m)'"F(l+1) v )'+'
i 1+—=
( !

2v F(l+-,') 2v+p'3

2v
XF l/2+1, l/2+2', 3+2; !, (2 26)

2v+ p'i

we have

g'm'" F(l+ 1)
bi(i&(v) ~ v', as v —+ 0. (2.21)

2F(l+ ',)-
Referring to (2.23), we see that the inhomogeneous
term and the second part of the integral expression
vanishes like 0(v') at v=O, but the first part of the
integral expression does not; namely,

If we considered only the first Born cut, we have

B&( ) =b "'( )/"= (g'/2"+')ei(1+& '/2 ) (2 33)

The threshold condition now requires that as v —+0,
fi(v) ~ constant, and 1Vi(v) —+ constant. The solution
of (2.34) satisfies this condition. Equation (2.34) with
the input (2.35) may be solved numerically by the
method of matrix inversion. Knowing the g function in
the physical region, the D function is calculated by
(2.32). For energies above threshold, the principal
value of the integral is related to the phase shift. To
find the binding energy, one searches for the zero of the
D function for negative values of v.

III. ADDITION OF SECOND BORN CUT

An improvement of the 1V/D approximation can be
made by including the next branch cut, which starts at
v= —p, ' and runs to v= —~. This cut comes from the
second Born term. By including both the first and
second Born cuts, we have

dv'v' '"bii'&(v')1Vi(v') = constantWO. (2.28)

This is because bii'&(v) is positive in the region of inte-
gration and 1Vi(v) is a monotonic function. Therefore,
1Vi(v) and hence f&(v) does not satisfy the threshold be-
havior for /~& 1.

To remedy this, we define a new amplitude

fi(v) = fi(v)/"=tVi(v)/Di(v)

Im fi(v+ie) = Imbi ' (v+ze) —p'(v( —~p'
= Imbii'&(v+ie)+Imbii'&(v+ie)

v( —p' (3.1)

The unitarity condition (2.13) now becomes

ImLf1(v)] '= —v'+'" v&0.
Or

v& 0, (2.31)ImDi(v) = —v'+'"1Vi(v)

(229) Therefore, the discontinuity of fi(v) between —9p'/4
and —~p' is exact, while the discontinuity for v( —9p'/4
is approximate.

The second-order term in the Born series for the
scattering amplitude is'

vc v&i+1/21V (vi)
Di(v)=1 —— dv' v~)0, (2.32)

7l p P P

where we have introduced a cutoff at v. to keep the
integral finite. This is required by the fact that 1Vi(v)

g4
f"&(v, cose) =

2pi/2 sin&& 0+1/2

&iv'" sin —,'8 i 3 '"+2v sin —'
t&

tan —' +—ln, (3.2)
/ —2p singing

' Bateman Manuscript Project, Higher Transcendental Fnnc- P. M. Morse and H. Feshbach, Methods of Theoretica/ I'hysics
tioms (McGraw-Hill Book Company, Inc. , New York, 1953), (Mcoraw-Hill Book Company, inc. , New York, 1953), Vol. 2,
Vol. 1, p. 122. p. 1082.
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where
A =/44+4r (/4'+v sn1'-', 0) . (3.3)

The partial-wave p jro'ection is

bl (2)(p)—
4v1/2

P,(cos0)
d(cos8)

sin~~e A

p,v'" sin-, 0 ipv
'

2l0
' A'/2+2P sin23|&+- ln

2 3112 2'""'0
(3 4)

art of (3.4) can be integratedor /= 0, the imaginary part o

Imb ('& v = (g'/4v'")
I Qp(1+/42/2P))', v~Imbp(2) v = g

d b (31) we take theI the approximation indicate y
poten iat tial function for fl(v)

bl"'(v) bl"'(V)
Bl(v) = +

vl v

81(v) = b, ('&(v) Tl(v)

vl v

g'I:Ql(1+/'/ ))
4v""v"(v' —v)7F p

btracted off the unitarity cut in the
(3.9) i o ll bosecond Born erm.

equa ition one obtains

From the unitarlty relatiFrom e u
' ' 'on 2.10)

—pl/2lb (l)(p)+b (2) p . . . p

g'LQ1(1+/ '/2P'))'

v i3/2p il(PI v)p

(3.13)

the rig — a
'

ht-h nd side and equ gatin termsUpon expanding g
of the same order, wr we have

v&0, (3.7a)Imbl('&(v) =0,

(3 '7bImb (" V)=v'/2I bl(')(v))2, v&0,Imbl" v =v

v&0.

1 " v""/b 1
("(v')/'

dv
v" v.

'—vyc

(3.15)

fl(v) l (

e ex ress theanal tic property, we p
1 o th. 1ft- d

n
as a Cauchy integra ovsecond term as a

right- an
'

ht-h d cut as follows:

bt cting oG from bl(')(v)/v'This is equivale nt to subtrac ing
B unitarity cut fromof the second orn unonly a portion o

ut from zero to in-v rather than the entire cu
ni 3.12); that is,finity as indicated in

bl"'(V) bl"'(v)
81(v) = +

'"( ) 1 v"4 Imbl("(v')b)(2) (v

fl( I
)7l op

v'

forced to introduce aIn working with v, we are orc
t' l waves with /&0.

r second Born approximation a-
b h M

n
e information a ouy

is sma, y8
en as an ap roximation oyan sod so forth. There or, . sfore relation . s

fth t t t
in v b allowing i o
io uts a ortion o e

't Thi o ld h

l& as.
2 -2

e cutoff to in ni y.
~ ~

(
md gfI b"'(v)= Qll

r solution so t at i n
dl-

4p'" 5 2v -6%dhd~ ~
'

fromzero toin ni y.
~

f. T di o ti it ofth
g p

&3 4) then becomes
tlon a xls has t e o

We will denote it y & v .

p 33)= Imbl")(v+23)/v'
4 — ~2) —2

Ql
2V)

term, the second Born

auch integral representatio6 ditscon- Ther fore th Ch f

j.) ~ (2)'"( ')+b
0

avior we ave
v . he Born series or g vanalysis on fl(v . e

1 -,g LQ(1+"/2»
4p'3/2p'l(p p)7l p

(3.11)
7l p

,g'I:Ql(1+P'/2v') 7'
dv

3/2v~l(v~ v)
(3.16)
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sim»

1 " (v')'"v "iV,(v')

Q

di6ed D function wit a cutoff atWe define the mo i e
vc as

(3.17)

city it has the disWh le it has the adv ganta eof p ciy,
in whatlitt eexac

'

d
a vand antageofdest oy gw

left-hand cut e wee
atth d o thsecond raneb h points. In this met o,

(4.2)fi(v) = bi"'(v)/Di(v)

(4.3)1 2Imfi(v = m i=I b "&(v)/Di(v) v( ——,p,
of the exactat the discontinuity o

hefi t d o d
% ie

ss the cut between t eamplitude across e
branch points should be

1 " ImBi(v')Di(v')
dv (3.18) Imfi(v = m ib (i)(v) ps(v( &~s (4.4)

yc

it cut from zero to v.. he func-

i tinuit on the left given ytinui o b

w ic c

w ihhd(. o)left-hand cuts and the right-ban cu v,
tained in Bi(v), or

1 &."4 ImBi(v')Di(v')
S'i(v) =— dv

m Di(v),

1 "' Bi(v') ImDi(v')
Si(v) =Bi(v)Di(v) —— dP (3.19)

te ral equation for determining Ni(v),To construct an integral equation or v,
we s y o -g

d "o--ods th wo
to e p " jp

zero to v, coming r

S&(v), we simply subtract o e r
he

,Qi(1+~ / ~ ) g
Di(v)=1 —— ' —= 1——,v .dv

27/ 0 P

hat it should be forwe do not know w a ieven thoug we

P& —P.
th dta l the determinanta m

nd check its reliability.Yukawa potent' ial scattering an c ec
otential, we can gIt t ms out that forthe Yu awap, n

n for the amp i u1't de for arbitraryp''" p
use the determinanta me o .

4.1), ht erst Born term into

e e uation one Ands(3.17) into the above equSubstituting
the integral equation

E( i)v=Bi(v)'

For l=0,
Qo(1+1/2v) = si ln(4v+1) (4.6)

"+'"S~( '), (3.20)+— dv'
P VQ

2.34), except the inpuut function
h lft-h d t d otio

Th bo tio
ls giv ,

the right-hand cut
1 with Bg v given

V Th lit d ob-'
cussed in Sec.

in

satis es y
t ehnt to th t t et it satisfies un y o

ation name y, as g'second Born approximat'

1 " ln(4v'+ 1)
IE'o(v) =— dv

2x' 0 v~1/s(v~ v)

ln(pV+ 1)
dv

v""(v'—v)

Differentiating with respect to

e)J(P,v) 2

r)p p o

v~i/2

d' ('- )('+p-')

eter and de6neLet us in ro
' t duce the parame er p

(4 7)

(4.9)

IV. DETERMINANTAL METHOD The integrand

v~i/2is to assume thatation that is often use ispp o

q
Then the D function is given ire

( )'"bvi"'(v')
Di(v) = 1—— dv

0

v' —v —ze v'

called the determinantal al method. "This method is calle e

h s. N. Y.) 4, 271 (1958).M. Baker, Ann. Phys. (N. e set p, =1 for convenience."In this section we set p, =

ion

ion of v' which has poles at v+ie
0 o+ .o fm

the cut we define as ( &i
a — ', d a branch cut rom o

zc '/2hose value along t e cup ) w
's theorem aro=&v"".Applying Cauchy
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ore the functioncircle we findtour forme yd b the cut and an infinite c'

2' 2 Qo

v 1/2

(v' —v) (v'+P-') 2zri

1y
C ( ) =~P (~+—

l

2P

v 1/2 v l /2

v v zE'

+
vl/2 vl/2

in[1 —2i '"7 Wi, (1+1/2
X Z

which simplifies to

v""
(4 1o)

ontainin an lth-order pole atis an analytic function con ain'

cut from 0 to +~ wi th thethe origin and a branch cut
discontinuity

g v ip —gi v —ip) = 2iQ1(1+1/2P)/v'/z v) 0, (4.16)gi P Zp giv Zp —Z

Integrating BJ/BP with respect to P v —+~, gi(v) ~ 0. Therefore, if we remove the
ld have the function E ( ) de-pole at the origin we wou ave

fined in (4.5); that is
J(P,P) = 2zr

// dP

1—i (v)'"
1 ) in[1—2i(v)'/'7

Ki(v) =iP1( 1+—
)

= 2zri in[1 —i (v)'"7/v'"+C(v) . (4.11) ( 2

From (4.8), we observe that when P=n =0 J(0,v) =0;
therefore, C(v) is zero, and we have

in[1-2i(v) '"7
Ep(v) =i

vl /2
(4.12)

(4 13)
2(v) 1/2

For real positive v,

Dp(v+ip) =1—[g' tan —'2(v)'"7/2(v '"

~ ~S- D function is given exphcitly byTherefore, the ~-wave

g'z in[1—2z(v)'"7
Dp(v) =1—

(4 1&)2

v'/2

The function

Qi(s) =sQp(s) -i. (4.18)

vz is defined as a function analytic everywhere
-order ole at the origin and its singu-

1 h
'

1 't ofat oint cancels exact y t e sin
6 dA() boii. Fo i t, tke

an ivenl, wecan n ~ v

the behavior of g1(1) near the origin. or
'

/=1, we have

For real negative v,

1 ) in[1—2i(v)'"7 i
(4.13a)

gi(v)=z 1+—
4(v)1/z

~ ~

has the following behavior near the origin:

(4.19)

g' in[1+2(—v)'"7
Do( )=1— (4.13b)

Therefore,

gi(v) = 1/v+2+2i(v)'"+0(v) . (4.19a)

A, (v) =1/v (4.20)v is iven by the roots ofThe S-wave binding energy vo is giv
ion

and the E-wave D function is g'v p
' '

i en ex licitly by
(4.13c)

2

+ +—. (4.21)
2(p)»z 2P

Qi(s) =Pi(s)Qp(s) —~'1-1(s) F-i=2, .f d

the equat

2(vp) '"—g' in[1+2(vp) '"7=0.

o-ener Di(v) = 1 i 1+———
~

t t corresponding to zero-energyThe coupling constan cor
go =

T derive the D function for ig er va
by recalling that for integer

s is a polynomial of s of orderr / —1.The
d W, (1+-,' ) 1 tic

have 1th and (/ 1)th-order po es—, res

&z(v) = 2/v+3/4v'. (4.22)

derive the function Aq(v)In a sim ilar manner we can er
find for the D function in thefor other values of l an n or
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physical region

D(+ )=1—P(1+1/2)Lt -'2()'"] ""
2

g' ig'Qi(1+ 1/2v)
+—A i(v)— , v)0. (4.23)

The phase shift is given by

g 1 tan —'2(v) '"
't'cotb = 1——Pi 1+——

P 1 tt2

'—A () ((g/2)Qi(1+1/2)j-. (4.24)
2

The phase shifts are calculated by the above relation for
g' —3 and 1 and for l=o, 1, and 2. The results are dis-

We might consider improving the determinanta so u-
b

'
l din some information from the second

Born term. The complete solution expresses e p
'-

tude as the ratio o wo
'

h t' f two integral functions of the coupling
constant g . e us inc'. L t '

lude the next term in the numera-
tor which is of order g' and call it 1Vit'i(v); t en,

Between the erst and second branch points,

im1V, (v) = 1mb, i»(v)

(v~)1 2bl 1 (v~)

X 1—— dP'
7l p P P

,
—1«. ——,'. (4.29)

~ ~'th the modification, the discontinuity ofTherefore, wit e m ', inuit o
the amp itu e inl' d that section of the cut now
(4.4) to order g4. Referring to 4.4.23

7T p

2

y, ——Ai(v). (4.29a)
2P

1/2

1 tan —'2P'"
P 1+— —Ai(v) . (4.30)X I'g

From (4.25), we have for v) 0

~ ~

From (4.27) the function 1Vi"'(v) along the positive real
~ ~

axis is
g4 (

1V i'i(v) = Rebi"'(v) ——
Qi~ 1+—

4v k 2v

i(v) =—
1

1——
p

bii'~( )+ivii')(v)

d () "Lb ()+~ (»( —)-

(4.25)

g' 1 ) tan —'2(v) '"
ReD (v)=1——Pii 1+—

~

2 5 2v) v'"

g' 1 " (v')'"1Vit'&(v')——A i(v) —tp— dv'
2 Ã p P P

satisfies the unitarity condition (2.13,.~. In the limit of
small g', we expand the above equation

e)=b«()+~

(4.30) we evaluate the principal value integralUsing . , we v
P and calculate1V i"(v) numerically, find ReDi v, an

The results are discussed in the following section. e
D unction is a sot' '

also calculated for negative energies to
look for bound-state poles of the amplitude.

and compare with the Born series (2.8); hence

bi "i(v) ",(v')'"bi"'(v')
1Vi t'i(v) =bi('i(v) — dv'

7l p

(4.27)

1V()=b"'()
(v')'"bi "i(")

X 1—— dP
7l p P P

—1&v& —~i. (4.28)

This function has no branch cut along pthe ositive real
h

'
ht-hand cut in bi"'(v) is canceled by the

right-hand cut in the second expression. The modi e
function is

V. RESULTS AND CONCLUSIONS

For diGerent potential strengths, the S- I'-, and
h'ft omputed by the followingD-wave phase shi ts are comp

(1) Sohrodirlger equatiort: The exact va u p
shifts are computed by integrating q.E . 2.2) numeri-
call subject to the boundary condition (2.3).

d: A) W'th only the first Born cut.
d as 1V/D (1). The integral equationThis is designate as

2. is so ve.34) l ed numerically with the input & P giv
by (2.35). From the 1V and D functions we n p
shifts. (B) With the first and second Born cuts. This is

as 1V, D (2). The integral equation 3.20 is
solved numerically with the input 8i(v) given y

hase shifts are found from the X and D functions.
(3) Determi rtarttat method:
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1.5 g2—= 3 S-NAVE
P

1.0—

/
~ 1st BORN

N/D (1)
/r

3.5

1.0—

g2—= 3 S-NAVE
P

0.5—
DETERMINAhlTAL (2)

0

N/D (2)~
RN

112

p

Fzo. 2. S-wave effective range lot for
g'/@=3. Meaning of labels: N D (1):
N/D with first Born cut; N/D (2): N/D
with Grst and second Born cuts; Deter-
minantal (1): first-order determinantal;
Determinantal (2): second-order deter-
minantal (N/D solutions have a cutoff at
v./i4' =100).

-0.5— L (&)

-0.5
+DETERMINANTAI. (2)

(a) (b)

This is designated as i)ETERMTNANTAL (1). The phase
shifts are calculated from (4.24). (B) With first and
second Born terms. This is designated as DzTzRMzNAN-

TAT. (2). The phase shifts are calculated by the use

of (4.31) and (4.30).
(4) Bore approxireatioe: (A) First Born approxima-

tion. We define the first Born phase shift by (v)'~' cotbi
= 1/bi&') (v) or tang& ——Lg /2(v) s]QI(1+p, /2v) (B) Sec-
ond Born approximation. Ke define the phase shift
as (v)'" cotb) ——Re(1/fi), where f)——bi(')(v)+bi"'(v).

Some of the results of these calculations are shown
from Figs. 2 to 9. For each value of g'/tu and /, we plot
the data in two separate 6gures: The 6gure denoted by
(a) contains the results of the various approximations
using information from the first Born term only, whereas
the figure denoted by (b) contains the results of the
various approximations using information from both
the first and second Born terms.

For the 5 wave, no cutoff is necessary in the /I//D

TAELE I. S-wave N/D phase shifts for g'/@ =3 with and without
cutofi( (N/D with first and second Born cuts).

v/p'
(v./p'=10) (v./M'=100) (v,/p'=1000) (no ento(f)

bo(rad) bo(rad) bo(rad) bo(rad)

0.05
0.25
0.5
1.0
3.0
5.0
7.0

10.00
20.0
50.0
80.0

2.565
2.042
1.779
1.520
1.152
0.974
0.849

2.571
2.052
1.790
1.533
1.161
1.011
0.919
0.830
0.675
0.504
0.411

2.569
2.050
1.788
1.532
1.160
1.009
0.918
0.828
0.673
0.504
0.432

2.568
2.049
1.786
1.530
1.159
1.009
0.918
0.828
0.673
0.504
0.432

equation; whereas, for the P and D waves, a cutoG is
required to take care of the threshold behavior. As seen
in Table I, if we also apply a cutoh at v./)i'=100 to
the S-wave solution, the phase shifts differ only slightly

g2—= 3 S-NAVE

180'—

92
S-NAVE

1804-

90'
—~aa sa cay

2nd BORN

Fio. 3. S-wave phase shifts for
g'/p =3. For meaning of labels see
Fig. 2 caption.

pl

p—1st BORN

I

p2

(a)

"900

k2 5
.Ij2 I

DETERMINANTAL (2)

(b)
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10 IO

RN

Fzo. 4. I'-wave effective range plot
for g'/It=3. For meaning of labels see
Fig. 2 caption.

CCh

IrS

I k2 2

p2

(a)

0
0

I

2

p2

(b)

180'-

g2—= 3 P-WAVE

60O-
2j- = 3 P-WAVE

)I

Fro. 5. P-wave phase shifts for g'/It =3.
For meaning of labels see Fig. 2
caption. 90'-

DETERMlNANTAL (l)
30'-

/0 (2)

0
0

N+ttt gist BORN

I i

p2

(a)

0
0 2

fJ 2

(b)

TAL:(2)

TABID II. P-wave ft//D solution for g'/ttt =3 with different cutoffs.
(N/D with first and second Born cuts. )

0.05
0.25
0.5
1.0
3.0
5.0
7.0

10.0
20.0
50.0
80.0

(v./It' = 10)
ht (rad)

0.0231
0.155
0.273
0.385
0.466
0.459
0.441

(v /I '= 1oo)
ht(rad)

0.0248
0.155
0.271
0.384
0.464
0.457
0.440
0.414
0.348
0.243
0.197

(va/p = 1000)
hg(rad)

0.0231
0.156
0.271
0.383
0.464
0.456
0.439
0.414
0.347
0.237
0.173

from the values for no cutoff. To obtain a uniform X/D
equation for the S, I', and D states, we apply a single
cutoff at v,/p'=100 for the three cases. The sensitivity
of the I'- and D-wave phase shifts to a change in the

0.05
0.25
0.50
1.0
3.0
5.0
7.0

10.0
20.0
50.0
80.0

(vc/v' = 10)
a2(rad)

0.00076
0.0174
0.0484
0.104
0.209
0.241
0.252

(v, /tv,
' = 100)

h2(xad)

0.00081
0.0176
0.0488
0.104
0.209
0.240
0.250
0.249
0.206
0.017
0.007

(v /ts'=1000)
hg(rad)

0.00077
0.0179
0.0490
0.104
0.209
0.242
0.254
0.256
0.232
0.147
0.082

cutoff is shown in Tables II and III.It is seen that in the
low-energy region far away from the cutoff, a change in
the cutoff does not change the solution very much 0~ n
he other hand, at moderately high energies (v&10),

TABLz 111.D-wave llr/D phase shifts for g'/It=3 with different
cutoffs (/t//D with 6rst and second Born cuts).
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FIG. 6. D-wave eBective range plot
for g'/@=3. For meaning of labels see
Fig. 2 caption.
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the solution is influenced by the position of the cutoff.
In the case of S-wave scattering, Bjorken and

Goldberg' have studied the exponential potential
for which the amplitude has a sequence of poles at
v= —4(ep)'. They showed that for that case the 1V/D
approximation with only the first pole did not do too
well, but when the first two poles are included, reason-
able results in the low-energy region were obtained.
As they pointed out, the exponential potential is
"smoother" (or less singular) than potentials such as
the Yukawa potential and the scattering at high energy
is small, so it is a more favorable case for the neglect of
faraway singularities. Prom our present results with the
Yukawa potential, we 6nd that although this potential

is more singular, similar conclusions are still obtained
regarding the X/D approximation. When the first two
cuts are included, the approximation is a reasonable one
in the low-energy region, provided the coupling is not
too strong; when only the first cut is included, the ap-
proximation is good only in a limited region near the
threshold. The Yukawa amplitude has a sequence of
branch cuts instead of poles, which is more similar to
the relativistic situation, and we consider it to be a
better analog of the relativistic amplitude.

In the low-energy region, the "Coulomb" effect of the
nearby cuts is relatively more important than the more
distant cuts. At higher energies, the faraway cuts be-
come relatively as important as the nearby cuts, and

FIG. 7. S-wave effective range plot
for g'/p=1. For meaning of labels see
Fig. 2 caption.
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0
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~2

(b)
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40
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g =1 P-WAVE
tj 40

2
9 =] P-WAVE
V

30 30

FrG. 8. P-wave effective range plot
for g'/p=1. For meaning of labels see
Fig. 2 caption.
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0
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250 250

200 200

Fro. 9. D-wave effective range plot
for g'/@=1. For meaning of labels see
Fig. 2 caption. The deterrninantal (2)
curve is nearly the same as the S/D (2)
curve, and the second Born curve is
nearly the same as the Schrodinger
curve.

150

100

150

100

50 50

0
0 k2 2

2

0
0

(a) (b)

the E/D approximation begins to fail. It actually be-

comes worse than the Born approximation when the
energy exceeds the region of validity.

%e should k.eep in mind that for the curves with
g'/Ii= 1, the Born series converges for all energies. For
the curves with g'/Ii=3, the Born series would still
converge in the region where k/Iiln(k/Ii)))ss. (The
exact value of energy beyond which it converges can be
known only if we know the exact radius of convergence
in the g' plane as a function of energy. ") For the 5

"The erst pole in the g' plane is real for k'~&0 but complex for
k'&0. LR. Jost and A. Pais, Phys. Rev. 82, 840 (1951).j The
position of this pole as a function of energy for k')0 can only be
found numerically by 6nding the complex eigenvalues in g~ for a
given value of P in the Schrodinger equation.

wave, the jV/D solution tends to the first Born approxi-
mation as v ~~. This is due to the fact that the 6rst
Born approximation goes like (in')/v, which eventually
dominates the dispersion integral, which only goes like

1/v. LRefer to Eq. (2.17).$ This effect is not shown in
the figures, but the X/D curve for the 5 wave eventually
tends to the Born curve at extremely high energies.
For the I' and D waves, the N/D solution does not tend
to the Born approximation as v —+~. This is due to the
fact that, in taking care of the threshold, we have
divided the Born term by the factor v' which makes it
tend to a lower order than the dispersion integral as
v —+ . This discrepancy in asymptotic behavior would

be of concern to us if we were trying to use JV'/D to
solve a potential problem, which we are not. The situa-
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tion has no relativistic analog, since, as we go up in
energy in the relativistic problem, we must consider the
inelastic channels and our potential analog would break
down.

In the 1V/D method, we have constructed an approxi-
mation to the amplitude which satisfies unitarity along
the right-hand cut and has the same discontinuity as
the exact amplitude over a finite portion of the left-
hand cut. The 1V/D(1) solution contains the exact dis-
continuity from k'= —4p' to —p', and it appears to be
a reasonable approximation up to k'= p'. On the other
hand, the 1V/D(2) solution, which contains the exact
discontinuity from k'= —4ip' to —9p'/4, appears to be
good up to ks=3ii'. One might argue that an 1V/D
approximation which contains the exact left-hand dis-
continuity out to an energy —v wouM be a valid
approximation from threshold up to energies of the
order of v . The goodness of the approximation depends
on the coupling strength. The stronger is the coupling
strength, the more nearby cuts one must consider to
obtain a good approximation, since the discontinuities
of the cuts are of increasing order in g'/p, as we go
towards the left. The exact radius of convergence in
g'/p for our 8 function has not been investigated in
this paper. However, taking g'/p up to 3 already rep-
resents a sufFiciently large coupling constant typical of
strong interaction. As an example, the single pion cut in
the singlet S-wave amplitude for nucleon-nucleon
scattering has a discontinuity equivalent to the first
cut of a Yukawa potential with g'/p= 0.53.

Our 1V/D results for the Yukawa potential tend to
lend support to relativistic 1V/D calculations that have
been made for low energies; for example, the analyses of
low-energy nucleon-nucleon scattering. " One might
consider applying the iV/D method to other similar
situations where the dominant forces are of a long-range
nature and one is only interested in the energy region
where two particle states are dominant, for example,
low-energy lambda-nucleon scattering. On the other
hand, for problems such as the I= 1 xw scattering, where
the p meson is found, it is known that phenomenological
analyses of the scattering amplitude show that either
the force is of a very short range nature or that the in-
elastic effects are important. Our present analysis of the
X/D method has little relevance to these cases.

In addition to giving scattering phase shifts at ener-
gies above threshold, both the 1V/D and determinantal
methods can give bound-state poles when the D func-
tion vanishes below the threshold energy. We have used
the 1V/D and determinantal methods to calculate S-wave
binding energies of the Yukawa potential for diferent
potential strengths. In each method, the first- and
second-order approximations were used. The results are
shown in Fig. 10 as plots of potential strengths versus

"For example, see A. Scotti and D. Y. Kong, Phys. Rev.
Letters 10, 142 (1963); D. Amati, E. Leader, and B. Vitale,
Phys. Rev. 130, 750 (1963).

10

/

g
2

FIG. 10. Potential
strengths versus S-
state binding energy.

0
0

ps'"/p, where vs is the binding energy in units such that
A=2m=1. The curve for the exact binding energies is
based on data taken from Lovelace and Masson. "
Figure 10 has the same general features as a similar
figure (Fig. 9) shown in the work of Bjorken and
Goldberg for the exponential potential. Our results and
their results have the following points in connnon:
(1) The second-order X/D method appears to work well

in predicting S-wave bound-state energies provided the
potential strength is not too large (2) Th.e determinan-
tal method in second order predicts no bound state
whatsoever. (3) The first-order determinantal method
gives an excessively strong binding energy. (4) The
first-order 1V/D method gives too weak a binding energy.
We note that for g'/p greater than approximately 6.5,
the exact solution for the Vukawa potential gives two
S-wave bound states. On the other hand, the second-
order 1V/D approximation does not begin to show two
bound states until g'/p=8. 2. From our results and the
results of Bjorken and Goldberg, it appears that a use-
ful criterion for the validity of the second-order 1V/D
method for calculating S-wave binding energies is that
the coupling strength be limited to strengths where only
one S-wave bound state occurs. It also appears that the
first-order 1V/D method cannot be relied upon to give
good estimates of the S-wave binding energy.

In contrast to the 1V/D method, the determinantal
method does not necessarily give an improved solution
when the second Born term is added. Consider the
S-wave determinantal solution. For g'/p= 1, the addi-
tion of the second Born cut does improve the answer.
(See Fig. 7.) However, for g'/@=3 (see Fig. 2), the addi-
tion of the second Born cut causes the N function to
have a "spurious" zero in the physical region, which

'4 C. Lovelace and D. Masson, Nuovo Cimento 26, 472 (1962),
Table II.
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appears as a pole in k cotbo. As we go from large k'
to small k', a "legitimate" zero in the E function is one
that appears after a zero appears in the real part of D,
which corresponds to the phase shift going through 90'
6rst, then increasing towards 180'. By a spurious zero,
we mean a zero in X which appears before any zero in
ReD develops, which corresponds to the phase shift
going through zero and becoming negative, even though
the potential is purely attractive. The reason why a
spurious zero may appear in the S function is the fact
that the analytic property of the amplitude in the v

plane is given incorrectly. Although the determinantal
solution gives the correct location of the two branch
points, it does not give the correct discontinuity across
the branch cuts. For g'/p=3, we know from the N/D
solution that the efIect from the second Born cut is im-
portant. This cut with a branch point at k'= —p'
appears not only in the O(g') term in the X function of
the determinantal solution but also in the O(g') and
higher order terms. Apparently, when g' is large, the
inclusion of only the O(g') term gives an erroneous effect
in the second cut that resembles a form of repulsion.
For this reason, the solution does not give any S-wave
bound state at all. When the determinantal method is
carried to higher orders than the first order, a difficulty
of this kind might appear when the coupling is strong.
The determinantal solution in the exact form is a ratio
of two integral functions of g'. However, in practice, one
cannot find these two functions exactly but must
truncate the series in g' up to some order. The truncated
numerator function does not describe the analytic
property in the v plane adequately. However, in the
first-order determinantal solution, where the numera-
tor is just the 6rst Born term which has no zeros in the
physical region, this kind of difhculty does not appear.

In the X/D method, the X function is constrained by
the boundary condition along the 6rst and second Born
cuts so that it has the same discontinuity as the exact S
function from k'= —-'p' to —9p'/4. This constraint
prevents the iV function from developing a spurious
zero in the physical region.

In reviewing the results in Figs. 2 to 9, we 6nd that
in general the 6rst-order determinantal solution gives
unreliable results. The distortion of the discontinuity
along the nearest left hand-cut causes a large error in
the behavior of the amplitude in the physical region,
even though unitarity is satis6ed exactly along the right
hand cut. For instance, in the S wave with g'/p= 1 Lsee

Fig. 7(a)j, the erst-order determinantal solution shows
a zero-energy bound state, whereas the exact solution
is far from having a zero-energy bound state. In fact,
one requires a value of g'/p=1. 67 to produce a zero-

energy bound state in the exact solution. We see in
Fig. 7(a) that the )7/D(1) solution with only the dis-
continuity given correctly in the segment from k'= —p,

'
to —4p' is able to give a good approximation to the
scattering length. Also, in the I' wave with g'/y=3,
the 6rst-order determinantal solution gives the apparent
effect of a very strong attraction which produces a
P-wave bound state, even though the exact solution is
far from having such a hour. d state. LSee Fig. 5(a)).
On the other hand, the X/D(1) solution does not pro-
duce such erratic behavior. Our results emphasize the
importance of preserving what little exact information
we do know about the discontinuity along the nearest
portion of the left-hand cut, which is what we do in the
E/D method. In the determinantal method, this infor-
mation is disregarded and the discontinuity of the entire
left-hand cut up to k'= —4p' is left arbitrary. The bad
effect due to this distortion in the cut becomes more
severe as the coupling strength increases. It appears
that the determinantal approach is not as reliable a
method for calculating partial-wave amplitudes in
strong interactions as the X/D method where the known
exact discontinuity of the amplitude is preserved in the
nearby region.

Since the determinantal method is not able to give
uniformly good results for arbitrary physical values of

l, we should not attempt to use it for noninteger values
of / for tracing Regge trajectories. The X/D method.
with the same cuto8 for all l values gives uniformly good
approximations for the S, P, and D waves, and it may
be extended to noninteger l to trace Regge trajectories.

Fina)ly, we should note that for l&0 the second Born
approximation is superior to both the N/D and deter-
minantal methods. Apparently, for l&0 and for the
range of coupling considered, the phase shifts are small,
and the right-hand cut determined from perturbation
expansion is actually better than that obtained from
Z/D or the determinantal method.
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