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We have established a formula which allows the extraction of the nuclear cross sections from experimental
quasielastic spectra. Tests have been carried out to prove the consistency of our techniques. In particular,
we prove that a hitherto unmeasured cross section can be calculated from a limited number of experimental
data. These techniques have been applied to Be'. Interpretations of the extracted cross sections have been
estimated on three models.

INTRODUCTION
' '

N a considerable number of studies of nuclear struc-
ture, Coulomb excitation through electron scattering

has given results in the last years. ' ' The electromag-
netic nature of the interaction allows considerable cal-
culation of electron scattering on nuclei. However, if a
large variety of nuclei has been studied in this way, the
domain of excitation energy remains below 10 MeV and
a particular effort seems to be concentrated on elastic
scattering and inelastic discrete levels studies.

It has been demonstrated that elastic scattering of
high-energy electrons is extremely useful to determine
the spatial structure of the nuclear ground-state charge
density and its associated mean-square radius. On the
other hand, inelastic induced reactions to discrete levels
have been extensively studied in Born approximation.
The multipclarity and decay rate of the corresponding
de-excitation y rays determined by such analysis, agree
surprisingly well with results given by other methods. '

In spite of the possibility of the forthcoming interest-
ing information, on the mean nucleon binding energy,
the nucleon momentum distribution in the nucleus, or
on the correlations between nucleons, the experimental
inelastic continuum has not so far been explored
systematically. Some attempts at explaining the con-
tinuum inelastic scattering cross section have already
been made, either by using the single-particle excitation
model ' or by impulse approximation to evaluate
nucleon ejection probability. ' '

In the first part of this article, a general method has
been evolved, which is suitable for light nuclei in the first
Born approximation, of extraction of all the inelastic
cross sections (electrodisintegration+continuum) for
any given scattering angle of the electrons and for a
large range of excitation energy of the nucleus and of
incident energy, all from a limited number of experi-

mental data. This method is a generalization of the tech-
niques used up till now for the inelastic discrete levels.
This problem is dominated mainly by the radiative
corrections, of which the formulation is given on general
lines. Checks of the validity of the method are given.

In the second part the above techniques are applied
to the special case of Be', and the corresponding cross
sections for its continuum are extracted. The results
obtained are then compared with three theoretical
models. Finally, an effort has been made to detect the
giant resonance.

APPARATUS AND EXPERIMENTAL METHOD

The measurements have been carried out by the
250-MeV section of the Orsay linear accelerator, using
standard arrangements described in Refs. 8 and 9. The
incident electron beam is analyzed by two steering
magnets associated with a collimator and a tungsten
slit, giving an energy resolution as good as O. 2%%u~.

The current is measured by the use of a Faraday cup
in association with a secondary emission monitor.

Metallic targets with thicknesses varying from 0.5 to
3 mm are placed in a vacuum target chamber connected
with the accelerator vacuum. In every case the target
is set perpendicular to the bisector of the scattering
angle.

Scattered electrons are analyzed as far as their
momenta are concerned, by a double focusing magnetic
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FIG. 1. Experimental arrangement.
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Fio. 2. Experimental spectra of
electron scattering on Be'. The elastic
radiative tails are shown as well as the
extracted spectrum (see,part II).
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spectrometer, and counted by a Lucite Cherenkov
counter associated with a 56 AVP photomultiplier. A
tungsten slit placed in front of the Lucite counter deter-
mines the momentum resolution which varies from 0.2
to 0.5% in most of our measurements (Fig. 1).

The Cherenkov counter used in connection with a
high discriminator level and good shielding of the
counter eliminates background. This is confirmed by the
absence of counts when no target is present in the beam

PART I—DATA PROCESSING

From the experimental point of view, the measured
data constitute a number of electron scattering spectra,
each spectrum corresponding to a given incident
energy and scattering angle. Thus, the counting rate of
scattered electrons, as a function of their energies, is
measured (Fig. 2).

At the maximum energy of the scattered electrons,
one finds the elastic peak. At lower energies one has
successively low-lying discrete levels, if any, then a
continuous excitation enhancement, and then the cross
section decreases. Here we are interested in this
continuum region.

In fact, this measured spectrum does not provide the
nuclear interaction cross section since the electrons can
emit and reabsorb virtual photons and also lose energy
by radiation while interacting with the nucleus Geld, by
ionization or excitation of the atomic electrons. These
effects of energy losses give rise to an extension of the
elastic or inelastic peaks towards the low-energy side
and distort the spectrum. In considering the cross sec-
tions at a given scattered energy Ef, one must take into
account the fact that this cross section has received the

contributions of those electrons scattered at energy
Ef Q Ef which have lost precisely an amount of energy
Ef' —Ef in the described processes. On the other hand,
these same processes reduce the energy of the electrons
scattered at Ef and hence the considered cross section
is lowered by this fractional loss.

The lg, tter kind of process we have called "correction
of type A" and the former kind "correction of type B."

Fxo. 3. (a) Dia-
gram of electron scat-
tering on the nucleus.
(b) Diagrams of low-
est order radiative
correction.
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A. "A Correction Terms"

We now enumerate the corrections applied to the
measured cross sections. Let us consider first the "3
correction term" in the case of an elastic peak. They
are produced by a twofold process.

(1) The correction due to the fact that the electron
radiates during the scattering and that it is not detected
if the radiation energy emitted is superior to an energy
AE fixed by the experimental conditions.

(2) The corrections due to the electrons scattered at
the right energy (that of the elastic peak for example)
but which lose an additional amount of energy, which is
larger than the experimental resolution by bremsstrah-
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lung on other nuclei, or by collisions with atomic
electrons.

(1) Radiative correction: Experimentally, one ahvays
measures the sum of the diagrams (Fig. 3), the higher
order diagrams being ignored.

The three diagrams in Fig. 3 (b) represent the reactive
effect of the electron with its field, and the fourth
represents the vacuum polarization. They were first
calculated by Schwinger' in the particular case of
potential scattering. The last two diagrams are pro-
vided with a view to abolishing the infrared divergence,
where hE is considered as the experimental resolution.
In other words, the uncertainty AE in the scattered
energy signifies that one only detects the electrons which
have lost, by real photon emission, an amount of energy
inferior to AE. The renormalized diagram is simply
related to the second ones by

dao
(E,AE, 8) = (E,8) (1—8,) .

dQobserved dQ

e
—5g— Pradi at i on (E&

6
& t)d6

Pionization (E,k,k)dd.

Here we call P„d;,t,,„and P;,„;„t,,„the probabilities for
energy loss by radiatiov and ionization, respectively.

The probability P„d;,t,,„dA that an electron of initial
energy E loses an energy between 6 and 6+dh after
traversing a thickness t is given by"

tions are introduced by asuming that the target thick-
ness t is thin enough to allow the factorization of the
cross section. On the other hand, the probability of the
twofold process can be estimated quite well by the
product of the two probabilities. Then,

do d&o
(E,aE,8) = (E,8)L1—8,7e-P,

dQ,b.- dQ

where

Here we call (drr/dQ, b,)(E,AE, 8) the cross section
measured in an energy band AE, and (dtrp/dQ) (E 8)
cross section corresponding to the nonradiative diagram.

The expression for 5, is given by

Pradiation (E,d, h)dd

dA 1
ln-

E r(t/Xp ln2) E

t
X0ln2 (6)

4n ( 2E sing(2 1 E 13
b.=

~
ln ln

2 dB 12

17
+—+~(8), (2)

72

where P(8) is given in integral form and has been
tabulated' as function of the scattering angle.

The conjecture made by Schwinger to replace 1—8,
by e '& to include higher order diagrams has been
confirmed. "

A more complete expression for 6, has also been
given" allowing a recoil for the proton target.

(2) Since the electrons are detected in a small energy
band hE we lose a proportion of them by continuous
diminution of their energy through the limited thickness
of the target. Basically, one may write

(E ~E,8) = dx
dQobs 0 0

dA dA'

d(T()

XP(E,A', x)- (E 6', 8)P(E 6', 6—6-', t——x),—(3)
dQ

where P(E,A, x) accounts for the probability of an
electron, of incident energy E, losing an amount of
energy 6 in traversing a target thickness x. Simplifica-

"J.Schwinger, Phys. Rev. 75, 898 (1949)."D.H. Yennie and H. Suura, Phys. Rev. 105, 1378 (1957)."Y. S. Tsai, Phys. Rev. 122, 1898 (1961).N. Meister and D. H.
Yennie, Phys Rev. 130, 12. 10 (1963).

where Xo is the radiation length.
The gamma function is such that F (x)—1/x for x((1.

Hence, from (5) and (6) one finds e—'&= (dE/E)'exp '"'
The 8; term refers to corrections related to the ionization
process in which the electrons transfer small quantities
of energy through a large number of collisions with
atomic electrons. I.andau's calculation'4 of the distribu-
tion probability of ionization loss can be written simply

1
P(E,~,~)d~=

where to+ into = )i+0.37.
These relations are valid for )t= AE/$) 10, where the

characteristic energy g is defined by

2n-Xe'p Q Z
$=tX X

mv'

where E Avogadro number, p cubic density of the target
of thickness t, and ~ electron velocity.

Grouping all these corrections, we obtain the cross
section for the measured value in an energy band hE

dg 800
(E,AE, 8) = (1—8) —(E,8),

dQ, b, dQ

where we defined by (1—i1) = (1—8;)e &P'+'».

"B.Rossi, High Energy Particles (Prentice Hall, Inc. , Engle-
wood Clips, New Jersey, 1952)."LLandau, J. Phys. {USSR) 8, 201 (19~.
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The expression (9) constitutes the "A correction
term. "

B. "BCorrection Terms"
FIG. 4. Bremsstrah-

lung diagrams.

S K

The main process which can provoke energy losses
are, as we have seen, bremsstrahlung and ionization.
Bremsstrahlung can occur during the collision as well as
in the 6eld of other nuclei. The cross section for scatter-
ing with radiation is proportional to the thickness t of
the target, while radiation on other nuclei and ionization
processes are proportional to the square of the thickness
or to higher orders of t. Since our target thicknesses are
smaller than 2%%u~ of the radiation length, we shall con-
sider t and t' processes only.

1. Process Proportiortat to the Target Thickrtess

The bremsstrahlung cross section due to the inter-
action of relativistic electrons with an external static
potential was 6rst calculated by Bethe and Heitler"
who gave a differential cross section in terms of the 6nal
electron and emitted photon variables. In the case
where one detects only the electron, integration over
the photon direction is necessary. This has been done by
Racah, " and again by McCormick et a/. "who found
some misprints in the 6rst article for the low-energy
case. These calculations did not take into account the
6nite extension of the nucleus. In the meantime, Schiff"
supplied a simple method of performing an approximate
integration. Moreover, the Schiff formula easily lends
itself to the inclusion of the form factors of the nucleus,
in order to take into account its 6nite size. This last
formulation has generally been used by experimen-
talists'»" to analyze their data.

The electron-proton bremsstrahlung cross section has
now been studied more minutely. '~22 In the case of an
excited nucleus, Perez-y-Jorba" obtained a correction to
the Bethe and Heitler formula integrated with the same
approximation as indicated by Schiff. Recently, many
people, quite independently, have taken a new interest
in this problem. Bjorken, '4 in solving the general
problem of multiple radiation in a target, has also cal-
culated the radiation cross section in the peaking ap-
proximation. Maximon et al.25 improve the peaking ap-
proximation given by Schiff, in calculating the neglected
terms, but still using the static potential; the specific

"W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, London, 1957)."G.Racah, Nuovo Cimento 11, 476 (1934).

'7 P. T. McCormick, D. G. Kieffer, and G. Parzen, Phys. Rev.
103, 29 (1956).

'8 L. I. Schiff, Phys. Rev. 87, 750 (1952).
'~ W. K. H. Panofsky and E. A. Allton, Phys. Rev. 110, 1155

(1955);J. I. Friedman, ibid. 116, 1257 (1959).' S. D. Drell, Phys. Rev. 87, 753 (1952)."R.A. Berg and C. N. Lindner, Phys. Rev. 112, 2072 (1958)."L. N. Hand, Ph.D. thesis, Stanford University, 1961 (un-
published)."J.Perez-y-Jorba, J. Phys. Radium 22, 733 (1961).

'4 J. D. Bjorken, Ann. Phys. (N. Y.) 24, 201 (1963).
25 L. C. Maximon and D. B. Isabelle, Phys. Rev. 133, 31344

(1964).

where E;=M, for a fermion and E;= 2 for a boson. Tf;
can be written as

g3

Tf.=z ,(pli. ls)(& f—,l~,
IIt

or

with

1
Zsee S„„T„„,—

q4

(p I i. I s)(p I i. I
s)* (»)

spins, polarization

Hei.e, j„represents the electron current and is
given by

trp'e s'e)
+ +I

2k p 2ks Ek p ks)
E. S. Ginsberg and R. H. Pratt, Phys. Rev. 134, B773 (1964).

We are indebted to Dr. Ginsberg and Dr. Pratt for the numerical
computation done with their program.

27 N. Meister and T. Griffy, International Conference on
Nucleon Structure Stanford University, 1963 (to be published);
Phys. Rev. 133, B1032 (1964).

'8 Y. S. Tsai, International Conference on Nucleon Structure
Stanford University, 1963 (to be published)."Jauch and Rohrlich, Theory of Photons and Etectrons (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1955).

case of 0"has been examined by means of an electronic
computer. Ginsberg et al."calculate the radiation cross
section, which is due to the static magnetic moment
distribution as well as to the charge distribution, in the
static approximation, and give numerical computation
for specific cases. The Meister et al.27 approach extends
the Schiff peaking approximation to include the case
where the external interaction 6eld is no longer assumed
to be a static potential, as in the Bethe-Heitler formula,
and they consider in particular the case of electro-
disintegration. Calculations along the same line have
been made by other authors ""

The complete differential radiation cross section in
the first Born approximation, valid in the reference
frame where the particle is at rest, has been obtained
by Tsai."

After this brief review, we now give the main line of
our calculation, in which we allow for the fact that the
nucleus can be left in an excited state, and that the
incident nucleus may have. a non-null initial momentum.

Let us consider the two following diagrams (Fig. 4):
The scattering amplitude is given by"

1 ( rats 1V~1lfo

(2~)"'~sopo pAopeo2ko~

X 6,(s+p, p, p k), (I—O)——
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the polarization vector of the emitted photon being e„. The target line is contained in

P (aI J I~)(aIz„Iw)*.
2sA+ 1 ~A~a

The calculation of S„„is straightforward by the trace method (29); one obtains

m2 m2

(13)

2m25„„=— [S„„'—k„p„—k„p„]— [S„„'+k„s„+k„s„] 2g„—„
(k s)' (k p)'

1 1
+ [2p4p„+ k4s„+k„s4+S4p+ (s p m2)—g4„] —[2s„s„k„p—„k,p—4+$4/+ (s p nN2) g4„—]

k s

[22222k4k„+s p(k„p„+k„p„k„s„—k„s„—2$„„')—], (14)
kpks

where we have put S„„'=s„p„+s„p„+-',q'g»,
q=s —p —k.

The cross section can then be written as

4m'ÃgÃ~do' A

df1dp (22r)2 [(s p„)2—222 ~A2]'&2

p' k2 1—5„„T„„dnI,
pp k pgq'

for a discrete inelastic level, and as

4m'SgiV~

dQdp (22r)2 [(s pA) — 2M222]A'2~ 2

p2 &cd&o 1
X — S4„T4„'d02

—(16)
po p~

2

[F.(q)+~F.—(q)] g.. . (»)

with since they are interdependent through the momentum
consei'vation. By gauge invariance, it can be shown'
that one form of T„„is

T44=F(q'~ q'pA)pA4PA+G(q ~ q'pA)g»~

where F and G are two real functions of the scalar
variables q' and q pA. The other terms including q„or
q„q„give a null contribution in the contraction with S„„.

In the case where the target is a nucleon, the tensor
T„„ofthe nucleon current can be shown (for example,
Ref. 7) to be

g
T F 2(q) if2F 2(q) p Ap A

3f2 4%2

for continuum states.
Here T„„' is given by (13), but where the matrix

element of the operator J„is taken between the initial
discrete state and the final state corresponding to the
continuum. It, then, has a different dimension from that.
of T„„ofEq. (15).

In the latter case one must bear in mind the connec-
tion between ko and QI, through the energy momentum
conservation.

If the recoil target is not detected, T„„must be con-
structed from two of the three vectors q, pA, and pg

where X is the anomalous magnetic moment, and I"&and
F2 are the form factors introduced in the Rosenbluth
formula. ' If one defines the charge and magnetic form
factors

F,h =F2
—(q2/4M2) KF2,

F =Fr+EF2, (19)

then the G form factor of Eq. (17) can be identified with
a magnetic form factor, while the F term is a combination
of charge and magnetic form factors. Contraction of
T„„with 5„,gives

—m' g m g2

S44T44= — 2(p' pA) (s k) ' pA+ pA . 2(s' pA) (p+k) 'pA+ pA
22222 (k s)' 2 (k p)' 2

1—2pA'+ 2(p pA)'+2(s PA)(p+k)'PA+I — '+'p IpA'—
k. l2 )

k. s
2(s pA)'+2(p pA)(s —k) pA+I —222'+s p IpA'

l2 )

(k p)(k s)

6 r 1 1~.—4+I — I(q'+6s P—22n2)+ (s P+q') (20)
lk p ks& kpks

+ —2222 (22222+ q') — +
2m2 (k s)' (k p)'

"M. Gourdin, Nuovo Cirnento 21, 1094 (1961).

—222'(k pA)'+s pI k pAs pA —k pAp'pA+2p pAs pA+ —pA'
Il 2
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I= $—p+ p~. (21)

Hence, the square of four momentum transfer depends
only on cos(u, k) since

q'= (u —k —p~)'. (22)

We have to integrate over dQq ——d&I,d cos(k,u). As the
nuclear form factors depend on g' and then on cos(k, u)
and not on pp, the integration on g„ is straightforward,
since all the integrals are of the form

g+$ cosp (gp —p)~lp

(23)

(g+ j5 cosy)p (g —y) pip

The cross sections are imliiediately obtained by
putting the expression (20) in Eqs. (15) or (16).

This is the general form that can be obtained from the
diagrams under consideration, P and G being two form
factors, which, in principle, one can calculate if the
current for the target line is known. We shall see
later that we can deduce them from experimental
measurements.

In the particular frame where the initial target is at
rest, p~ ——(M~, O) one finds the expression already given
by Tsai."

In this frame of reference, one may use as s axis the
vector u= s—p by defining

where a'&b'. The complete result is given in the

Appendix.
This far, our formulation is free from approximation.
Using a different calculation, Maximon et a/. 25 have

already obtained the same result in the special case of

potential scattering.
At this stage one is still left with an integration over

d cos(k, u) which can be terminated only if one knows

the explicit dependence of the form factors on q'.

On the opposite case one can perform a numerical

integration, but one can also use an approximate

analytical integration. In the latter case, one performs

immediately the direct integration over dQI, of S„„T„„
thanks to the peaking approximation suggested by
Schi6." It is, however, simple to perform the same

approximation directly on S„„.""We have done this

approximation also, on our result.

The important contributions to S„„come from kine-

matic situations where the virtual electron is nearly on

the mass shell, that is, when the photon is peaked in the

electron direction (incident or scattered). In this peak-

ing approximation, one replaces k„by (kp/sp)s„ f
or

(kp/pp)p j for the case kffs (or kffp) in the numerator

terms everywhere there isa termof the form k s (or k p)
in the denominator. We obtain S„„asthe sum of the two

following terms:

(a)

where

kp) ( —ts sp kp 1 sp 1
kffs ~„„= 1——

If + +-
spl ((k s)' kp k's kp k's

kp) —m' pp+kp 1 ) pp 1—
kffp 5„„= 1+—

f
+ f+—

ppJ (k.p)' kp k pl kp kp.
Z..= I:s.p +s.p.+ l (s p)'I","3—

2m2

(24)

(a)

(b)

k ffs E,=sp, E,=s,—kp,

k
f fp R= pp, Ep= pp+kp.

The advantage of the integration over dQI, on S„„
appears in the factorization of P„„which will give after
contraction with T„„the nonradiative cross section. This
result has also been obtained by Sjorken'4 and Meister
et al. '~ In fact, in our cases, the nonlogarithmic term is
negligible compared with the first one.

corresponds to the electron tensor without radiation.
The integration over the photon direction can then

be performed to give

4~ - ( EpPy 2E& E;
~.AQ~= —,11+ f» ——Z...

kp2 k EPI m Ei

(m((Eg, E,) (26)
where

The wide-angle bremsstrahlung can be written as

d'o n (E, k' 2E, E,——k do. p

1+f
ln—— (E,—k, 0)

dQd~ k7r 5 E, m E, dQ

n Ey l ' 2Ef Ef do.p

+— 1+
f

ln—— (E',e), (»)
kyar Ef+kl m Ef+k dQ

where we have slightly changed the notation k=ko,.
E;=sp, Ef pp, dop/dQ stands for ——the nonradiative
cross section.

For the particular case where do.p/dQ represents only
potential scattering we find the formula obtained by
Perez y Jorba."

For continuum states, one must replace dop/dQ by
d'o. p/dQdp and integrate the right-hand side over dk from
hE to the k,„determined by energy momentum
conservation.
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Assuming the two processes to be completely inde-
pendent with small probability, one may write for the
associated cross section'

=-{4-»(E',k)+0-.(E',k) } (E' k, E—f 0)
kdQdk I2 2 dQ

t
+ {g,„—»(Er+k, k)+P, ,„g(Er+k, k) }

2
dop

(E—Es+k 8) (28)
dQ

10

io

150 MeV
135

.15.25.35 45.55 55.75 .85.95 EF

where p„~~ and g, „q are the probabilities" for an electron
of energy E to lose an energy k in traversing unit target
thickness.

y„g (E,k) = (1/kXp) q „g(E,k),

where q„~(E,k) is tabulated in Ref. 13.

FIG. 5. Comparison of two Bethe-Heitler formula integrations
for the elastic radiative tail. The plain curves have been calculated
by numerical integration including the experimental elastic form
factors. The points are calculated by using the peaking
approximation.

When the Bethe-Heitler formula, including a form
factor is used, one can compare a complete numerical
integration of the above formula done by a computer,
with the Schiff peaking approximation on the same
formula. We have done that for the elastic radiative tail
of Be' for different incident energies and scattering
angles, and we were very kindly helped by Ginsberg and
Pratt who did the numerical computation for us."The
difference between the two results is, in general, less
than 3% of the nuclear cross sections in the region with
which we are concerned (about 20% of the radiative
tail itself) (I'ig. 5).

The same result has been assumed to be valid when
using the peaking approximation on the exact formula.

Z. Processes Proportiolat to the Square of the ThickIIess

In traversing the target, there is a probability that
the electron will undergo either a collision with an
atomic electron, or a photon emission on a different
nucleus from the one inducing the nuclear scattering.
These processes may occur without any appreciable
deviation of the electron from the initial direction, since
the emitted photons or the recoil electrons are confined
in a cone of half-angle of the order of rrIcI/E, where E is
the energy of the initial electron. Theoretically, these
processes happen before and after the nuclear scattering,
which takes place on the average, at the middle of the
target. Since it is a second-order effect, we approximate
by saying that the secondary collision arises only once,
either before or after the nuclear scattering. Hence,
schematically, we have a double process in which k is
the energy loss, due to Moiler collision or bremsstrah-
lung in the field of a second nucleus.

1—x+x' '
y„..))(E,k) =0.154——

A E' x(1—x)
(29)

with x=k/E.
The cross section associated with the radiative tail is

the sum of expressions (28) and (15) or (16); the expres-
sion (15) can be approximated by (27).

After the preceding analysis, we can write

d 0 d'o-

(E;,E~,~) = (E.,Er,e)L1-~j
dQdE gob, dQdEy

where

+ (E' Er, e), (3o)
dQdE j„d.t,n

Radia tive tail f ram
K.leve l E,

elastic
~pea k

.E.

Eit Ei
I
I

elastic peak
I~I p
I

K I

Et Et+ 6 EL

FIG. 6. The radiative tail contribution of an excited level e, to
the differential cross section at (Ey,e), is in erst approximation
equal to the sum of two terms proportional to the cross section of
this level at the respective incident energies of electrons E; and
Ey+e and for the same 8; E; being the incident energy associated
to the spectrum under analysis.

do (&p
g(E,—I, Et) (E;;E, e;8)—

dQdE f„d. tail ~ dQ

dop
+g(E, ; Eg+I) (Er+e; Er, t') . (31)

dQ
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d'o /dQdL"
TABLE I. Nuclear form factors defined ae for each couple of incident energy

dtr jd Mott .

and scattering angle and for different excitation energies.

gE; MeV
e MeVQ

4
8

12
16
19
23
27
31
35
39
43
47
51
55
59
65
73
81
89
97

105
ii3
121

0.24 1.19
0.86 1.61
1.36 1.92
1.70 1.68
2.29 2.13
2.94 3.45
3.72 4.56
4.54 5.66
5.31 6.45
6.50 7.58
7.19 7.63
7.76 6.87
7.48 6.00
7.54 5.48
6.08 4.88
5.54 3.83
4.57 3.05
3.66 2.17
2.92 1.75
2.47 1.48
1.98 1.76
1.61 3.19
1.23

2.11 5.78 3.12
2,57 5.36 3.22
2.47 3.62 2.61
2.14 3.07 2.17
2.87 3.32 2.27
4.32 4.30 2.66
5.42 4.65 2.68
6.22 4.61 2.80
5.88 4.49 2.86
5.56 4.28 3.08
5.28 3.83 2.56
4.53 2.52 2.67
3.41 2.81
3.01 2.33
2,94 2.12
2.07 1.88
1.45 2.01
1.53

e= 135
177.3 148.5 121.4 99.0 73.1

2.53 2.49
2.95 2.40
2.73 2.25
2.47 1.56
1.42 1.10
0.88 1.51
1.30 1.66
1.43 1.71
1.51 1.61
1.58 1.42
1.57 1.27
1.52 1.11
1.35 0.97
1.20 0.73
1.09 0.55
0.91 0.44
0.71 0.27
0.49 0.13
0.36 0.13
0.29 0.05
0.23
0.21
0.20

3.00
2.63
1.98
1.75
1.44
1.50
1.70
1.69
1.56
1.41
1.19
0.83
0.71
0.67
0.66
0.56
0.33
0.24
0.17
0,17

4.20 0.85
3.40 0.82
1.90 0.59
1.60 0.46
1.24 0.48
1.22 0.48
1.22 0.44
1.15 0.37
1.07 0.32
1.02 0.35
0.80 0.35
0.68 0.22
0.70
0.57
0.52

e=60'
230.6 181.0 152.0 99.5 70.0

0.33
0.66
0.81
0.78
0.94
1.25
1.50
1.74
1.97
2.22
2.43
2.60
2.63
2.55
2.38
2.10
1.82
1.51

1.13 3.32
1.66 3.28
2.00 2.58
1.46 1.77
1.37 1.61
1.37 1.44
1.53 1.53
1.85 1.70
2.18 1.36
2.49 1.37
2.60 1.10
2.58 0.89
2.33 0.69
1.86 0.49
1.55 O. i6
1.29
0.98
0.76
0.63
0.54
0.47
0,47
0.50

e=90'
230.7 176.7 100.0

e= 75'
176.4 146.0

1 ~ 77 3.41
2.06 3.48
1.89 2.51
1.21 2.26
1.22 2.03
1.19 2.40
1.44 2.31
1.66 2.13
1.78 2.19
1.95 2.39
1.89 2.13
1.68 1.90
1.42 1.59
1.06 1.07
0.93 0.93
0.73 0.70
0.53 0.48
0.42 0.43
0.37 0.40
0.33
0.27
0.28
0,33

105'
176.4

0.83
1.35
1.65
1.42
1.49
1.36
1.67
2, 14
2.53
3.06
3.34
3.73
3.57
2.98
2.70
2.31
1.96
1.55
1.23
1.06
0.94
1.07
1.30

The symbol J' stands for a discrete sum when c is
related to discrete levels, and for J'de when one is con-
cerned with continuum states. The function g(Ei,E2) is

given by

Q E22tl 2Ei 0 Eg
g(Ei E~) =- 1+

~

ln sm ———
7r Et—E2 Ei') mc' 2 Ei

+—f4,ott(Ett E,—E,)+Q,.d(Ei, E,—E,)) . (32)
2

Here we have replaced the simple ln(2E, /etc') by
1n(2Ei/mc') sin(0/2) so that the calibration with the
low-photon emission case is more accurate.

We have already given the expressions for g(Et,E2)."
The cross section at 6xed E;, Ef, and 0 is then given by
an integral equation. In fact, it can be solved by
repeated subtractions.

The simplest way to handle the continuum states is to
divide the spectrum into small bands De and to consider
them as discrete levels peaked at e, with width 4~.
Given a spectrum with E;, 0, one must know all the
cross sections with incident energies Ef+e(E; at the
same scattering angle, in order to apply the preceding
equation (32) (Fig. 6). ln practice, it has been applied
as follows:

We measured different spectra at the same scattering
angle with variable incident energies (say E,=75, 100,
150, 180, 205, and 230 MeV). We first calculated the
corrections to the elastic cross sections, at the above
incident energies. We could therefore evaluate the
radiative tails due to these elastic peaks, and this for

all the incident energies E;. The 6rst transition level
cross section was then subtracted from the elastic
radiative tail contribution, and again corrected, and so
on for every spectrum. The radiative tail of the first
level could then be calculated. The elastic, and the first
inelastic tails were then subtracted from the second-
level cross section and again corrected.

The process was repeated for every spectrum, the
continuum being divided into bands which were con-
sidered as inelastic discrete levels.

We emphasize the fact that for a radiative tail
(elastic, inelastic, or continuum) corresponding to an
incident energy E&, and an excitation energy e, one needs
the cross sections corresponding to energies Er )Ef (or
excitation energies e'(c), which have already been cal-
culated in the above treatment. Besides, one needs also
the cross sections at incident energies E,', which do not
generally coincide with any E;, but which are situated
between two measured values (E;(E,'(E;+t). We
obtain them by interpolation, considering the cross
sections as a function of q' for each &, 8 being invariable
for all these spectra. For this interpolation, we took the
inelastic cross sections as zero for null incident energy.

The results of this subtraction analysis on Be' are
given in Table I in terms of d'tra/dfldE f ~

(dtr/d&)M. «.

PART II—DATA ANALYSIS ON Be'

We have shown how to extract the nuclear cross
section from the measured spectra, either for discrete
levels or for the continuum. We now show that in first
Born approximation, in certain ranges of e and q', we can
extract all th.e cross sections at any given E;, Ey, and 0
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m

1
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a= 3&Mev

(h)

4,f

-10

q'R5
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qR
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Fn. 7. Continuum inelastic form factors. For excitation energies

a &16MeV the cross section is dominated by the longitudinal term
and we could express

dsos/dQdL.= LXsjP(qR)+As jP(qR)g exp( sI'g')—
do/smM, ss

For higher excitation energies it has been necessary to separate
the angular dependence by

d'o-/de E =/t(q', s)+J3V, )~g'~
dg /d~Mott

and then analyze A 8/2 and 8 aa functi—on of qs for each
determined.

(a) = L2.11jP(x)+4 35jP(x))X10 ' exp( —0 095x');
d'o-p/dodI'

0/ ~Mott

(h) curve I=1.86X10 'jP(x) exp( —0.095x'); curve II
= $1.86jP (x)+10.6js'(x) jX10 s exp (—0.095xs) .

(c) curve 1=1.34jP(x)X10~ exp( —0.095x'); curve II
=$1.34jP(x)+13.1jss(x))X 10 s exp( —0.095xs) '

(d) curve I= 1.04jP(x) X 10~ exp (—0 095x'); curve II
= $1.04' P (x)+10.9js' (x)gX 10 ' exp (—0.095x');

Ep 92jP(x)+6 3js'(x) jX]0 ' exp( —P.P95xs) .

0.85X10 swiss(x) exp( —0.095x').

[083jP(x)+78jss(x))X10~ exp( —0 095x')

2.16X10 swiss(x) exp( —0.095x').
s=JR.

(e)

(f)

(g)

(h)

in these same ranges from the nuclear cross sections just
extracted.

The analysis is based on the general pattern of the
one-photon-exchange cross section for the noncoin-
cidence electron detection experiment.

d op /'dsr 0
a (q', e)+a(q', e)lg'-, (33)

dQdEg kdQ M„„2

for each determined e, where R and g are parameters
related to the extension of th'e density of transition.

The parameters R and g are assumed to be the same
as for elastic and discrete inelastic transitions, " we
wrote o, Priori

2 —8/2=+ )ts(e) jP(qR)e ""

and determined the Xs(e) by the least-square method in
the case of a fixed e. We limited ourselves to 3= 4, since
qR(5 for all our experimental data. Hence, the con-
tribution of higher components of the Sessel functions
are completely negligible.

TAm. E II. Example of the way in which the X& coefEcients are
chosen in the form factor analysis. The statistically non-null
coeKcients are Xl and A.3.

B 4
~ ——= »sjP(qR) exp( —qsgs)

E j.

a=19 MeV a=39 MeV

l=1
1=2
E=3
l=4

(9.8&0.8) X10 '
(—1 2&0 8) X10 '
(1.34+0.41)X10 '

—0.167m 0.09

(s.s~o.s) y, 1o-3
(—2.1~1 0) X10 '
(1.S5~0.6) X10-i

—0.23&0.16

3'H. Nguyen-Ngoc and J. Perez-y-Jorba, Compt. Rend. 255,
315S (1962).

'2 R. H. Helm, thesis, Stanford University 1956 (unpublished).
"H. Nguyen-Ngoc, M. Hors, and J. Perez-y-Jorba, Nucl. Phys.

42, 62 (1963).

where we use A and 8 as proportional respectively to
Ii and G defined above.

In order to obtain A and 8, we measured two series
of spectra at 6xed scattering angles of 60 and 135'. For
every fixed pair of values q', e, one can deduce the A
and 8.

In fact, we need some spectra at intermediate angles
because the q' ranges, for 60 and 135', are slightly
different, and for each e there is a range of nonoverlap
for large q'. In order to extend this overlap into the
large q'-value region, we used other spectra measured
at 75 and 90', whose radiative tails can be evaluated
using the A and 8 form factors extracted from the
spectra at 60 and 135'.

We have now obtained the experimental values of
2 (q', e) and B(q',e) for a large range of q' and e.

We are now going to try to fit these functions with
analytic forms. To do this, we notice that in analogy
with the. analysis for discrete elastic or inelastic levels,
8 would be related to transverse matrix elements and

8/2 to l—ongitudinal ones. We have then tried to
fit the A —8/2 and 8 with the functional forms"

P t t l (e)jP (qR) e
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TABLE HI. Results of the )«analysis.

8 1045

~ MeV

8
12
16
19
23
27
31
35
39
43
47

(2 11&022)X10 '
(1.86a0.22) X10-2
(1.34&0.17)X10 '
(1.04~0.14)X10-~

(0.925~0.09)X10 '
(0 856~0.09)X10 '
(0.87~0.09)X10 '
(0.83~0.09) X10-2
(0.75~0.08) X10 '
(0 69~0.08) X10 2

(0.82~0.10)X10~
(0.72+0.10)X10 '

0
0
0
0

(0 85+0.06) X10~
(1.48~0.11)X10-2
(1-81~0.13)X10~
(2.61~0.16)X10~
(2.26~0.16)X10-2
(2 56+0.19)X10 '
(2 43&0.20)X10~
(1 73~0-16)X10 '

0.043&0.006
0.106%0.014
0.131&0.015
0.109a0.013
0.063+0.008
0.065&0.009
0.077&0.010
0.078+0.010
0.093%0.012
0.081&0.010
0.071a0.010
0.089&0.014

d'e ( e) do
=1 .4+Btg'

I

—M-ott
dQdB k, 2 Idge

8
A —=p&jp(x)+7&jp(x))e &'g'

2

B=X,jP(x)e &'&'

x=gR R=2.75 F
g=0.85 F

&=&2(e)j2'(q&)e "". (36)

In the Table II, we give some examples of results for
this analysis in X~, X2, X3, and P 4 on the Be' data.

For all e(47 MeV, we found the somewhat un-
expected result that ) 2 and X4 are null within statistics.
We then tried to fit (A 8/2) with —the form

A —8/2= L)I.~(e)jt'(qR)+) 3(e)ja'(qR) je "" (35)

and determined ) t(e) and Xe(e) with their errors.
The same analysis in ) &, ) 2, A.3, and ) 4 was used for K

But it became apparent after trials that one can obtain
a good 6t with only one coefFicient X2 and 8 would then
be in the form

1. Consistency of the Analysis

I.et us consider a measured spectrum s, and let si be
the subtracted spectrum in the manner already de-
scribed. Now let us proceed to the subtraction of s by
using the "expected to be true" form factors already
obtained. A second spectrum s2 is then evaluated. If
the analysis is self-consistent, then s& and s2 should
coincide. For the sake of convenience, the ratio s~/s2
has been shown instead of s~ and s2 separately, as

S
Ratio oF two cr oss sections

2„

Figure 'I shows the 6t of A —8/2 and 8 with the
adopted analytical forms for some e.

The final results on X& analysis are recorded in
Table III.

We must emphasize that the A and 8 given in this
analysis, even at low-excitation energy (e(10 MeV)
concern the continuum. The form factors of the discrete
excited levels have been studied elsewhere" and sub-
traction of these known excited state nuclear cross
sections has been applied here.

We now reach one of the aims of this analysis, which
is to get the cross section at any E;, t), e (or equivalently
q'), provided that g' and e are within the range of our
available form factors. Indeed, from Eq. (33) it is
obvious that for any couple q', e, one has only to deter-
mine from Table III, the corresponding A and 8, and
thence calculate the nuclear cross section. This is
extremely interesting, since one can determine, by this
technique, the cross section for very high energy and
small scattering angle (and hence small q') by measuring
the cross section at lower energy, backward angle, and
the same q' value.

A. Veri6cation of the Validity of the Method

~ %0 &%I
1

1

&$08eV 7S

=xcitalion energy

mv 40
I

20

I, i ~t &1 'I
%%0 %%% %% 0 %W ~ AW

Be9

%0MeV 60

Ratio of two cross sectIons

~ a ~ aa aai 1

Q,7

a6
0.5

04
0,3

10

L1

0
0

~ 0,7
~ QS

~ as
~a4
~ Q3

~02

~ 1.1

taaaaaae ae e ~e

aa

In order to verify the validity of the subtraction
method used, two kinds of tests have been carried out:
Firstly, a "weak" test which aims to control the internal
consistency of the formulation, and secondly, a "strong"
test which verifies the possibility of extracting new
nuclear cross sections.

Excitction energy

~y 60 50 40 30 20 10

~0.1

0

Fio. 8. Test on the analysis consistency. The ordinate represents
the ratio of two spectra obtained from the same experimental
spectrum by two diGerent subtractions.
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se9

146.4 MeV 75

I l ~~

fl'l
l

l l
l

l

dla-
dndE

could not make a complete A and 8 analysis of the data
for e&47 MeV.

Finally, we would emphasize that the choice of the
width Ac (4 MeV in this analysis), introduced in the
continuum subtraction, is not critical. For one spectrum
we have used twice that width, and the two results are
practically identical.

B. Discussion of Errors

Excitation energ y

50 peV 40 30 20
0

10

FIG. 9. Test on the possibility of extracting new cross sections.
The crosses represent the cross sections calculated from Table III
obtained from a limited number of experimental spectra. The
points with errors bars represent the measured experimental
spectrum (these points are not related to the set of data allowing
the calculation of Table III).

a function of the excitation energy. Two spectra have
been tested in this way and Fig. 8 demonstrates con-
vincingly the consistency of the analysis.

Z. Extracti. oe of Pew Data

Beginning with the determined form factors A(q', e)
and B(q',c) we constructed, in reverse, one spectrum
with given incident energy E,, and scattering angle g.
This spectrum has no connection with the ones used for
the extraction of the 3 and B. We first determined the
elastic form factor and evaluated the elastic radiative
tail. The process was repeated for other inelastic levels,
and all the cross sections at the same 6nal energy (or-
equivalently at same excitation energy e) were summed
up. The continuum spectrum was divided, as before,
into small bands of 4-MeV width.

We thus obtain a complete spectrum exactly similar
in form with the result of an experiment, except that it
was not measured experimentally, but determined as
the result of the above analysis.

Next, we measured, experimentally, the spectrum
corresponding to the same conditions (E,,8), and com-
pared it to the one above.

Figure 9 shows the excellent fit obtained. Essentially,
this second test proves two things: (1) The effects of
the approximation done on the calculation of the
radiative tail are not important as long as the value of
e is not too large. (2) The analysis is general and allows
the concentration from a limited number of measured
spectra of any spectrum at any given incident energy
and scattering angle, provided that the square four
momentum and the excitation energy are in the range
of the measured ones.

It is encouraging to observe that with a high-speed
electronic computer, the radiative tail could be cal-
culated with more precision by numerical integration.

As we were limited by the partial overlapping of the
q'value, and as q'and e are related for fixed E and 8, we

There are, in general, two categories of errors, those
which affect directly the experimental measurements
and those which are introduced by the analysis pro-
cedure applied to the data. The first type of error is due
to uncertainties in the evaluation of experimental
parameters, such as target thicknesses, scattering angle,
solid angle and dispersion of the spectrometer, calibra-
tions of the energy, the current monitor, and finally,
counting statistics. These errors can be evaluated
accurately, and in our conditions they vary from 5 to
7% per band of energy used. The second type of error,
which is due mainly to the subtraction of the radiative
tail, as well as to the way we extract our invariants,
cannot be estimated so well. In principle, the statistical
errors can be calculated as the subtractions involved are
linear processes. Hence, error analysis techniques would
permit their accurate calculation. However, in our cases,
too many approximations have been used and such an
elaborate analysis is almost useless.

Nevertheless, the test we applied to our analyzed
data allows us to estimate the total error as being
around 12%, but less than 15% in any case.

C. Attempts at Interpretation

As far as we know, at the present time there is no
reliable theory of the continuous spectrum in inelastic
electron scattering on light nuclei. Some approximate
attempts at a theoretical interpretation have been
made, such as bringing into use the harmonic oscillator
wave function, '44 in order to calculate the charge
interaction matrix element in the independent-particle
shell model. Another method is to interpret the inelastic
"bump" as being due to scattering on quasiparticles.
This means that the process is purely incoherent, and
the cross section is simply the sum of individual cross
sections with quasifree nucleons. '

Recently, Czyz' introduced the second quantization
and expressed the cross sections in terms of the response
functions. However, for practical application, he had
recourse to a Fermi gas model, requiring a nuclear
matter with equal number of protons and neutrons.

These model-dependent calculations rely on assump-
tions which are more or less valid in the case of a real
nucleus like Be9. The subsequent fit is then limited by
the various approximations assumed in the models.

E. Amaldi, G. Fidecaro, and F. Mariani, Nuovo Cimento 7,
555 (i950).
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FIG. 10. Comparison of the
measured cross section with
calculations on the basis of the
harmonic oscillator model. The
theoretical lines have been
multiplied by a factor 4 to
obtain the same maximum.
The calculated cross section is
too low.

S09
177 M0V 135

cross section
arbitrary

unit

da
dn dK

u MeV120 100 80 60 40 20

The harmonic oscillator deals with discrete transitions
with equal energy spacings, which is far from being the
case here. The incoherent impulse approximation re-
quires a momentum transfer much larger than for the
cases we considered here.

And, Anally, our nucleus is too light to be considered
as a Fermi gas, as in the third model studied below.

Z. HarmorIic Oscillator 3fodel

This has been considered by Amaldi et al. ,
'4 who gave,

in particular, the angular variation of spectrum forms
for 600-MeV incident muons scattered by C" and Li~.
Calculations along the same line have also been given
by Bishop4 who considered only the charge interaction,
for which the result can be written as follows:

ns and m, and the incident energy E;

8E;= (m n)h—to,

Ace being the quantum of the oscillator.
X „is defined by

~me= pmn(&) eXp( &)

with x=q'a'/2; a=(A'/Mp„t, „to)'" is the oscillator
parameter

pe„(x)=x"/m! pl (x)=x™-1(x—m)'/m!.

For Be', it turns out that

10

3 m=g

tetr/dfl= trproton Z Pmn l
Xmn

l

1
4(1—8) sin'(8/2)

The cross section (Tp $ is the charge cross section,
but it has been assumed to be the experimental electron
proton cross section in order to account, in a rough way,

$2 ——2 for the magnetic interaction with the electron.

P + It is clear that one can only compare the sum of the
calculated lines with the area under the continuous
spectrum (Fig. 10). We obtain for a spectrum at

and 8 relates the energy of transition between the states 177-MeV 135'.

Oscillator
90 MeV

(d o / JOE) (K'experimental Zo „+So.~

5.7)(10 "cm'/sr (22&2) X10 32 cm%r 31&10 "cm'/sr.

Thus, there is a distinct discrepancy when compared
with the oscillator model. The third value calculated
above (Zoo+To.N) is the sum of incoherent cross sec-
tions on individual free nucleons. It would seem that the
incoherent scattering is more acceptable.

Z. IncohererIt Scatter&sg

In fact, many authors have succeeded in explaining

the quasielastic bump, due to electron scattering on C",
by purely incoherent process. ' ~ We refer here to the
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where

ds~ k' (I,+I,)
=e4——

dQdA jp q4

calculations given by Potter' who considered that the
initial nucleon possessed a momentum in the laboratory
frame. The over-all cross section is then assumed to
be the sum of electron scattering on individual nucleons.
The result is

Here the various quantities are defined as follows:

q=k —k' 3-momentum transfer to the nucleon;

q'= q' —qo' 4-momentum transfer to the nucleon;

lkl =k incident electron energy;

I

k'
I

= k' scattered electron energy; (4

p- = Iql+L(2M+qo —&)(qo—&)j'",
p- -=

I ql L(2M—+qo &) (q—o I3)7—"
2

It= ——4M'F 22+qsl 1— IK2F22

Iql 4-

+4q2KFtF2 Js,

2x'
Fl + K F2 fTtjr+ T2J2+TsJ2$,

Iql

We have simplified without approximation the expres-
sions given for T1 and T2 in Ref. 7.

Tt (q4/ I q I

4——) I
(k+k')2+2kk' cos'(0/2)),

~2 goT1 y

neutron( q4 k'+k"
Ts —

I
M'q'+———

q' The p-shell neutron binding energy is known" and we
assumed the same binding energy for neutrons and
protons of the s shell. However, we have increased the
oscillator parameters p for s-shell and p-shell neutrons
so that we obtain a better fit for the shape of the
calculated curve. We find that the absolute value of the
maximum is not strongly aGected by the variation of
p, (Fig. 11).

The same kind of fit has also been obtained for3~ AP'
in the same range of energy. One can reasonably deduce
that the nucleon ejection is only a part of the quasi-
elastic processes, at least for these momentum transfer
ranges.

+ (M'q'+-,'q') L(k q)'+ (k' q)'j—,
q4

and

p (ps+Ms)'12N (p)dp,
~m in

p&(p)dp,

X()d .
( 2+M2) I/2

J3—

3. Impulse Approximation Using the Fermi Gas Model

E(p) represents the momentum distribution of the
nucleon inside the nucleus, and 8 its binding energy. In
calculating X(p) from the harmonic oscillator wave

(39) functions, one can evaluate the integrals jt, J2, and Js
very simply by assuming that p&&M the nucleon mass.

We obtained the proton oscillator parameters from
the (p, 2p) experiment. "

$,(p) = (1/2r2'2p, 2)e &'»",

& (p) = (2/3~"p') (p'/p')e """' (42)

s shell p shell

8= 26 MeV 8= 17.2 MeV
proton

p = 105 MeV p.= 65 MeV

8=26 MeV 8=1.66 MeV

p, = 150 MeV p, = 120 MeV.

II
I

Total (5+P)

/
I r~

IVV VeV &35'

experimental

Jy. c m~

dRdE MeV. Sr

5 Q 33

.2.5

d2& Id&q Proton

dQdR 'EdQ) M,«
f'(q')

pg 7r

yP&QQT)+(c JQ7iji+c(jJF)j (43)

Considering the nucleus as an assembly of nucleons,
Czyz' used the electron nucleon Hamiltonian, given by
Mc Voy et al. ,

"valid to the order q'/M' and expressed
the cross section in terms of the response functions, by
means of second quantization techniques. Using the
Fermi gas model to evaluate these response functions,
the result can be given in a simple form

50

FIG. 11. Comparison of the measured cross section with the
cross section calculated on the assumption of incoherent processes,
in which a nucleon is ejected. Separate contributions of the s shell
and p shell are shown, as well as the total contribution.

» J. P. Garron, thesis, Universite de Paris, 1962 (unpublished)."F. Ajzenberg Selove and T. Lauritsen, Nucl. Phys. 11, 1
(1959)."J.Chollet, Internal Report, 1091,Linear Accelerator Labora-
tory, Orsay, 1963 (unpublished)."K. W. McVoy and L. Van Hove, Phys. Rev. 125, 1034 (1962).
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Po =120
II
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dadE

, 10 33
crn~
MeV.sr Hl =0,9M
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33
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I I

V HeY100 0, VMeV 100 50
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0

FIG. 12. Comparison with the cal-
culated cross section of a Fermi gas
model. M* represents the effective
mass of the nucleon.
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where we use the following approximation (1) for
nucleon form factors

p)(n) =p2(e) =p2(~) = f(q2) = (1+q&(J 2)—2

In these formulas, E represents the anomalous mag-
netic moment of the nucleon of mass M; co is the energy
transfer. If the momentum distribution of the nucleon
is that of a Fermi gas, Q~ and 02 are reduced to

with a)+12=0.8 F, F)(")=0.
The three terms in the bracket are related, respec-

tively, to the density-density correlation, the density
current and the current-current correlation. Besides

02= Qg',.

Qg =M(u/q —q/2.

2 g"QQ"=— 1— (1+2E) I,4'
2 co

I IQJII
I 2Q)+qjI

Mq

2 ~' G E(E+1)"JJ"=— qQ)+3202 ——— &(q' I
m q'M' 2 2

2 1)(1 8~+-
I
-+Ig'- ILG—II2+q'(2+E+E )]I

s M'~2 2)

~(lk I)LI—~(1k+a I) jdk~L~ —&(&+q)+&(&)j,
(45)

G=I ' N(lkI)l I—m(lk+(Il)jk'dk

(44) )&()La)—E(k+q)+E(k) j.
Normally, m(lk I) is the Fermi momentum distribu-

tion (step function). Czyz suggested, however, using the
shell-model distribution. For 1p shell we can write.(P) =I:I+-(p/P. n-p(-~/P. ),
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g 9
%0MeV 90

I
} i}1 ll) ill

too light to be considered as a gas of nucleons, and the
cluster structure found in the discrete level analysis"
would conflict with the simple momentum energy
relation for a Fermi gas particle.

t

l l ltll Il l
l

l l l ill llll llll& l l I -29n3.%
Qr

~ 89
100MeV 60

Excitation energy
25 20

Fro. 13. Electron scattering on Be around the
giant resonance excitation.

with o.= (A —4)/6, where A is the mass number of the
nucleus and p, =h/a the oscillator parameter. The
integrals I and 6 can easily be evaluated to give

m3f
P,' Mrs+rrMrr

g

—(PMss+rr (1+P)Msr+rr Mes) exp

~M
G= P,' Mrs+uMrs

qI

where

—(PMss+n(1+P)Mss+rr'Ms4) exp

P = 1+(2M(u/p, ')n,

XQ

xs Qp/p~ ~

The expressions of M „can be obtained from the
lowest moment by successive derivation with respect
to m.

The results are shown on Fig. 12, where we notice a
poor 6t for low transfers. However, for high-momentum
transfers the correct order of magnitude is obtained,
particularly as there was only one adjustable parameter.

Of the three considered models, the last one seems to
give the best fit, as much for the form of the spectra, as
for the order of magnitude of the cross sections. Un-
fortunately, it is not possible to draw any definite con-
clusion since, as we have said, the nucleus in question is

D. Giant Resonance

One of the aims of this study was to try to observe
the giant resonance structure of the Be' nucleus. In our
experiments (Fig. 13) we did not see any resonance
similar to the one observed in the reactions""

Be'(yn) Be' or Be'(yp)Li'

Measurements on gamma-ray scattering with a
betatron" had also failed to observe this resonance. On
the other hand, Goldemberg4' measured spectra of 180'
electron scattering on Be' at 40- and 70-MeV incident
energies, and did not see the giant resonance which he
observed on other nuclei.

We would point out that if the giant resonance excita-
tion cross section is calculated approximately, by
electron scattering, using the known photoreaction cross
section, a cross section, easily detectable by electron
scattering, would be found.

From the three independent negative results, one
can state that the open channels are certainly numerous,
and hence the giant resonance is completely masked in
these experiments.

CONCLUSION

The results of this study have been twofold. Firstly,
we have given a general method, in first Born approxi-
mation, of extracting electrodisintegration cross sections
in given ranges of e and q' values, and for any incident
energy and scattering angle corresponding to these
ranges. In this study, we have been led to give a general
formula for the radiative scattering processes. The con-
nection with the formulas proposed by other authors
has been shown. Checks have been made of the validity
of various stages of the process.

Secondly, these techniques have been applied to the
study of the continuum of a light element Be', and the
corresponding cross sections have been obtained. Then,
different approxiInate models have been compared with
the results, but the degree of conformity can be con-
sidered as satisfactory only for the Fermi gas model.

The form of the spectrum at high excitation energy is
strongly related to the correlation between the nucleons.
Hence, any progress in the interpretation of the con-
tinuum cross sections would contribute to the under-
standing of the nuclear structure. A parallel effort must
be made to obtain the experimental data on other nuclei.

"R. Nathans and J. Halpern, Phys. Rev. 92, 940 (1953).
4'R. N. H. Haslam, L. Katz, E. H. Crosby, R. G. Summers-

Gill, and A. G. W. Cameron, Can. J. Phys. 31, 210 (1953).
4' M. Langevin and M. Loiseau (private communication).
4' J. Goldemberg (private communication).
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We may emphasize the fact that, from these measure-

ments at low energies, it is possible to calculate the form

factors for high-energy processes at forward angles,

which would be hard to measure directly. This could be

helpful, for example, in calculating lepton pair produc-
tion by a neutrino beam. 4'

where

~ s x p ~ s'p' —(s p)
sx= pz

s—pfls xp

~*=s (s—x)/ls —pl,

P.=x (s—x)/ls —
pf
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In the frame of reference where p~=0, one may
choose the axis as follows ~'= (~—P—~)'= (~—P)'—2~(&.—&,)+2 lulX.

s—p sxp
3— y=—,&=yXa.

s—pf
'

fsxp

with

u' —&~2

2I Np —
I
u

f
coseI,]

ei, ——(u,k)

(A1)

Defining u= s—p+ p~ one finds easily from ps ——e—k

One can integrate S„„T„„overdqk using the above
integrals.

Noting that A, , and A.„become extremely small when
Xapproaches X,or X„,we have arranged the numerator
terms in the form X—X, or X—X~ and this gives a good
idea of relative importance of diferent terms.

One is left with an integral over

Hence
qi ——(planes uk; s, p). which can be transformed to

k s=co/E, s, cos8q —s, sin8q c—ospqj,

(A2)
qmin

k'P=M[Ey pg cosIIp pz slnII& cosy)u], —

4' W. Czyz and J. D. Walecka, Phys. Letters 8, 77 (1964).

since q2 and X are linearly dependent.
The cross sections are given by formulas (15) or (16)

in the text. The result of integration over dq~ can be
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written as follows:

S„„T„„dye=
xMg' g2 +AX, E,+ oo

F(q') 2Eo (E, oo)+— ——(X—X,)'+ (X—X,)—g,2

G)Ag ~l s)X,'I'

M cdiplhy

g2 m'X„ E~—
GO

+ 2E,(E~+a))+ (X——X )'+ (X—X„)—g
'

2 coEp

2 1 1—2+— — [m'(s p (v')+—s P(E,E„+s p+cv(E, E„))j—~'- I pl@'" E, E„—)uiX—

+ (m'+s p 2Eg') — —(m'+s p 2Ey')—
(o/sf) '"

xG(q') —m' (q'+ 2m2)
~2[g[E g 3/2 a&'i p i

E„X„'"

-E2~2m —2 X (X X) E 2~ 2m 2X— (X X )-

1 1 1—4+ (q' —2m'+6s P)
/pjx, '~' ]sf),'~' ar

where (s p=E,E„sp). —
+4s P(q'+s P)

——,(A~)
/p)X '~' /s/X '~' co'PE, Ey [U/Xg— —


