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and after the cutoff is introduced, we have

(35)

(36)

where pt'= pt, ps'= psA'/(t+A)'. One can now go ahead
and calculate M~/ by using X/D method. An insight
into the signiGcance of the cutoG is obtained if one
considers a one-channel calculation. In that case, before
the cutoff is introduced,

where N=NAs/(t+A)'. Thus, introducing a cutoff is
equivalent to modifying N to make it more convergent;
also, E contains a "greater" amount of information;
i,e., we are introducing additional interaction to make
the integral convergent. In the two-channel calculation,
Mrs =Msr =Mrs'A/(/+A) and Mrs ——Mrs'A'/(t+A)'.
Again, we are introducing additional "interaction" in
the form of a first-order pole at t= —A for iV~2 and M2j.
and a second-order pole for &22.

The calculations now proceed along the same lines as
for the case of a sharp cutoff. The results from this are
similar to the ones discussed in the main body of the
paper,
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A perturbation theory is developed within the usual formalism of quantum electrodynamics which yields a
Gnite unrenormalized electron Green's function and a Qnite value for the electron's electromagnetic self-mass
in each order. This is subject only to the qualification in this paper, that the vacuum polarization is also ob-
tained without divergences. Furthermore, the bare mass of the electron must vanish; the electron mass must
be totally dynamical in origin.

I. INTRODUCTION

HE empirical success of the renormalized perturba-
tion solution of quantum electrodynamics has

produced the hope that relativistic field theory can
provide an adequate description of the physics of
elementary particles. On the other hand, the infinities
which are present in the perturbation expression for
the unrenormalized quantities have made one cautious
about taking the theory too seriously.

In this work we will show that these infinities are not
intrinsic to the theory but are due to the inadequacy
of the usual perturbation method. We will attempt to
develop an alternate perturbation approach to quantum
electrodynamics which yields Qnite results for the basic
unrenormalized Green's functions. In addition, in the
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weak-coupling limit, we will give explicit expressions
for these functions in the region far oB the mass shell
where ordinary perturbation theory fails.

This method will work only for a spin--,' fermion Geld

coupled with a conserved current to a neutral vector
field. Hence the results of this work will not be applicable
to a general relativistic Geld theory.

In quantum electrodynamics there are only three
divergences (the minimum) in the ordinary perturbation
treatment and they are all "weak" in the sense of being
only logarithmically dependent on cutoffs. They are
summarized by the constants brtt, Zr(=Zs), Zs. The
divergence of the self-mass bm is just the analog of
the classical electromagnetic mass divergence. The
divergence of the wave-function renormalization con-
stant Z2 represents an incompatibility of the pertur-
bation treatment of the interaction with the canonical
commutation rule for the electron field. The divergence
of the charge renormalization Z3 represents a similar
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incompatibility for the electromagnetic field. The
divergence of the vertex renormalization Z~ is associated
with the fundamental electron-Geld —electromagnetic-
field interaction. As a consequence of gauge invariance
Zr ——Zs (Ward's identity).

The wave-function constant Z2 has no physical
significance, since because of charge conservation the
electron field is not linearly coupled to any source.
In contrast, Z3 has an immediate physical significance,
since the electromagnetic coupling to charges is linear
in the field. Thus, the only physically meaningful
divergences which arise in the usual perturbation
treatment of quantum electrodynamics are Z3 and
Sm.

Furthermore, the question of Z3 really takes one
outside of the scope of a closed physical theory. The
electron couples to all charged systems by means of
vacuum polarization. Thus, when we make an assump-
tion about the high-energy behavior of the photon
Green's function, we must keep in mind the fact that
its form is influenced by all interactions. In this paper
we shall consider only the mass question, which can be
treated to some extent in the closed theory without
the necessity of considering other systems.

The renormalizations are closely related to the
asymptotic behavior of the electron and photon Green's
functions far off the "mass shell. " If the constants are
/vite, then these functions must have in the asymptotic
region the same form as their uncoupled analogs, and
hence are independent of the coupling constant. But
it is precisely from this domain that the divergent
contributions to the renormalization constants arise.
Hence, it has long been supposed that the theory as
formulated in the ordinary way is not consistent: that
these free asymptotic forms for the Green's function
are incompatible with the interaction. We shall first
show that the physically uninteresting renormalization
constant, Zs(= Zr) can be made fmite even in a pertur-
bation treatment of the interaction, without the
introduction of any divergent renormalizations, pro-
vided only that Z3 is finite. This can be done if one
makes a suitable choice of electromagnetic gauge. This
means that we shall be able to write a linear integral
equation for the vertex function I'„, with a kernel whose
"singular part" (the part of the kernel which gives
divergences in perturbation theory) is expressed as a
given power series. It is further an equation which
does not contain divergences. In this case the only
perturbation divergences are bm and Z3, which are
con6ned to the electron Green's function S and photon
Green's function D. We shall then show that if the
Schwinger-Dyson equations for the exact S in terms
of S, F„, D is expanded as a series in S without the
expansion of S or D, then the resulting equation for S
will have Gnite nonperturbative solutions with no
self-mass divergence provided only that the "mechani-
cal" or bare electron mass vanishes and providing that

1/k' —1/(k'+ V)

then Z2 has the form

Zs ——(X'/nP)~& o o&B(o,s,G) . (2.3)

f and 8 are functions only of the coupling constant as
and G. It has been shown' that if the gauge is changed,
Z2 changes in a simple and explicitly known way. If
we let

kkp t' 1 1».p= —
Vl

k2 (k2+p2 k2+$2 j (2.4)

' K. Johnson, M. Baker, and R. Willey, Phys. Rev. Letters 11,
S&8 (i').' M. Gell-Mann and I.E. Low, Phys. Rev. 95, 1300 (1954).' K. Johnson snd B. Zumino, Phys. Rev. Letters 3, 351 (1959).

Z3 is 6nite. In a subsequent paper we shall show' that
we can also develop a finite perturbation theory for D
within electrodynamics using the linear vertex equation
that we shall obtain from our equation for S by using
gauge invariance. The equations we shall study will

provide us with the explicit forms for S and D far off
the mass shell, expressed in terms of constants given as
power series in the "bare" (unrenormalized) coupling
constant which are finite term by term. The solutions
we obtain will be valid for all values of the coupling
constant provided that it lies within the assumed 6nite
radius of convergence of the power series. In a pre-
liminary account of this work' we stressed what was
actually only a first-order approximation. In this paper
we shall describe the general method which can be used
to systematically compute all functions.

II. CHOICE OF GAUGE

In this section we will show that if Z3 is 6nite, then
a gauge can be chosen so that Z~ has a 6nite expansion
in a power series in the bare coupling constant mrs

——ee'/4r.
In the following sections, by employing this gauge in
our calculation, we shall show that the electron self-
mass is 6nite if and only if the "mechanical" electron
mass vanishes. If Z3 is finite, then the exact photon
Green's function D(k') has the property that

k'D(k') ~ 1

as k'~ ao. In all of the subsequent work, "asymptotic"
will always mean for large space-like momenta. In this
case, all integrations may be performed with a Euclidean
metric. Since the dominant contribution to all radiative
corrections comes when all Green's functions are far off
the mass shell, we can compute the "divergent part"
of the vertex function by using D(k') = 1/k', that is, in
effect, by neglecting the photon self-energy. Of course,
we must then establish that the theory does indeed
provide for a finite Z3. This will be established in a
subsequent paper. In this case, it follows from earlier
work' that in an arbitrary gauge of the form

D p=Pg p (k kp/k')G—jD(k') (2.2)

if we include a cutoff de6ned by the replacement of
Dby
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then in this new gauge Z2' is expressed in terms of Z2
by the relation

Z ~ —g ($2//'2) (ap/4') p (2.5)

p is chosen to avoid infrared divergences, which are
present also in 8 only because of the conventional way
of defining Z2. It is therefore obvious that a gauge
change can be made so that Z2' is independent of
and hence finite as X ~ ~. That is because

Zsl —B(~s G)(gs/yg )f(ao, g&(gs//'s)(ao/4~&y (2 6)

Thus, the transformation (2.4) with —nsy/4m= f
brings us to a gauge where Z2 is 6nite. It is a property
of the "Landau'" gauge (G= 1) that if f is computed it
begins only in the fourth order; that is, in the second-
order perturbation theory, in this special gauge, Z2 is
finite. However, if the corresponding calculations are
made in the fourth order, logarithmic divergences are
encountered. This means that the finite gauge in the
fourth order has the form

D-/'= La-s —(&-4/&')ZD, (2 &)

with G=1+nsCi. In general,

G=1+~oCi+~o'Cs+ (2.8)

where the series has the property of having finite
numerical constants independent of any dimensional
parameter. Now, if we make Z2 finite by an appropriate
choice of gauge, we also make Z~ finite, if we maintain
Ward's identity. Hence this choice of gauge permits a
perturbation expansion for the vertex function which
is Qnite. By making Zs 6nite, however, we doznot
necessarily make the S function 6nite in perturbation
theory, because of the self-mass divergence. We shall
turn to this problem in the next section.

III. ELECTRON SELF-ENERGY

We have shown in the previous section that if we
neglect vacuum polarization, the perturbation expan-
sion of the vertex function I"„is finite in an appropri-
ately chosen gauge. In this section we will see how to
include the electron self-energy in a manner which
maintains the 6niteness of S and F„.

Q'e begin with the Schwinger-Dyson equation'
for S(p).

t
TP + -- + + ~ so

FIG. 1. Equation for electron Green's function. The lines repre-
sent the exact S and D functions.

yield S and D functions having the same asymptotic
form as the free Green's functions. Then in the
appropriate gauge the expansion of I'„ in terms of the
exact S and D must also be finite. Thus in Eq. (3.1)
we can make such an expansion of F„without intro-
ducing any new infinities. Equation (3.1) then becomes

(~P')
='yp+ o+' ',D-/'(p —p')~ S(p')r'

S(p) (2n-)'

(dp') (~p")
Z80 D-/'(p p)D., (-p p-)-

(2m)'

&&& S(p'4'"S(p'+ p" p)&'S(p"—)&"+ (3 2)

or in graphical form as expressed in Fig. i. In the
graphical expression we omit all graphs corresponding
to expansions of S or D, since these are taken as exact
in (3.2). Of course, we must remember that the gauge
will also be defined in terms of a power series in no,
so that in (3.2) we must also expand the gauge constant
G. Since the gauge is defined to be that which makes Z2
finite, and thus yield an S with the asymptotic form
1/'yp which is independent of ns, the mth order of a
gauge term in D which appears in the neth order of the
formal expression (3.2) will then contribute to the
(m+n)th order of the equation which we propose for
S. For example, the true sixth-order terms in (3.2) are
indicated graphically in Fig. 2.

We can make a corresponding expansion of the
Schwinger-Dyson (S.D.) equations for the electron
Green's function S(A) in the presence of an external

=yp+ms
S(p)

(dp')
+se ' D-p(p p')r S(p')I'(p', p—) (3.1)

(2w)4

Now suppose there exist finite solutions to (3.1) which

4 L. D. Landau, A. Abrikosov, and I. Halatnikov, Nuovo
Cimento Snppl. 3, 80 (1956).

s F. J. Dyson, Phys. Rev. 75, 1736 (1949); J. Schwinger, Proc.
Natl. Acad. Sci. U. S. Bl, 455 (1951).

'6th Orger" Self Energy Kernel Including Gauge Terms.

k kp
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k

k~ k~
pg C&

k kp
= (g — )p~g

FIG. 2. "Sixth-order" self-energy kernel including gauge terms.
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6eld A„. If this equation is written in coordinate
space and truncated at any order, the resulting trun-
cated equation for S(x,y; 2) is invariant under the
gauge transformation,

Now S(x,y; A) determines the vertex function in
coordinate space according to the definition,

I'.(&y' &)= P—/&«~. (k)jS '(e ~) . (3.4)

A„—+ A„+cj„)t.,
S~ gieop, (z)—X(y) jS (3.3)

From (3.4) and from our expansion for S(x,y; A)
corresponding to (3.2), we obtain a corresponding
expansion for F„,

(~p')
I'„(p+k, p)=7„y'p ' — D (p p')y S—(p'+k)I'„(p'+k, p')S(p')yp

(2yr)'

r d rr

+( o')' D- (P P')D .(—P P") "LS—(p"+k)I'.(p"+»P")S(P") S(p'+P" P) 'S—(P')
(2yr)'

yS(p"yk)v-S(p'+ p" p+k) r—„(p'+p" p+k, p—'+p" p)S(p'—+p" ph S(—p'

+S(P"+k)7 S(P'+P" p+k)7 S—(p'+k)I'. (P'+»P')S(P')37'+ (3 5)

we can write

vr here

(k'g"" k"k")p—
D.p $g p (k kp/k')G)D——;—

1/D= k'(1+p),

(3.6)

(3.7)

or in graphical form as expressed in Fig. 3. Again the
same remarks about the gauge expansion are relevant
here. Equation (3.5) is a linear integral equation for
I'„whose kernel is a power series in the exact Green's
function S(p). If we truncate the expansions (3.2)
and (3.5) at the same fmite order, the solutions of the
resulting approximate equations for S and F„satisfy
Ward's identity exactly as a consequence of (3.3) and
(3.4). Thus the approximate values for Zs and Z,
obtained from these solutions for S and I"„are equal.
Hence if we choose the gauge in the truncated (3.5)
so that Z~ is 6nite, then in the same gauge Z2 as obtained
from the corresponding (3.2) will also be 6nite. In
the following we will see under what conditions not
only Zs but also the complete S(p) as obtained from
(3.2) is finite. First let us complete the above discussion

by writing the equation for the D function. D p has
the form

1
S(P) ~—D —B(P')j+

7P

yl it+ A (p')
(3.11)

Perturbation theory yields in general logarithmically
divergent expressions for B(p') and A (p'). These

for the current. ' The tensor structure of the left-hand
side of (3.8), which expresses current conservation,
is a consequence of the fact that the S and j. „, which
appear on the right-hand side of (3.8), are related by
Ward's identity. The property of p necessary to ensure
that D~1/k' as k' —s ~ is p —s0. This property
hinges upon the behavior of I'„, which will be discussed
in our next paper.

Let us now analyze the expression (3.2) for S(p).
We wish to fmd if it is possible that a solution to (3.2)
exists which has the asymptotic property

1/S(p) ~ yp+mp (3.9)

as p' y ~. The general form for 1/S(p) is

1/S(P) =yP(1+B(P'))+yyitt+A (P') . (3.10)

Condition (3.9) is then equivalent to the conditions
B(p') —& 0, A (p') ~ 0. Thus, as p' —& ~, we must have

= —Mp Try)"
(2tr)4

S(p+k/2)I'"(p+k/2, p —k/2)S(p —k/2) + ~ .4 4

c) 1ty 4) ' 4)

+=~(p)+—
I

k—— S(P) (3.8)ap„24& ap ap„

The additional terms in (3.8) are the contributions of
the path integral from y to x used to make S(x,y; A)
gauge invariant before using it to generate an expression

Ip ls Syrnboltzed By g. For o Discussion of C, See Section itr

FIG. 3. Equation for vertex function.

' J. Valatin, Proc. Roy. Soc. (London) A222, 93, 228 (1954);
J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
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divergences in the functions 8 and A can be isolated
in terms of two divergent constants A' and 8' which
are the values of the functions A(p') and B(p') on the
mass shell. A' and 8' are gauge-dependent, while
the self-mass 8m= nzB—'+A' is independent of the
gauge constant G. One might then hope to find a gauge
in which the self-mass divergence is completely con-
tained in A'. In such a gauge 8' is finite and hence also
the function B(p'). Of course this gauge is just the
gauge which makes Zi finite in (3.5) as mentioned
previously. Now the only source of the Dirac matrix 1
in our equations is the mo term in (3.2), since the
coupling alway introduces an even number of y„
matrices. Hence, it is clear that the self-mass divergence
must be proportional to mo. Indeed, we see that the
most divergent contribution to A arises from inserting
1/zp+m, /p' for S in the right side of (3.2) and retaining
the terms linear in mo. This suggests that if ma=0,
then perhaps the term A can "generate itself. "That is,
the resulting„homogeneous equation for A may have a
nontrivial solution. In this case perhaps a completely
finite solution to (3.2) is possible. We will show that
this is indeed the case if we in addition continue to
assume that D(k') -+ 1/k' as k'~ ~.

We being by analyzing the erst approximation to
(3.2).

=yp+mp
S(p)

(dP')
+ o' D. (p p')~S(p')~' —(312)

(2')'

Under the assumption (to be verified) that the asymp-
totic form of 1/S(p) is completely characterized by the
contributions from large p' to the integral in (3.12), we

get from (3.10), (3.11), and (3.12),

&PB(p')+A (P')

(dP')

,D-~(p P')~,I 1+B (P")3—
(2m.)' yp'

no+A (p")
pP

P~2

which is valid as p' ~ ~.
The above equation then separates into

(dP')
B(p')&p=

'
o'

(2m)' yp'

x~&I 1yB(p"j, (s.is)

(dp') rmo+A (p"))
A(p')=&~' v 7'D-~(P P')I, I

—(3 14)
(2m)4

as p2~ Go.

Equations (3.13) and (3.14) then serve to determine
the leading contributions to A (p') and B(p') for large
p'. If we put D(k') = 1/k', (3.13) yields a logarithmically
divergent B, unless we choose G= 1. In this gauge (the
Landau gauge), the contribution of the asymptotic form
of D, i.e., 1/k', to B according to (3.13) is zero, and
hence the asymptotic form of 8 depends upon the
leading deviations of D(k'-) from 1/k' at high k'. For
example, if D 1/lP—~ (1/k') (1/k') ' then one can show
from (3.13) that B(p') -+ (1/p')' for small e. In any
case in the Landau gauge the infinities in (3.9) appear
only in the equation for A (p'). However, if mo=0, then
(3.14) has perfectly finite solutions. For in that case it
becomes

A (p') = —sit, p'
(dp'), A(P")

D(P—P'), (3 15)
(2s.)4 pI2

Equation (3.15) is solved in Appendix A. For small

no the solution is

A (P2) —A (1/p'2)3ap/4w (3.16)

where Ao is an undetermined constant. In obtaining
(3.16) only the asymptotic form of D, (1/k'), was used.
If D—1/k' —+ (1/k')(1/k2)' then this would produce
corrections to A of the form (1/p')' »'~'. Now we must
add to Eq. (3.2) the condition that the electron has a
finite rest mass m; 1/S= 0 when yp = —m. Since there is
no input mass or scale in the theory we are free to
choose the scale of energy to be the physical mass m of
the electron. Then we require that 1/S= 0 when

yp= —1, and that 1/S has no other zeros. In order to
impose this condition, it is necessary to investigate
Eq. (3.2) in the nonasymptotic region. That is, if we
imagine integrating (3.2) down from large p' beginning
with (3.16), then the solution will be a function of two
parameters 0,0 and Ao. We must select Ao to fit the
condition that the physical mass of the electron is one.

Since the asymptote to A, Ao(1/p')'"'~4, "replaces"
the bare mass in the theory, and because at low mo-
menta this acts in the equations for small no essentially
like a constant, the parameter Ao may be regarded in
that domain effectively like a "mechanical" mass. In
the traditional view the mechanical mass was a param-
eter chosen to fit the constraint that the physical Inass
be m. Here, A 0 replaces it. It, however, can be calculated
with perturbation techniques and has an expansion of
the form A o

——1+noai+
We now proceed to analyze the next approximation

to (3.2),

1 (dp')
=&P+&«' D-~(p P')~ S(p')7'—

S(P) (2~)4

(dP') (dP")—(~~o')' D-s(p P')D" (P P")~— —
(2m)'

XS(p')7"S(p'+P" Ph'S(p')7" (3 1&—)
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In this case if we use the Landau gauge and insert
S—~ 1/yp' into the above equation, a logarithmic
divergence develops in the second term. This is, of
course, to be expected, and we must thus regauge so
that the vertex equation corresponding to (3.17) yields
a finite Z~. This is done in Appendix 8 and yields

k kp 3uo)
D p

—+ g s— 1—
i

D(k').
8 i

(3.18)

where g(ao) will be given as a power series in no. To
compute g(no) correctly to order aP, all terms in Eq.
(3.2) up to the eth order are required. It should be
noted that in general the equation for A will have an
nth-order kernel containing lower order vertices which

are finite, as well as "irreducible" parts which contain
A. The former converge, since the lower order vertices
are finite by reason of our choice of gauge in lower
orders. We also assume that the irreducible terms
converge if A vanishes as p' —+ ~. This is clear if one

employs the same arguments that are used to show

that only vertex renormalizations are needed in pertur-
bation theory. Returning to the special case of the
fourth order, from Eq. (3.17) we can compute g(no)
correct to order ao'. This is done in Appendix 8 and we

obtain

If we use the gauge (3.18) in (3.17) and insert
S—+1/yp', then the logarithmic divergence in the
second term is canceled by the logarithmic divergence
in the first term generated by the no term in the gauge
function. It must be remembered that (3.2) is an
integral equation for S(p) whose kernel and whose

gauge has been expanded in a power series in no. Since
the expansion of the gauge function contributes to this
expansion of the kernel, we must consistently keep all
terms of the same order in the kernel. We can solve

(3.17) asymptotically by inserting (3.10) and (3.11)
(with nzo=0) in (3.17) and linearizing the resulting

equations in A and B. The terms in A2 and B2 fall off

even more rapidly. Equation (3.17) then breaks up
into two linear integral equations for A and. B. The
equation for B, because of the choice of gauge, has an
inhomogeneous term which is finite and vanishes with
D= 1/k'. However, as before, in order to determine the
dominant behavior of 8 for large p', we need to know

the corrections to the high-k limit of D(k'). The equa-
tion for A (p) is written in Appendix B. On dimensional

grounds one can see that there is a solution of the form
A(p')=A (1/p')' In fact, it is clear on dimensional

grounds that if we continue the expansion of (3.2)
to higher orders, the asymptotic form of the solution
for A(p") will be

(3.19)

Let us summarize our results. Under the assumptions

(1) k'D(k') —1 —+ 0 as k'~ ~ (3.21)

(2) mo ——0. (3.22)

We have established according to (3.2) a perturbation
procedure for the calculation of the asymptotic form
of the electron Green's function. The result is

1/S(p) =7pL&+&(P')]+A(p'), (3 23)

where B—+ 0 in a manner determined by the corrections
to the limit (3.21), while A is given by (3.19). To
fourth order the exponent g(uo) is given by (3.20).
Naturally, we can say little about the convergence of
the power series for g(no). One might remark, however,
that many fewer terms arise to contribute to g in a
given order, than contribute to 5 in renormalized
perturbation theory in the same order.

Of course, everything hinges upon the fact that
D(k') 1/k', as k' ~ ~ .. It should be emphasized that
the perturbation method developed here is valid only
in the asymptotic region. (3.12), (3.17), etc. , will not
necessarily be valid equations treated in a nonperturba-
tive way for finite momenta. In that domain, ordinary,
renormalized perturbation theory should be used.

IV. VERTEX AND WARD'8 IDENTITY

From our previous discussion it is clear that (3.5)
possesses finite solutions for F„even in perturbation
theory. The interest of studying this equation in a
nonperturbative approximation arises when we want
to compute the electrodynamic contribution. s to p(k')
according to (3.8). From (3.8) it is clear that the
precise nature of the asymptotic corrections to F„must
be known in order to calculate these corrections to D.
We will study this problem in detail in our paper on
the D function. In this section we will discuss the
relation to the solutions of (3.2) and (3.5). The purpose
of this discussion is to indicate that a certain amount of
care must be used in giving unambiguous definitions to
the conditionally convergent integrals that arise in
these equations to ensure their consistency.

In the 6rst approximation the equation for S has the
form (with mo ——0),

S(p) 1/yp

as p-+ oo, then the integral

(4.2)

(~P')
=7P+i~o' D s(P P')'r S(P')y&. (4.1)—

S(p)

We have shown that in the Landau gauge, the right-
hand side contains no divergence. However, if we
assume that

3no 21 (no)
g(~o) = +—

I

—
I (3.20) (4.3)

(dp')o~o',D-p(p p')V,V'—
(2m)' yp'
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If we differentiate Eq. (4.1.) with respect to p we
find

='y +SepP
Dpi, S(p)

=P —Mo

(~p') ~
&. (p p)~™s(p')~'-

(2pr)' Bpg

(~p') ~
(D (p —p')& s(p')&&)

(27r)' Bpg'

(~p')
+pep' D.p(p —p')v, S(p'h' (45)

(2pr)' Bp),
'

is of course, at best only conditionally convergent. If
the evaluation is made with the rule that the integral
is performed using hyperspherical coordinates and the
integrations over the angles of the vector p' are done
first, then the value zero is obtained for (4.3). We shall
assume that it is possible to evaluate such conditionally
convergent integrals in each order, to obtain the value
zero, so that a finite Zs will mean that S(p) is always
asymptotically 1/yp. We give such a method below.
This method will be equivalent to a calculation of Z2
from the imaginary part of the mass operator by
means of the spectral representation

1 r(k)
=yp — dk— (4.4)

S(p) k+yp

A finite Zs means that r(k) is such that

j'(dk/k')r(k) (~.

1 3o.'p)
=yp 1— I+pep'

s(p) s &

(dk)
D-e(I)v S(p+I)v',

(2m)'

freely translate the momentum variables by constant
vectors. We may thus anticipate that in general the
vertex equation will have an inhomogeneous term
which is a finite function of o.o multiplying y„, which
can be evaluated in any order by replacing, for zero
momentum transfer at the vertex, S(p) and D(k) and
I'„(p,p) by their exact asymptotic forms (1/yp, l/k', y„)
in the integrals. The result will be that the infinite
series in the equation for F„will give a series of constants
multiplying p„, since F„ is dimensionless, and all
logarithmic divergences have been canceled. Thus, with
an appropriate choice for the constant we will get
I„—+ y„. This will guarantee that the asymptotic forms
for 5 and I'„are consistent, and that Ward's identity
(gauge covariance) will be satisfied. Since in the vertex
equation, free translation of the momentum variables is
permitted, we shall assume as a standard form that
the external momentum always appears in the electron
functions and not in the photon functions. Then if we
go backwards to get the equation for 5 from that of
I"„, the integration by parts in (4.5) is avoided. How-
ever, we then obtain, as our equation for 1/S(p), one
in which the inhomogeneous term yp multiplies the
constant C(np). However, we know from the discussion
above that 1/S —+Vp. In fact, it is easily verified that
if we translate the momentum in (4.7) and integrate,
we get instead of (4.1)

where the rule is now to integrate symmetrically over k.
If we proceed in this manner in the general case, we
obtain an unambiguous equation for 5 with the asymp-
totic behavior for S, S—+ 1/yp.

If we evaluate the second term in this expression we
find that it is equal to —(3o.p/Ss. )pi, so

V. CONCLUSIONS

(dp')=v~1 1— —seo', D-e(p p')v"—
Bpg S(p) 5 Spr (2n.)'

xs(p') Is(p')Ve. (4.6)
Dpi,

' S(p'))

Consequently, if we wish Ward's identity to hold, then
the vertex equation must be (in this approximation)

tt 3npl (dp')
~ (p+» p)=& I

1—
I

—'o' D-s(p —p')
Ss ) (2z.)'

x7-s(p'+~)l. (p'+» p')s(p'h~ (4.~)

rather than (3.5), which was obtained from the formal
derivation. %e see that this minor ambiguity in
momentum-space integration (or in coordinate space,
in functional differentiation) results from the fact that
the self-energy integrals are only conditionally con-
vergent. Thus, free changes of the intermediate-
momentum variables is not permitted. This defect does
not persist in the equation for the vertex and one may

Ke have developed a pertulbatlon theory for
quantum electrodynamics based upon a power-series
expansion in the "bare" or unrenormalized coupling
constant no, which yields a finite result for the "re-
normalization" constants Zi(=Zs) and self-mass bm, ,
provided only that neo ——0, that is, that the electron,
mass is totally dynamical. The only assumption made
is that this same perturbation theory and all other
interactions yield a finite value for the charge renorrnali-
zation Z3. Ke have found that this solution is obtained
without restriction on the coupling constant. ' We have
seen that the mass term was obtainable as the result
of the fact that a homogeneous linear integral equation
has finite solutions for all values of the coupling
parameter ao.~ Thus, one can view the mass as self-
generating in virtue of the singular nature of the
relativistic coupling which provides an integral equation

7 This kind of idea was first clearly expressed by Y. Nambu and
G. Jona-Lashno, Phys. Rev. 122, 345 (1961).
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with a continuous eigenvalue spectrum. If we attempt
to "force" a mass on the fieM by driving the system
with a mechanical mass, then we obtain divergences.
The requirement of a finite physical mass then acts
as a normalization condition which fixes the scale of
the solution of the homogeneous integral equation.
We accordingly see that the "symmetry-breaking"
character of this solution is the result of the fact that
there is a certain "eigenvalue" character for the coupling
which, however, holds for a continuous spectrum of
eigenvalues, rather than for a discrete set as in non-
relativistic examples. As has been previously suggested,
the fact that this integral equation has such solutions
does not necessarily imply' the existence of zero-mass
scalar (or pseudoscalar) states. '

From the point of view of the renormalized functions,
the result we have obtained could be expressed by
observing that if one could compute S(p) to all orders
in a, and then examine the asymptotic behavior of the
sum, one should find that, in our gauge, S(p) —+

1/7p+ (1/p')A, where A —+ 0. That is, if one computed
the mechanical mass, one would obtain, as a result,
zero, not, as usually is assumed, a result proportional
to the physical mass.

There remains the basic problem of studying the
charge renormalization. We shall do this in a subsequent
paper.

We also see that it does not appear as if within a
purely electrodynamic context that the y-e mass
difference can be understood. "The coupling between p,

and e comes only through the vacuum polarization and
our basic assumption (Zs finite) has been that this
does not influence the asymptotic form of S. Hence it
would appear as if an arbitrary mass ratio is allowed,
since asymptotically, the electron and the p-meson
Green's function would obey uncoupled homogeneous
equations, and hence we would seem to have the
freedom of two constants Ap, Ap„ to' be used to fit an
arbitrary mass ratio.
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s= ', (1W-(1 3n—/~)'&'j (A4)

Since, however, (A2) is only valid for small ns, this
means

e= 1 3ns/47I q

= 3np/4s-.

Although both of these solutions obey (A1) separately,
only the lower one is consistent with the requirement
that the asymptotic domain (large p'&p) contribute
primarily to the function A.

APPENDIX 8

To determine the gauge in which Z2 is finite in this
case it is most convenient to use the equation for the
vertex rather than for S. To obtain the "divergent"
parts we can then put S-+ 1/7p, D~ 1/k' and the
external momentum equal to zero. If we let

kkpf np ) 1
D-p"= r-s , I

1—+—7 I—
i k

in the second-order term and use D p' in the fourth-order
term and require a cancellation of divergence, we
obtain an expression for p. Thus we require that

(dk) 1 1
~~p' D.p"y —vt —v~

(2s-)' 7k 7k

(dki) (dk,)+ (ice' ' DepkjD 'k) s( ) "(s)7
27r '

1 1 1 1 1 1 1
X 7i 7y 7s + 7' 7i 7s

ykg yk3 yk2 ykj yk3 yk3 yk2

+ 7. 7~ 7~ 7" (B2)
ykg yk3 yk2 yk2

APPENDIX A

When the vector p' is space-like ()0) we can use
hyperspherical coordinates in Euclidean space. In this
case (3.15) becomes

3Qp 1
A (p') = dp" A (p"),

4s. p p)'
where we use the fact that the average of D(p —p')
over all angles of the four-vector p' is simply

(D(p —p'))=, „, (A2)

Equation (A1) can be solved either by simply substi-
tuting A = (1/p') 'Ao, or by observing that the solution
to (A1) also obeys the differential equation with p'=x,

—x'
I

=— A (x). (A3)
dx dxi 4~

If we put A(x) = (1/x')Ao we obtain from the differ-
ential equation two solutions
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In this case, if one car iwhere for small e, +(~)
e will be left without lntegra lotlons over the momenta one wl

h X~ m wiu approach
~ ~ and ),, whlca function p '

will be Prol~orat is, the second term w

"dA.—g(»P'),
p

p,+p, . Only the middle term,be finite where 3=
" th- der graph in Fig. &,to the first ourcorresponding
th the no' contributio n froms. To cancel that wit

e second-order g p q
h t ibutions of thWe then may compu e

To do thisfourth-order ' ',
f th lectron green'~ «ncwe substi, fute»to

tion the expression

1/»+~(p')/p',

rth-order terms retain on ynl the contribu-
~. We then o tain e

h h 1accurate in eth asymptotic region in y
coordinates.

3+0) ( pd ') ~(p")
~(p')= o'~ 3+

—.: '"""".,(-p). (p-p)
(2m)'

1 A (p'+p" —p) 1

7 ' (P'+P" P)' ~p—
A (P'")-

v
' v(p'+P" —P) P'"—

tel b counting powers thathat ifIt follows immediate y y c tha
&' then the second term —+

(th t is that the integralsprov~ding on y1 that e&0 t at is,
ll e one may use theTo evaluate for sma e, oconverge~. o

representation

X, ') ~ Xo/X. But this means that if
of the second term ofwe want onyt ly the contributions o e se

order 1/e, these will be

dP Xp

»„2X' P

"«Xo &'l' 4(1)'
»is' s pl e p

If we evaluate this we find

Xp=0

e ra h is finite in perturbation theory ln
we obtain the equation for ethis gauge). Therefore, we o tain e

correc ot t the second order in ao,

1 corn ute Xo, which is definedTherefore, we need only compu e
by the equation

'""",".. (p) .,(p)Xo= —ep9. p
(2m)'

1

(P'+P") vp" (P'+&)

1 1

"L(p'+P")'+~j'»' »
v" v' v" (&ti)

1 1

v
' ~( '+p") (p'"+&)'-

1=N(e)
d~ 1

o X' (X+1)'

'+' "dX 1

, X P,+P')'
(84) so

3n, no~ 1

S~f.(1—.)


