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Electromagnetic Mass Differences of Baryons and Mesons*
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The four independent baryonic and two mesonic electromagnetic (E.M.) mass differences are evaluated
on the basis of the unitary symmetry model. An approximation scheme is devised and its relation to a
dispersion-theoretic treatment by Cottingham is pointed out. Four contributions to the E.M. mass dif-
ferences are taken into account: the elastic form-factor part, processes which involve the two isovector
transitions (ne-g) and (Z'-A), and what we call the self-induced mass differences. Unitary symmetry is used
to provide values for quantities not given by experiments, e.g. , form factors for strange particles and coupling
constants. An earlier correct result for the pion mass difference is confirmed because it is shown that the chief
contribution is due to the elastic form-factor part. All the observed baryonic mass differences can be approxi-
mately reproduced. The sign of the kaon mass difference can be explained, but the quantitative predictions
for the kaon are still unreliable.

known baryon and meson unitary multiplets confirms
the hypothesis that the M.S. splitting is predominantly
A3' in character. However, no serious dynamical calcu-
lation has been made of the separate M.S. mass dif-
ferences within any of the unitary multiplets (the GMO
formula represents ore relation among al/ the M.S.
mass differences within a given unitary multiplet) be-
cause of our lack of knowledge of the M.S. interactions.
Similarly, the Coleman-Glashow formula' for the K.M.
mass differences within the J=—', + baryon octet is consis-
tent with the hypothesis that the E.M. splitting is pre-
dominantly A &', but here again dynamical calculations
of the separate K.M. mass differences within each iso-
topic multiplet of the J=—,'+ baryon octet are in a
rudimentary stage. Moreover, the Coleman-Glashow
relation is essentially empty of content for the J=O
meson octet. Finally, it should be remarked that the
(&Io—Eve) mass difference is the only known "weak"
mass difference and hence cannot serve as a "test" of
any symmetry-breaking hypothesis, although its sign
and magnitude are of great interest for dynamical
theories.

In this paper, we focus our attention on a dynamical
calculation of the separate E.M. mass differences
within the J=2+ baryon octet and the J=O meson
octet where the numbers are fairly well known by now
(although improved data for the 's would be very
welcome). In Sec. 2, the isospin and unitary aspects of
the E.M. mass-difference problem for the baryon and
meson octets are defined more sharply. In Sec. 3, our
method of calculation is presented and its relation to
Cottingham's4 rigorous dispersion-theoretic approach is
discussed. In Sec. 4, the elastic form-factor contribu-
tions to the E.M. mass differences are considered in
some detail starting with the latest experimental data
for the nucleon, and Sec. 5 treats the other processes
we include in our calculation. Finally, Sec. 6 contains
our results and conclusions.

1. INTRODUCTION

A CCORDING to present conceptions, the masses of
particles of specified spin and parity within a

given SU3 representation should be identical in the
limit of exact unitary symmetry. Actually, no two
members of the same unitary baryon or meson multiplet
possess the same mass (if cognizance is taken of the
fact that a unitary meson multiplet contains both
particles and antiparticles). The observed mass dif-
ferences within a unitary multiplet range in order of
magnitude from several hundred MeV, between the
various subgroups with the same T and I' (T is the
isospin and I' the hypercharge), through several Mev,
between the members of the same isotopic multiplet,
to the very small value of 10 ' eV between the two
members of the neutral kaon mixture. This clustering
of mass differences around three distinct sets of values
makes it natural to ascribe the observed mass spectrum
to three types of splitting:

(1) the moderately strong (M.S.) splitting which is
associated with an A3' symmetry-breaking' term that
conserves T and I' and yields mass differences of the
order of g'm (g' is the M.S. coupling constant);

(2) the electromagnetic (E.M.) splitting which is
associated with an A&' symmetry-breaking term that
conserves lr (but not T) and yields mass differences of
the order of um (cr is the fine-structure constant); and

(3) the weak (nonleptonic) splitting which is associ-
ated with an (Ass+Ass) symmetry-breaking term that
conserves neither V nor T (but requires AI'= 1, AT=-', )
and yields mass differences of the order (G'm, 4)m

(G is the weak coupling constant).
The success of the Gell-Mann —Okubo" (GMO) mass

formula for the M.S. mass differences within the better-

*Work supported in part by the U. S. Atomic Energy
Commission.

t Work begun while the author was a predoctoral National
Science Foundation Fellow.' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (i962).' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

'S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(i96i).

4 W. N. Cottingham, Ann. Phys. (N. V.) 25, 424 (1963).
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2. ISOSPIN AND SU3 CONSIDERATIONS

The most recent experimental values for the E.M.
mass differences of the baryon and pseudoscalar meson
octets are given in the center column of Table I. As de-
fined there they are positive, and we shall consistently
refer to them in this fashion. It is to be noted that in
three of six cases the neutral member of a pair is heavier
than the charged one. From a simple-minded point of
view, the self-energy of a charged particle is positive as
is the field energy of a magnetic dipole; furthermore, a
spinless particle cannot carry a magnetic moment. In
such an approach, one can understand the signs of 6,
d-. , and 6 . The signs of A~ and 6+ are difficult to
explain because in order to obtain the correct signs,
the magnetic moments of e and Z' would have to be
large compared to those for p and Z+, respectively; this
is known not to be true for the nucleons. The sign of A~
is even more difficult to understand since the kaon is
spinless. Moreover, we shall see that membership of
Ã, Z, and ™in the same baryon octet, and m and E in
the same meson octet, initially aggravates the problem
of understanding the signs of some of the E.M. mass
differences (particularly 6&). Indeed, the subtleties in-

volved in predicting the correct signs of all six E.M.
mass differences are quite considerable.

From the Nishijima —Gell-1VIann formula, Q= Ts
+ I'/2, we see that the charge Q and hence the electro-
magnetic current operator has the isotopic-spin char-
acter of the third component of an isovector plus an
isoscalar. Thus, if the E.M. mass differences are of
second order in the E.M. interaction, that is, quadratic
in the current, the mass operator must have the form:

Dm =a s+a rTs+a„~(Ts)', (2.1)

where e is the index denoting a particular isotopic
multiplet (S is scalar, V vector, T tensor). For the
isospinors (E,N, "), Eq. (2.1) is effectively isoscalar
plus isovector, but for the isovector particles (7r,Z), all

TABLE I. Total mass differences (in MeV).

6-.+Asr ——6+.+6 (2.3)

This is the well-known Coleman-Glashow relation, '
which should hold to all orders in the E.M. interaction.
If, for some unknown reason, the mass operator had the
transformation properties of a traceless tensor Ai' (for
example, first order in the current), we would have the

three terms in principle should contribute. Actually,
since m is the charge conjugate of m+, they must have
the same mass and hence a v =0 in (2.1).This argument
does not apply to the Z hyperons. Until recently it
seemed that 6 =6+ within experimental error, that is,
that the masses of the 5's appeared to obey an equal
spacing rule. This would have implied that up~=0 in
(2.1). However, the latest experimental data (cf.
Table I) yield (6 —6+)= 1.9 so that uP =0.95.

The smallness of the E.M. mass differences led to
isospin invariance where the violation of the exact sym-
metry which produced the E.M. mass differences was
taken to be proportional to the charge (or equivalently
Ts). Within this framework, no relation could be ob-
tained relating the E.M. mass differences of different
isotopic multiplets. The observed grouping of particles
with identical baryon number, spin, and parity into
unitary multiplets leads to the charge (current) be-
coming: Q = Ts+ I'/2 =A i' where A „& a,re the set of
traceless generators of unitary, unimodular transforma-
tions in three dimensions. If the E.M. mass differences
are due to the current, then the mass differences should
be given by Am (A i')", where I= 2 would be expected.
Okubo' has shown that any tensor (Ai')" can be
written as (Ai')"=f(Q, U') where Q is the charge
operator and U is the U spin defined so that (p,Z+)
and (Z, " ) are U spin doublets, [e,(—Z'+v3h. )/2, "'$
is a U triplet and L(%3K'+A)/2) is a U singlet. There-
fore, the splittings of the masses from the "unper-
turbed" values satisfy

M(p) —M(N) =M(Z+) —M(Z) (Q=1, U=-,'),
M(P') —M(g)=M(e) —M(N) (Q=O, U=1), (2.2)

M(Z-) —M(Z) =M("--)—M(=-) (Q= —1, U=-,').
Upon adding the above equations, we obtain

Experimental
value' f=0.30 f=0.35 f=0.39

n~=M (I)—M(p)
z, =u(zo) —u(z+)
z =M(z-) —M(~')
Z=- =M (™-)—3f (™0)
n. =m (~+)—m (~0)

err =m (E')—m (E+)

1.29&0.02
2.85&0.30
4.75%0.10
6.1 &1.6
4.59w0.07

3.9 &0.6

—0.18
3.17
4.81
9.83
4.23

15—35

1.12
3.24
5.47
9.34
4.23

15—35

2.20
3.24
5.98
8.84
4.23

15—35
(c)

(b)

(e)

a The experimental values for A~, d, , and As& are taken from W. H.
Barkas and A. Rosenfeld, University of California Radiation Laboratory
Report UCRL-8030 (unpublished). The earlier measurements of W. H.
Barkas, J. N. Dyer, and H. H. Heckman, Phys. Rev. Letters 11, 26 (1963)
gave the values for. 6+ and 6 of 3.85&0.8 and 4.2 +0.8, respectively, and
led to the speculative equal-spacing rule for the Z masses. The recent values
of R. A. Burnstein, T. B. Day, B. Kehoe, B. Sechi-zorn, and G. A. Snow,
University of Maryland Technical Report No. 382 (unpublished), shove a
rather large departure from this rule. 6 is taken from D. D. Carmony,
P. E. Schlein, W. E. Slater, D. H. Stork, and H. K. Ticho, Phys. Rev.
Letters 12, 482 (1964).

FIG. 1. Diagrammatic expansion of the self-energy of a particle.

' Okubo showed in Ref. 1 that 338=f(Y,T'). This equation for
A I' is similarly proved.
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additional relations:

(2 4)

V

w+- - sr+

(b)
2~or p

(c)

where 3f~q is the "Z'-A. transition mass. " This last
equation actually has more general validity. Okubo'
showed that it holds to first order in both the K.M.
and M.S. interactions. Therefore, SU3 does rot predict
equal Z splitting unless the predominant interaction
transforms as a tensor A~'.

For mesons, the general Coleman-Glashow relation is
empty. If the meson mass operator is assumed to be
proportional to A~', we obtain:

6 =0,
m. ,' = —(1/v3) (mls '—nsx"),

(2 5)

where m „' is the "(~'-ri) transition (mass)'. " The
vanishing of 6 is to be expected because the operator
A&' only has isoscalar and isovector components and

is an isotensor. It follows that the observed 6nite
value of 6 requires at least an (A~')' contribution in
the SU3 language. The rather large value of 6 further
implies that caution must be exercised in stating that
the dominant contribution to the E.M. mass operator
transforms as A~' (cf. Sec. 1); this is also consistent
with the new result for (6 —6+).

3. METHOD OF CALCULATION

In order to calculate the self-mass of a particle, we
must evaluate all contributions corresponding to dia-
grams which have only one line entering and leaving.
Of course, we cannot calculate them all, and so to obtain
an approximation scheme which justifies using only a
few of the more manageable ones, we break them up into
the series shown in Fig. 1. Any given diagram is in-
cluded in one of the classes shown there if its lightest
particle is the one shown drawn separately. In this way,
no diagram is included more than once. We only want
those subdiagrams which distAsggish between different
members of the same isotopic multiplet. Therefore, the
part labeled (a), and any parts of (b), (c), (d), etc. , in
which the separated particle is coupled charge-sym-
metrically to the box, will not contribute to the E.M.
mass differences.

K

K orK"
(4)

~PBBOr $
7T ~ ~r 7F'

(e)
h, M

E h
7r 7r

E
(f)

FIG. 3. Processes contributing to the pion mass difference.

In all parts of Fig. 1., the mass differences of the
particles in the intermediate states will cause deviations
from charge independence even when the coupling is
charge-independent. For Fig. 1(b), which is already of
order e', the mass differences will only give a second-
order correction. However, Figs. 1(c) and 1(d) do re-
ceive contributions linear in the mass differences. We
call these the self-induced mass differences, and denote
them schematically in Figs. 2(e), 3(g), and 4(e) for the
baryons, pion, and kaon, respectively.

Figure 1(a) represents the bare mass of the particle,
and if it violates charge symmetry, that is, if the bare
masses are unequal, then the electromagnetic mass
differences are fundamental physical quantities and not
calculable from other experimentally observed quanti-
ties such as masses and coupling constants. Coleman and
Glashow~ move partly in this direction by postulating
that the tadpole diagrams of Fig. 1(f) contribute to
the E.M. mass differences. Their procedure introduces
one additional free parameter for all the particles, which
parameter is adjusted to optimize the final results. We
shall discuss this point more completely in Sec. 6.

We must now consider the baryons and mesons
separately. Consider the baryons first. If we replace the
box in Fig. 1(b) by the lowest mass state possible, which
is the one-baryon state, we get the diagram shown in
Fig. 2 (a). We call this the elastic form-factor part. The
next state contains a baryon and a meson and so is
heavier. We hope that this and all higher states wil].

give small enough contributions so that we can neglect
them. Two photon states in any diagram give masses
proportional to e', and we may certainly neglect them.
Figure 1(c) can be treated similarly: if the box repre-

8 ~ 8

(b)

pr4~~e Or $

(4)

7

BBB B

(o)

hm

QM

(e)

«or K

(c)

Z(X
K

«~4m ~q

K'or K"

(b) (c)

FIG. 2. Processes contributing to the baryonic E.M.
mass differences.

' S. Okubo, J. Phys. Soc. Japan (to be published).

(4) (e)

FIG. 4. Processes contributing to the kaon mass difference.

' S. Coleman and S. L. Glashow, Phys. Rev. 134B 8671 (1964),
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N N

Fzc. 5. Partial expansion of the contribution of the scattering
process: e+N ~q.D.e'+E+x to the nucleon mass difference.

.(fd, )

(c)

tb)

FiG. 6. Processes
contributing to the
(m —g) transition. In
part (b) the particle
denoted by a is either
a E.'+, E*+,P, or =-.

sents a baryon state, then only that coupling of the
pions to the baryons which violates charge independ-
ence must be considered. The possibility of a transition
between the ~' and the g rnesons' would produce such
an effect. This results in the diagram of Fig. 2(b).
Again, we neglect higher states for this box. The
charge-dependent diagram extracted from Fig. 1(d)
is caused by the transition between the Z' and the A

hyperons, and is shown in Fig. 2(c). For Fig. 1(e), the
existence of a transition between the p' and the ~ or
p' and p vector mesons would give the diagram shown

in Fig. 2(d). However, for reasons which will be seen
later, we shall not evaluate it. The self-induced. con-
tributions to the baryon mass differences are depicted
by Fig. 2(e).

For the mesons, we distinguish between pion and
kaon. For the pion, our approach results in Figs.
3(a)—(g). Fig. 3(a) is the elastic form-factor part; and
Fig. 3(b), the contribution to the z-' self-energy due to
the (7r -q) transition. Actually, Diagrams 3(c)—3(f) do
not contribute to 6 . This can be seen on isospin grounds
alone, since 6 is an isotensor and all these diagrams
behave as isovectors. Alternatively, we can see that they
vanish term by term. Figure 3(c) is of second order
because the (z'-z) transition is already of order e', and
the coupling of r) to (3z-) or to (pz-) is also of order e',
because it violates G parity. Figure 3(d) can be seen to
vanish to erst order in A~, A~, and A~* because the
diagrams with different charge cornplexions cancel.
Figure 3(e) is of order e' because the (p'-a&), (p'-P),
(ro-2z.), and (&-2z.) couplings all violate G parity. The
different charge states of Fig. 3(f) all cancel, just as in
the case of Fig. 3(d). The baryon mass differences in

l

(a)

I

(b)

7 (a) Contribution of the scattering process e+8 —&z D e'
+8+@ to the baryon mass difference. (b) Contribution of the
scattering process: e+8 ~c.D.e'+B+a+a to the baryon mass
difference Lo same as in Pig. 6(b)7.

tron-nucleon scattering to the e-p mass difference. This
calculation includes all intermediate states which have
at least one photon in the self-mass diagram. These are
shown in Fig. 1(b). The elastic-scattering experiments
determine the elastic form-factor part just as usual.
However, he showed that measurement of the cross
section for all energies and angles of the inelastically
scattered electron completely determines the contribu-
tions to the mass difference of all the other states.
Calculating the n pmass difference -in this way is very
difBcult. First, there is the large number of experiments
needed to map out the cross section as a function of two
variables. Second is the difficulty of separating out the
neutron part of the deuteron scattering. Third is the
fact that a large component of the cross section is sym-
metric in neutron and proton. This is the part which
results in excitation of the (s,$) pion-nucleon resonance,
and because Owly the isovector part of the current
operator is effective in raising the nucleon isospin from
sr to zs, there will be no n Pmass sp-litting.

If one believes that the K.M. mass differences are due

the intermediate states of Fig. 3(g) give a self-induced
contribution to d, . A diagram similar to 3(f) but con-
taining two (Z'-A) transitions does give a contribution
to 6, but this turns out to be very small. It mill also
turn out that the contributions of Figs. 3(b) and 3(g)
are rather small, so that the only important contribu-
tion to the pion mass difference arises from Fig. 3(a).
This explains the success of the calculation by Bose and
Marshak, ' who only considered the contribution of the
elastic form factor.

Figures 4(a)—(e} are the corresponding diagrams for
the kaons. Since A~ is an isovector, all processes con-
tribute, including all the isovector baryonic mass dif-
ferences in Fig. 4(e).

We end up with trying to compute the six E.M.
baryon and meson mass differences by considering:
(1) the elastic form-factor parts, (2) the three transi-
tions (7rs-q), (Z'-A), and. (p'-re or Q), and (3) the self-
induced contributions. The elastic form factor and self-
induced parts have mixed isospin character (scalar,
vector, and tensor), while the three transitions are
pure vector.

Cottingham, in a dispersion-theoretic calculation,
related the cross sections for elastic and inelastic elec-

' Riazuddin and Fayazuddin, Phys. Rev. 129, 2337 (1963). ' S. K. Bose and R. E. Marshak, Nuovo Cimento 25, 529 (1962).



MASS DIFFERENCES OF BARYONS AN D MESONS B 1057

to processes which are second order in the electromag-
netic interaction and that all such processes involve
emission and reabsorption of photons, then Cotting-
ham's approach should reproduce the mass differences
correctly. The dif6culty of extracting the necessary in-
formation for the nucleons and also the certainty that
electron-hyperon and electron-boson experiments are
in the very distant future has led us to our attempt to
calculate the E.M. mass differences more indirectly.

A theoretical calculation of the E.M. mass differ-
ences which is in direct analogy with Cottingham's
basically experimental approach would be to insert into
the box of Fig. 1(b) one state after another and to
evaluate as many of these diagrams as is necessary to
reproduce the experimental values. One drawback is
that convergence of such a series is probably not very
good since the masses of succeeding states do not in-
crease very fast (e.g. , E+27r is not much heavier than
E+~). Also, the evaluation of even the first such term
in which the intermediate particles are (X+~) is not
only difficult but also uncertain in that not much is
known about the electropion production amplitude
(especially on hyperons and mesons).

A1though this approach is probably correct, it is im-

possible to carry through. Alternatively, our approxi-

FIG. 8. Contribution of the
scattering process: e+B~g.D.e'
+p(Z')+E or m to the baryon
mass difference.

actor K

mation method enables us to calculate numbers, but
there is no guarantee that we have taken into account
alt the major contributions to the E.M. mass diRerences.
In what follows we shall try to show a correspondence
between the correct dispersion-theoretic method and
our diagrammatic approach. Naturally, there are am-
biguities in drawing the analogy because one cannot
say to what dispersion-theory term particular diagrams
contribute. Consider as an example Fig. 5, which repre-
sents the expansion of the second term in the Cotting-
ham approach. In dispersion theory, we know that the
intermediate state containing both a nucleon and a pion
has the particles on their mass shells, and so each sub-
diagram shown on the right-hand side of Fig. 5 can
only belong to the diagram on the left-hand side of
Fig. 5. However, in a purely diagrammatic approach,
with no mass-shell restrictions, we can cut each of the
last three subdiagrams such that the iritermediate
state is either (y+E) or (y+E+m). Therefore, we.
cannot say if they contribute to the elastic form factor
part or to the electropion production part. We shall
avoid this difhculty by claiming that there is a corre-
spondence between our method and the correct dis-
persion theory treatment if we can reduce our processes
to diagrams which would appear in the dispersion

Fn. 9. Contribution of the
scattering process: e+8 ~o.D.e
+8 to the baryon mass dif-
ference.

I y
Kr q ~~K

others
N

hrnK

K~~~ K

N

A

FIG. 10. Contribution to h~ induced by the kaon mass differ-
ence. This partially takes into account the contribution of the
scattering process: e+E—+q.D.e'+A+X to the nucleon mass
diR'erence.

"S.P, Rosen, Phys. Qev, 182, 1234 (1963).

approach, that is, diagrams with intermediate states
which contain at least one photon. .

When one recalls that the three transitions we con-
sider have an electromagnetic origin and can be repre-
sented diagrammatically by graphs which have a
virtual photon line, then we see that the diagrams we
take are a special subclass of all those entering into the
full calculation. This is represented in Figs. 6 and 7 for
the (~e-q) transition. Rosen" showed that among the
diagrams contributing to this transition are those of
Fig. 6. If we insert these into Fig. 2(b), we get the
diagrams of Fig. 7. Figure 8 is a diagram which arises
from 2(c) if a particular graph which allows the (Z'-A)
transition process to occur is inserted. Figure 9 shows
why it is probably incorrect to include the (p -cu) transi-
tion in this analysis. If this transition is dominated by
the photon pole, it is already included. in the elastic
form-factor contribution. Figure 10 is a schematic way
of viewing the self-induced mass differences. The par-
ticular diagram shown contributes to A~.

Beneath each diagram of Figs. 7—10 are written the
scattering processes to which they correspond. The
letters C.D. underneath the arrows serve as a reminder
that only the charge-dependent part of the diagram
contributes to the mass differences. It is for this reason
that we cannot argue backwards and predict important
diagrams for inelastic electron scattering from processes
which give large contributions to the E.M. mass dif-
ferences. For example, from diagram 7 (a) another
graph for p production can be obtained by replacing g

by ~', and if the @g'y coupling is larger than the Pgy
coupling, it will give larger charge-symmetric scattering
than the charge-dependent one. The charge-dependent
diagrams for the E.M. mass differences correspond to
the cross terms in the cross section, that is, the product
of two partial amplitudes which lead to the same Anal

state but have different internal lines and diRerent iso-

spin dependence. There is no reason to expect that these
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K or &

K orp, Cv

(a)

K or&

y

7r~O
K or 7l i~ ~ K or 7t

~ee~wI

tb)

Fto. 11. (a) Contributions to the mesonic E.M. mass differ-
ences due to vector-meson intermediate states. (b) Contributions
to the mesonic E.M. mass differences due to two-meson inter-
mediate states.

BCi =gepy~pF (j5 8 (3 2)

was used. g is the effective coupling constant, and F&",

p, and p are the photon, vector meson, and boson field
operators, respectively. The width of the decay of E*+
into (E++y) was taken as 1 MeV. This calculation is
quadratically divergent and was cut off at one nucleon
mass. The results are A~ ———7 MeV and 6 = 2.3 MeV.
If the radiative decay width of E*+ is larger, as may be
the case, then the mass differences become propor-
tionately larger.

In view of this poor result, an estimate was made of
the same diagram treating the (K—vr) system as un-
bound and putting the resonant effect into the ampli-
tude for pion photoproduction on kaons. This is shown
in Fig. 11(b), and the result is Arc= —0.17 MeV if the
electromagnetic decay width is again taken as 1 Mev.
The (y+27r) state does not contribute to A„because
the octet model predicts equal photon coupling to
(p+-7r ) and to (po-7ro). Not much more than the sign of
the (E z.) contribution —to A~ can be inferred from the
calculation, because of the divergence in the resonant
approach and because of the approximations made in
the second. The large difference, a factor of 50 between
the two calculations, casts doubt on naive calculations
which treat the resonances as stable particles.

contributions are larger or smaller than the direct ones.
We have done some approximate calculations which

correspond to the 6rst state heavier than the elastic
form-factor part in the Cottingham approach for the
kaons and pions. First, the intermediate states were
taken to be a photon plus a vector meson resonance as
shown in Fig. 11(a).The relative couplings were taken
from unitary symmetry, " and a,re:

M (K'+ —& E++y) =M(p+ —+ 7r++7)
=M(p'~ x'+y) = ',M(IC*'~—K-'+y)

= (1(v3)M(a& —+ m'+y), (3.1)
where a Hamiltonian

Gg+= G„; G, = ——;G„=(Iga3)G.,= ——',G„-;
Gz-= G„-.-= —G„—G„; Fir+ =F; Fico ——0. (4.1)

Here the G's are the electric and magnetic form factors
of the baryons and the J's are the electric form factors
of the mesons. G~~ is the form factor for radiative Z'
decay. If we remember to include the diagram for the
Z' in which the intermediate state is A+y and if we
neglect rather small corrections due to M.S. mass dif-
ferences, we obtain for the elastic form-factor con-
tributions to the E.M. mass differences:

mass difference. Feynman and SpeisInan' derived the
proper relation and used it to show that the nucleon
mass difference could be understood if suitable cutoff
functions were introduced for the form factors. Marshak
and Sudarshan" did the same thing for the Z hyperons
and showed that for certain ranges of values of the
magnetic moments of the Z's, the experimental masses
could be reproduced. This early work must now be
reconsidered as will be shown below.

Riazuddin" derived the relation between the boson
form factors and the E.M. mass differences using dis-
persion theory. Cini, Ferrari, and Gatto" extended this
to fermions and obtained a result identical to that of
Feynman and Speisman. In both cases, the usual ques-
tion of subtractions in the dispersion relations creates
an uncertainty whether the derived expressions cor-
rectly give the mass differences. These subtraction terms
are determined by requiring that the final result becomes
equal to the perturbation-theory expression when the
form factors are taken to be unity. If this method is
accepted, then once the form factors are measured,
their contributions to the E.M. mass differences can be
evaluated. The only form factors determined so far
and, practically speaking, the only ones likely to be
measured even in the distant future, are the nucleon
form factors. We shall not be able to proceed with our
over-all program unless we can derive at least approxi-
mate expressions for the form factors of the hyperons
and mesons. There are a number of ways to do this, and
until a method can be developed to discriminate among
them, they are all equally believable.

The first and simplest way to deduce the other form
factors is to make use of unitary symmetry and impose
the condition that the current operator transforms like
the charge —that is, as the A ~' component of a traceless
tensor. This yields the relations which were originally
given for the magnetic moments'.

4. ELASTIC FORM-FACTOR CONTRIBUTIONS

If the electromagnetic form factors of a pair of par-
ticles are known, then a simple weighted integration
over the momentum-transfer variable gives the con-
tribution of diagrams 2(a), 3(a), or 4(a) to the E.M.

"S.Qkubo, Phys. Letters 4, 14 (1963).

tn l,= nzrrhir, (4.2)—
"R.P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954).
'3E. C. 6, Sudarshan and R. K. Marshak, Phys. Rev. 106,

599 (&957).
n Riazuddin, Phys. Rev. 114, 1184 (1959).
'5 M. Cini, E. Ferrari, and R. Gatto, Phys. Rev. I,etters 2, 7

(1959).
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ind. ependent of the values of the nucleon and meson
form factors.

The second and third methods involve constructing
the form factors by determining the coupling constants
of the vector mesons po, co, and g to the particle in ques-
tion and to the electromagnetic field. If we can deter-
mine the SU3-invariant coupling strengths of the vector
mesons to the baryons, and also the strength of the
photon —vector-meson interaction from the nucleon form
factors, then we can write down the hyperon form fac-
tors in terms of these parameters. This assumes that
the experimental values for the nucleon form factors
are well 6tted by three resonance terms with masses
at the po, co, and P masses. Unfortunately; this is not
possible and one or two cutoff masses are also needed. "
This introduces an arbitrariness in that the strengths
of these cutoff terms are g.ot known because their uni-
tary properties are not known. This difhculty does not
arise for the charge form factors, because the zero-mo-
mentum-transfer values —that is, the electric charges-
are known. We can circumvent the difliculty for the
magnetic form factors as well only if we know the
magnetic moments of the various particles. It may be
that departures from exact unitary symmetry are small
for the magnetic form factors at zero-momentum trans-
fer. In that case, we can use the usual relations for the
magnetic moments' (ps+= p„; pEO

———rap, „;etc.). If this
were not true, then we might as well use the first
method [i.e., (4.2)], and only consider it an order-of-
magnitude estimate.

If we are willing to match the magnetic moments as
given by unitary symmetry, then we can allow for cutoff
masses in the form-factor expressions. Even under these
restrictions we can. construct at least two sets of form
factors. The first uses particle mixing in the manner of

Okubo' and Sakurai ' and the second used the vector
mixing procedure of Coleman and Schnitzer. " In
Okubo's method, the "bare" particles coo and go are
members of a nonet in unitary space described by a
tensor W„&= V„"+(1/&3)8„~go. Here V„& is the traceless
tensor containing the octet members E*,E*,p, and coo,.
and Po is a unitary singlet. These are coupled to the
baryons by means of D- and F-type couplings and to
the pseudoscalar mesons via E-type coupling only. The
effective photon —vector-meson coupling is

5('r =g[p,'+ (1/~»o„j&", (4 3)

where g is the photon —vector-meson coupling constant.
The "physical" or observed particles &o and g are related
to the bare ones by

co = (1/v3) (roo+~2$o); 0&
= (1/v3) (~2roo Qo) ~ (4 4)

We now construct a fit to the nucleon form factors
in the following form:

nz, MS pzMS y,z, MS
Gz MS= + +

m„'—t mp' —t M' —t

nE, M pE, M
GEMV= +

mp' —t M' —t

(4.5)

where M is a cutoff mass. The particle-mixing method
imposes the following two conditions on the parameters:
ng, M =snE, M and Pg, M = s(1 2fg—, M)ng—, M

fz M/(1 fz, M) are —the ratios of Ii to D-type co-upling
of the vector-meson nonet to the baryon octet for the
electric and magnetic form factors. The resulting values
for the parameters are:

s —7 4F—2 ~

ng~ ——22.2;
~~s 26 1

n~~= 78.3;

p v—

PM'=

PM'=

—25.7;
62.6;

—76;

pzs 132 F &s 124 F 2'

fE= —3.95;
~~8= —88.6 F '

fM=

3P=25 F—'
(4 6)

This fit matches the experimental values and slopes" at
zero-momentum transfer. It also reproduces the experi-
mental observations" up to t= —100 F ' except for G~".
At t= —45 F ', it yields Gz"=0.06 against the experi-
mental value of 0.124&0.040. These discrepancies for
large t are not very important for the E.M. mass dif-
ferences, because the largest contributions to the latter
come from the range —2M~'&t &0.

"L.N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys.
35, 335 (i963).

'r S. Okubo, Phys. Letters 5, 165 (1963)."J.J. Sakurai, Phys. Rev. Letters 9, 472 (1962); Phys. Rev.
132, 434 (i963).' S. Coleman and H. Schnitzer, Phys. Rev. 134, 3863 (i964).

'0 K. W. Chen, A. A. Cone, J. R. Dunning, Jr., S. G. F. Frank,
N. F. Ramsey ei oL, Phys. Rev. Letters 11, 561 (1963).

Unfortunately, constructing the form factors on the
basis of particle mixing has forced us into a serious
difficulty. The large values for the f parameters —1.1
and —3.95—cause some of the hyperon coupling con-
stants to be very large, and this in turn causes the con-
tributions to the K.M. mass differences to be un-
believably large. The actual results using (4.6) and
constructing the hyperon form factors via particle
mixing are:

A~ ———0.80; 6+———5.32; 6 = 13.2;
6;=20.8 (in MeV). (4.7)

These poor results make us turn to the vector-mixing
theory" to construct the hyperon form factors. The
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chief difference between the two methods is that with to the baryonic current and all 10 of the parameters
the vector-mixing method, the bare gs meson is con- cr, P, y are independent. This produces the following fit
sidered to have its own independent coupling constant for the nucleon form factors:

zs yg 2F—2.

~~v 24 6

~s 20 4

e~v= 84.9;

P~s= —12.3 F '
pgv= —27.4;
P~'= —22.7;

phrs= —8o

yg ——0 3P=22.8 F '
7 S=o

(4.8)

1 ( am, ' (1—a) hh')
s J"-=Fx'=-I, +

2 imp' —t M' —t
(4 9)

1 (0.271am, ' 1.39am p' (1—g)~'
Pres

~

'+ '+
2k m„'—t M' —]no@2—$

where M is a cutoff mass taken to be the same for the
isoscalar and isovector parts, and a is an unknown
parameter. For complete p" dominance of the vector
form factor, a= i.

The results for the baryon and meson mass differences
are presented in Table II. The 6rst number is the value
calculated by using the fit (4.8) for the nucleon form
factors and constructing the hyperon form factors
through vector mixing. For the mesons, we use (4.9).

"D. G. Wilson (private communication).

Experiments are not yet sufficiently detailed to fix
the parameters pz ~8, so that for simplicity we take
them to be zero. If they were nonzero, then the values
of ns, hrs and Pa, hra would change, perhaps as much
as by a factor of two. This would not alter 6& much,
since the parameters are chosen so that the form-factor
expressions match experimentally observed curves, and
it is these curves which determine the contribution to
6&. The hyperon mass differences could change by one
MeV or so because of this uncertainty.

The resulting expressions (4.8) match all the electron
scattering experiments quite well; however, they do not
satisfy the relations

Ghr" r (t =+err') =G~" "(t=+43Erh')

relations which, as emphasized by Wilson, " are neces-
sary in order that the annihilation cross sections for
proton-antiproton and neutron-antineutron at rest be
isotropic. This is not too serious a fault, because we do
not expect the form-factor fits to be exact, but only to
describe the experimental observations in a certain
region, in this case, t&0. Near t=4M~', large-mass
terms will be important, whereas for t(0 they are
negligible. We do not write out the hyperon form
factors here, but refer the reader to the paper of Cole-
man and Schnitzer" for a description of the vector-
mixing method.

For the pseudoscalar mesons, the form factors con-
structed using the vector-mixing method are:

The number in the parenthesis is the value obtained by
still taking (4.8) for A~ and the same expression (4.9)
for F, but using the relations (4.1) to get the hyperon
and kaon form factors. In all cases, the charged par-
ticles receive larger contributions than the neutral ones
because the neutral ones have small charge form factors,
and the magnetic moments of the baryons, according
to (4.1), a.re all of the same order of magnitude. The
pion mass difference can almost be correctly given if
a=1, but the kaon mass difference has the wrong sign;
indeed, 3 is greater than zero and A~ is less than zero
for all values of a. The quantity 6 —6+ receives a
sizeable contribution, near 2 MeV in both cases, and
this is essentially the observed value (cf. Table I).

5. OTHER CONTRIBUTIONS

If we compute the contributions to the E.M. mass
differences of diagrams 2(b) in perturbation theory and
use an interaction Hamiltonian for the (m'-rt) transition:
Xr=m „'p hg„, we obtain convergent results. This is
because of the k 4 dependence of the effective pro-
pagator for the (7r'-rt) system:

G(k') =im '/t (k' —m ')(k' —m ')j. (5 1)

If we use the value for m, ', the (n'-rt) transition (mass)',
of —0.16m ' derived from unitary symmetry, "we ob-
tain undesirable results. All the baryon mass differences
receive negative contributions if the meson-baryon
couplings are given in the usual SU3-invariant way with
the f parameter a,t any value greater than 0.25. How-
ever, it was pointed out by Hori et al. ,

" that the 3m

decay amplitude of q vanishes when calculated in this
way if the four-boson interaction is assumed to be
unitary symmetric. This is because the two diagrams

TABLE II. Elastic form-factor contribution (in MeV).

—0.85 (—0.85)—0.61 (—0.88)
(0.93)

2.30 (1.27)
6.60—2.91a+0.42a'; =4.11 at a=1 (same)—2.52+0.29a —0.64a'; = —2.87 at a=1

(—2.52+0.78a—0.09a'; = —1.83 at a=1)

"S.Okubo and B. Sakita, Phys. Rev. Letters 11, 50 (1963)."S. Hori, S. Oneda, S. Chiba, and A. Wakasa, Phys. Letters 5,
339 (i963).
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TmLE III. (2-2—q) transition contribution (in MeV).

—8.48(1—4f)
16.7y(1—y)
16.7f(1—f)
8.25 (1—4f')
0.12

0.23 (from E') '

j'=0.30

1.70
3.50
3.50
5.28
0.12

18—32

f=0.35

3.40
3.80
3.80
4.20
0.12

18—32

f=0.39

4.75
3.96
3.96
3.22
0.12

18—32

for p decay, one with an p pole and the other with a x'
pole, cancel because they differ only by a relative
minus sign.

Barrett and Barton'4 remedied the situation by
effectively studying the k' dependence of the transition
(mass)', m „'. They evaluated the (zrs —2)) propagator
in the form:

G(k') =zR„/(k' m'—)+iR /(k' —m ')+o(k') (5.2)

where o(k') is the contribution of intermediate sta, tes
other than x' and g, and E.„, are two parameters which

they evaluated by relating them to the E.M. mass
differences of the baryons and to the meson-baryon
coupling constants. The values they find, namely
R„= (2 to 4) &&10 ' and R = —(1 to 2) &(10 ', can ex-
plain the partial width for 2) ~ 32r. If we ignore o.(k'),
this is equivalent to taking the transition (ma, ss)' to
be given by:

m „'=k'(R„+R ) R„m—' Rm—„' (.5.3)

For most of the range of k' (k2(m„2) this is a positive
quantity, in contrast to the constant value —0.16m '
used previously, and we can expect to obtain positive
contributions to the E.M. mass differences. Now the
calculation is logarithmically divergent, however, and
requires a cutoff. We use a cutoff of one nucleon mass
consistently throughout. These results are shown in
Table III for three values of f: 0.30, 0.35, and 0.39,2s

Lf/(1 —f) is the ratio of F to D-type coup-ling of the
pseudoscalar mesons to the baryons5.

For the mass difference, 6, we must evalun, te Fig.
3(b). It contributes an amount m „'/L2m (m„s—m ')5
=0.12 MeV; this same value is obtained if we use the
value —0.16m,2 for m „' or evaluate it from Eq. (5.3)
at k'=m '.

Figure 4(b) is the relevant diagram for Air. K' is the
presumed scalar (K-zr) resonance at 725 MeV. Its
width wn, s taken as the maximum vn, lue allowed by
experiment, namely 15 MeV. K* is the vector resonance
at 888 MeV, which has a width of 80 MeV. The cou-
plings invariant under unitary symmetry nre:

e'er =gLK'(~ 22—rz/~3K5+ c.c.
+ig'((r&"K„*)(~ zz+V32))r')„K5+c c (5.4). .

'4 B, Barrett and G. Barton, Phys. Rev. 133, B466 (1964).
"A. W. Martin and K. C. Wali, Nuovo Cimento 31, 1324

(1964). These authors determined the value 0.39 for f.

The operator r&" is introduced into the (K*Kzr) inter-
action to maintain invariance under the "gauge" trans-
formation for the K* field: K„*—&K„*+r)„A, where
A is a strangeness-carrying gauge field. We impose
"gauge invariance" even though the strangeness-chang-
ing current to which E* is coupled is not conserved,
mainly to remove a divergence of very high degree.
Figure 4(b) is biquadratically divergent if we do not
impose "gauge invariance" —that is, tn, ke 7-1""=gj"" in
Eq. (5.4), and then the contribution to Air is —32 MeV
for n. cutoff of one nucleon mass. However, if we make
the interaction Hamiltonian "gauge-invn, riant" by tak-
ing the familiar form for g&":

r/lP —ggv circ) v/c)2

the divergence is reduced to n, more acceptable loga-
rithmic one. Unitary symmetric coupling of particles is
expected to describe physical reality only in the limit
when all unitary multiplets hn, ve identical mn, sses. In
that case, the currents would be conserved and gauge
invariance should be imposed. Since there are mass
differences and in this case the E-m. mass difference is
the one we are ignoring, we can expect to make large
errors, but perhaps the sign of the resulting contribu-
tion, h~= 1.8 MeV, can be considered to be significant.
These two results for A~ are also given in Table III.

In analogy with the way we handled the (zr"-zi)

transition, we should calculate the contributions of
Figs. 2(c) and 4(d) using an effective propagator for
the (Z'-A) system:

G(k)=zRr/(y k —Mr.)+iRa/(y k —M,i)+r(k), (5.6)

where r(k) is due to intermediate states in the prop-
agator other than Z' and A (e.g. , K and XK), and'
E~ and E~ are the residues of the propagn, tor at the 2"
and A. ma, sses, respectively. In the case of the (zr'-2))

propagator, Bnrrett and Barton evnlunted the constants
R„and the remainder term o(k2). In the limit of
vanishing E.M. mn, ss differences and vanishing m. -q

mass difference, o.(k ) —+ 0. In this limit, if we use the
theorem that the integral of the spectral function for
the propagator for two different fields over nil allowed
values for the mass should vanish (see Ref. 24), we
would have R„+R,=O. We would expect, therefore,
E„to approach —R if we could decrease the ~'-q mass
difference Lof course, G(k') would vanish in this limit—
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TABLE IV. (Z' —A) transition contribution (in MeV).

0.432 (1—4f')
1.12f(1—f)
1.12f(1—f}—2.46 (1—4f)
0
6.48 —10.74f—15.17f'

f=0.30

0.28
0.23
0.23
0.49
0
1.89

f=0.35

0.22
0.25
0.25
0.98
0
0.86

f=0.39

0.17
0.27
0.27
1.38
0—0.01

cf. Eq. (5.2)j. In the case of the (Z'-A) propagator,
in which the mass difference between Z and A is only
about 8%%u~ of the A mass, the approximation Rz= Rq-
should not be bad. If we neglect the remainder term,
then the propagator becomes:

G(k)=iRz(Mz Mg)/—[(y k Mz)(—7 0 Mg) j—. (5.7)

This is the same thing as would be obtained by using
an effective Hamiltonian for the (Zo-A) transition:

~r =~z~(4 z'4 ~+&~4 z') (5.8)

TABLE V. Self-induced mass di6'erences (in MeV).

f=0.30 f=0.35 f=0.39

1.49—11.7f+7.86f'
2.08—8.34f+5.19f'—1.22 —1.74f+13.4f'
1.18+1.83f+0.36f2

11.7—23.4f—21.2f'—3.3+132f—148f2

—1.31
0.65—0.53
1.76
2.77

23.0

—1.65—0.20—0.19
1,86
0.91

24.8

—1.87—0.38
0.14
1.94—0.65

25.6

"A. H. Zimerman, Riazuddin, and S. Okubo, Nuovo Cimento
(to be published).

if the transition mass, 3f~q, is taken to be equal to
Rz(Mz —Mz). Unitary symmetry gives a value' for 3fzq
of (1/K3) (6+—A~) =0.90 MeV; we use this value and
take the usual meson-baryon coupling constants. The
resulting logarithmically divergent integrals are cut off
at one nucleon mass and the results are shown in Table
IV; again for f=0.30, 0.35, 0.39. As was mentioned in
Sec. 3, there is a contribution to d from baryon-anti-
baryon loops which have two (Z'-A) transitions, but
this will be of the order of Mzq'/2m =3 && 10 ' MeV and
we shall neglect it.

The contributions to the E.M. mass differences from
the (p'-ro) or (p'-p) transitions are shown in Figs. 2(d)
and 4(c); Fig. 3 (e) is of higher order in the E.M. inter-
action. We do not evaluate the (p'-~) and (p'-p) transi-
tions for three reasons: First, as was mentioned earlier,
if these transitions are dominated by a photon pole,
we have already included them in the elastic form
factor part. In a recent work, Zimerman, Riazuddin,
and Okubo" derived the value for the (p'-~s) transition
(mass)' (~o is the bare &o and member of an octet) of—(0.11 to 0.14)m. . The contribution to this transition

(mass)' from the photon pole is:

m p, ' ———
gp,'/&3m'= —m p'/8vrv3 = —0.69m ', (5.9)

where m is the average of the p' and ~0 masses and g, ~
is the photon-p coupling constant. We evaluate gpss by
assuming p dominance of the pion form factor; its
value is —m, '/g, , where g, is the coupling strength
of p' to ~+—

m (g, '/47r=2). From this, we see that
even in the worst case, omitting the (p -cos) contribution
should cause errors of the order of the elastic form-factor
parts which, except for Az, are already uncertain by an
MeV or so. Another reason for omitting the (po-ce) and
(po-p) transitions is that the intermediate states in Fig.
2(d) are heavier than those from the (Z'-A) transition,
and the results in that case were already relatively
small; hence we can expect these to be smaller. Finally,
the calculation would be highly divergent and little
reliance could be placed on it.

With regard to the self-induced mass differences,
Katsumori'~ has calcula, ted these effects for both the
baryons and mesons. We use his calculations, except
that we insert the meson-baryon coupling constants
predicted by unitary symmetry and also use more recent
values of the E.M. mass differences. These results, as a
function of the f parameter, are given in Table V.

6. RESULTS AND CONCLUSIONS

Ta,ble I shows the total contributions from the four
processes that we have considered. We feel that in a
consistent evalua, tion of the meson mass differences the
major contributions should come from the lightest
intermediate sta, tes. This is well borne out by the fact
that the elastic form-factor part yields almost the
entire observed pion ma, ss difference. There are many
states for the mesons lighter than the baryon-anti-
baryon loops appearing in the (2'-A) transition and self-
induced contributions, which we have not evaluated.
Therefore, we feel that it would be inconsistent to
include these contributions to 6 and Az. Accordingly,
in Table I, we only include the results of Tables II and
III for the meson ma, ss differences; the effects of
Tables IV and V for 6 and A~ will be discussed below
in any case,

Examination of Table I shows that the situation for
is very satisfactory; the same result for h„arises

as that calculated earlier when p dominance of the
vector form factor was assumed. If the parameter a
had the value 0.85 (nearly complete p' dominance), the
pion mass difference would be matched even more
exactly. If baryon-antibaryon heavy mass states are
included for d, , the results are nearly unchanged (cf.
Table IV); even the self-induced contribution (cf.
Table V) leaves this conclusion essentially unchanged
provided that f is in the vicinity of 0.35.

On the other hand, the kaon mass difference is the

'7 H. Katsumori, Progr. Theoret. Phys. {Kyoto) 24, 35 {1960).
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most dif6cult to explain using our procedure. The con-
tribution of the (z-'-ti) transition (cf. Table III) is
essentially indeterminate because of the range of values
(between 18 and —32 MeV) permitted by the method
of calculation. Even if a large nega, tive value were the
actual contribution from this process, there could still
be a large positive contribution from the self-induced
process (cf. Table V) which would make the value of
hz positive. While this is not a satisfactory state of
affairs, the possibility has at least been opened up of
explaining the unusual sign of the kaon mass difference.

With regard to the baryon mass differences, it is
evident that the inelastic contributions Lparticularly
from the (so-ti) transition) play an important role.
These inelastic contributions give a marked improve-
ment over the elastic form-factor results (cf. Table II),
and actually yield quite good predictions for the four
baryon mass differences when f= 0 35 Th. e .largest dis-
crepancy is for 6-. . One solution which might be con-
sidered is that the ( -K) couplings are not as large as
those predicted by unitary symmetry (although there
is no real evidence for this). For example, if for f=0.35
we uniformly reduce all E-baryon coupling constants
by a factor g&'~ —age', the resulting baryon mass dif-
ferences would be:

A~= 1.75; A~= 3.73; 3 =5.98; Ag
——7.38. (6.1)

From (6.1) it is seen that 6„- now comes within the
measured ra,nge of values at the expense of h~, 6+ and
6 . In any case it is encouraging that when inelastic
contributions are taken into account, the signs and mag-
nitudes of the four baryon mass differences can be
understood.

Coleman and Glashow~ and, more recently, Coleman
and Schnitzer" have calculated the six K.M. mass dif-
ferences assuming that there are two contributions. The
first is the tadpole diagram of Fig. 1(f) where the par-
ticle exchanged is postulated to be a neutral isovector
scalar meson called x".The second, called the nontad-
pole contribution, is assumed. to receive its major share
from the elastic form-factor process. In this way, using
the strength of the x ' tadpole a,s a free parameter, the
authors attempt to match all the Inass differences and
do obtain reasonable agreement, especially since the
2-MeV isotensor contribution" to the Z mass differences
from the elastic form-factor part is now consistent with
the latest measurements of the 2 masses.

One may inquire further whether the fit between
theory and experiment can be improved by adding the
tadpole diagram to the diagrams which we have con-
sidered. Since the tadpole diagram effectively adds

"S. Coleman and H. Schnitzer (to be published).
"Until the latest experimental values for the Z masses came

along, the proponents of the tadpole point of view were faced with
the conQict between the apparent equal Z mass spacing and the
nonnegligible isotensor contribution; this obstacle is now overcome.

amounts to the baryon mass differences of Table I in
the ratios 1:1.5:1.5:2 (cf. Coleman and Schnitzer's
paper"), it is possible to improve the fit by working
with f=0.39; the total values obtained in this way
would be:

Ag ——1.29 6+——1.88; 6 =4.62; 6-„=7.02; (6.2)

where the strength of the tadpole contribution is deter-
mined to match Az. Despite the availability of one
additional parameter, these values of the E.M. mass
differences for f=0.39 with the tadpole diagram are
only slightly better than those for f=0.35 with the
tadpole contribution not included.

From these results, we feel justified in saying that it
is possible to dynamically evaluate the E.M. Inass dif-
ferences in a consistent way without invoking the tad-
pole mechanism. Our (z'-ri) transition diagram in
particular plays an analogous role to that of the tadpole
diagram in emphasizing the isovector contribution to
the mass differences. But the point is that the (vr'-ti)

diagram must be present, whereas the tadpole mecha-
nism is involed in a purely ad hoc way. "If one believes
that scalar tadpoles give sizeable contributions to the
mass differences, then our calculations show that other
processes besides the elastic form-factor part con-
tribute significantly to the nontadpole portion. Socolow"
has reached a similar conclusion on the basis of other
considerations. He has evaluated the contributions of
the decuplet to the baryon mass differences LFig. 1(b),
where the box is represented by a spin--,'+ resonance];
adding the elastic form-factor contributions to his re-
sults, he was able to obtain a reasonable 6t to the
baryon mass differences (except for the nucleon mass
difference). However, the agreement for the hyperon
mass differences would be substantially destroyed if
the tadpole mechanism is the one responsible for cor-
recting the nucleon mass difference. While we assess
differently the relative importance of the decuplet
diagram compared to some of those which we have
considered, Socolow s calculations, in conjunction with
ours, underline the need to properly evaluate the non-
tadpole diagrams in order to decide whether the
tadpole diagram enters the picture at all.
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' The extension of the idea of "tadpole dominance" to non-
leptonic weak interactions runs into difhculty with the Cabibbo
scheme Lcf. Coleman and Glashow (Ref. 9), p. 3679$ and hence
loses some of its attractiveness as a general symmetry-breaking
mechanism for the medium strong, electromagnetic and weak
interactions."R.Socolow, thesis, Harvard University, 1964 (unpublished).


