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g Factor in Metallic Zinc*

AI AN J. BENNETTt ANn L. M. FALIcov

Departraertt of Physics artd Iustitute for the Study of Metals, IIuioersity of Chicago, Chicago, Itliuois
(Received 26 June 1964)

A calculation of the g factor for the small "needles" of the Fermi surface of Zn has been carried on in the
three-level approximation. It is shown that for 6elds parallel to the hexagonal axis, g is expected to be large
with an upper bound of 133.This result rules out two of the three possibilities determined by Stark from ex-
periment. It is found that three possible orderings of the levels can give the observed results, and the energy
gaps are estimated in each case; the lattice potential and the spin-orbit splitting are of the same order of mag-
nitude. The variation of the g factor with angle is in agreement with experiment.

1. INTRODUCTION

'HE electronic properties of Zn have been the
center of attention of many experimentaP ' and

theoretical contributions. In particular some properties,
like the de Haas —van Alphen effect' ' and the magneto-
resistance' for fields parallel or nearly parallel to the
hexad axis, seem to be dominated by two small pieces
of electrons (the so-called "needles" ) in the third band.
These pieces are located around the points K in the
Brillouin zone (Fig. 1), contain on. the whole about
SX10 electron per atom and have, perpendicular to
the c axis, an area' of 0.00015 A ' with an effective cy-
clotron mass' 5

ttt*= 0.0075tms

(where etta is the free-electron mass).
The infiuence of these extremely small pieces appears

to be enhanced when magnetic breakdown effects" '
are present. This is due to the fact that the quantized
Landau levels of the "needles" modulate the transition
probability between various pieces of Fermi surface,
giving rise to strong oscillations in the magnetore-
sistance and the Hall effect which are periodic in 1/H.

Fxo. 1.The Brillouin zone
in the hexagonal close-
packed structure showing
points and lines of sym-
metry.
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This ampli6cation of what would be otherwise rather
weak de Haas —Schubnikov oscillations, results in the
appearance of structure in the line shape and permits a
more detailed analysis of the energy spectrum.

The experiments of Stark' in very pure samples, very
carefully oriented, show, in addition to the expected
"semiclassical" behavior due to magnetic breakdown,
strong doubly peaked oscillations with a period corre-
sponding to the cross-sectional area of the "needles. "
Stark has attributed the double-peak structure to spin
splitting; the energy levels which would reproduce the
observed line shape are given by

where
8„=(rt+y+8)Aco„

co,=eH/trt*c,

(2)

(3)

030

y=0.80

7=0.80

(4a)

(4b)

(4c)

The third term in (2) corresponds to the spin energy

&.=+sgtt~ ~

where tee is the Bohr magneton. From (2), (3), and (5),
the g factor is thus obtained from experiment by
means of

(6)

which corresponds, according to (1) and (4a), (4b),
and (4c) to 89, 178, and 356, respectively.

Although so large a g factor is not uncommon in
solids, e.g. , bismuth, " it is surprising at 6rst to see a
free-electron-like metal like Zn display values so dif-
ferent from 2. However, it should be emphasized that

(a) the g factor under consideration corresponds not
to the over-all Fermi surface, but specifically to the
very small pieces centered about E;
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stt* is given by (1), and the parameters 7 and 8 are one
of the three possible combinations
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(b) the very small effective mass (1) indicates the
presence of some other levels very close in energy to
the one under consideration;

(c) it has been shown previously' that the relevant
lattice splittings are very small ( 0.007 Ry) and of the
same order of magnitude of the spin-orbit splittings"
( 0.005 Ry).

Under these conditions a large g factor is likely to
occur, as it has been previously found in other cases" "
and as the general theory of the behavior of Bloch elec-
trons in a magnetic field~ explicitly shows.

Ke have calculated the g factor for the third band at
E following the formalism of Refs. 7 and 10, and assum-
ing a three-band approximation. In Sec. 2 we discuss
the details of the band structure around E both with
and without spin-orbit effects. We show explicitly that
the three-band approximation is very good for the
present purposes although it fails in other hexagonal
metals; the symmetry of the relevant states is fully
analyzed.

In Sec. 3 the calculation of the g factor is carried on
in detail; it is found that only (4a), i.e., g= 89, is con-
sistent with the theory. Three possible orderings of
levels which correspond to such a value are discussed
and the energy gaps estimated. Finally the calculated
variation of g factor with angle is compared with pre-
liminary experimental results. "

2. THE DETAILS OF THE BAND
STRUCTURE AROUND X

In the absence of spin-orbit coupling, very general
considerations show that the three bands of lowest
energy at E are a doubly degenerate E5 and a single E&
level. "In the free-electron model these two coalesce in
a 3-fold degenerate level with kinetic energy EI,=0.70
Ry. The actual ordering of this E~-E5 pair in Zn is in
fact dificult to predict. Harrison4 finds E~ above E5,
but the splitting of 0.007—0.011 Ry is smaller than the
estimated accuracy of a few hundredths of a rydberg.
In addition, comparison with other hexagonal metals
shows E» and E5 in thallium, "with an energy gap of
0.125 Ry, and E5 above E~ in magnesium, " with an
energy gap of 0.04Ry, that is, a trend for Eq to in-
crease and be above E5 as the atomic number increases,
with Zn being probably a borderline case. The next set
of levels, E2, E3, E5, and E6, has an average kinetic
energy E1,=1.17 Ry, i.e, , they are separated from the
relevant set by an average of 0.47 Ry.
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When spin-orbit coupling is taken into account, the
E~ state becomes E7 in character and the E5 state is
split into E8 and Eg representations.

The splitting of the Es and E9 levels can be estimated
by scaling the known value of the corresponding split-
ting in Mg. '~ The scaling factor taken from the corre-
sponding atomic term values" is 9.5 and gives E'8

above E9 with an energy difference of 2.7X10 'Ry.
In addition, a tight-binding approximation in the spin-
orbit calculation gives a splitting equal to ~~A, where 6
is the J=-'„J=—,

' splitting in the atom. Since 0 =7.95
X10 'Ry, ' this approach gives a splitting of 5.3
X10 'Ry. So, within a factor of 2, the spin-orbit-
induced gap is known; we can therefore take the value
of 6 as our unit and correspondingly scale all energies
when 6 is readjusted.

In order to compute the effective masses and the g
factor at E, we have made use of the k p perturbation
theory, suitably generalized to include spin, i.e. , we
need to know the interband matrix element of the
velocity operator

v= (1/ms) y+ (1/2m. sc') sX |7V, (7)

where p is the momentum, s the spin and V the lattice
potential.

The well-known formula for the inverse effective-
mass tensor at a given point of a band 0,

(ops;ie)(rais, io)+(oiv;in)(Nit, io)

jV. jV„

clearly points out that in order to get a cyclotron mass
as small as (1), it is necessary to have, very close in

energy to the band 0 under consideration, at least one
additional band of lower energy. Since the next upper
bands are on the average about 0.4 Ry apart, they can
only contribute a very small amount to the effective
mass and g factor at E, and consequently can be neg-
lected for the present purposes.

The value of the de Haas —van Alphen period to-
gether with the cyclotron mass indicates that the Fermi
energy lies only about 0.0018 Ry above the third E
level. As a consequence (a) the effective mass and g
factor computed at E should be a good approximation
throughout the "needle, " (b) the third band can be
considered parabolic for all practical purposes, and (c)
the three-band approximation is certainly a good one.
It should be noted in passing that this only holds for
Zn because in the other hexagonal-close-packed. metals
the third level has moved well below the Fermi energy
(Mg rs TP') or well above it (Cd ')

In order to compute the matrix elements of (7), it
is necessary first to specify the functions corresponding

'7 M. G. Priestley, L. M. Falicov, and G. Weisz, Phys. Rev.
131, 617 (1963).

's Charlotte E. Moore, Natl. Bur. of Std. (U.S.) Circ. No. 46'7

(1949).
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Atom 1 Atom 2
Center of
symmetry

TABLE I. Angular-momentum character of the wave functions
about the lattice sites and the center of symmetry.

the corresponding points. The s- and p-like contribu-
tions are listed in Table I.

The energy of the relevant levels will be specified
by two parameters E and 6 such that

~P& P'II

s
P&+P'Ll

~P&+PI
P Pv

s

s
P&+P71

~P& Pv

Eg=0,
Es E+5——/3,
Eg =E 6/3. —

(10)

i 1)= ski)+ce' i
kg&+ce [kg),

I a& =
I ki&+ I kg&+ I kg&,

[b)= ikt)+ce i
kg&+cd'[kg&.

(9)

Here co= —g+i(v3/2), ~k;) represent plane waves (or
OPW's) with k vectors defined. in Fig. 2;

~
1) transforms

according to the Ei representation while ~cr& and ~b)
transform according to E5. Of course any linear com-
binations of

~
a& and

~
b) also transform according to Eg,

but the present choice is the most convenient, since
when spin-orbit coupling is taken into account and the
spin is quantized along the hexad axis,

~
11') and

~
1O transform according to Er,

~crt') and ~bl) transform according to Es,

~
bf) and

~
cri& transform according to ICg.

These properties can be clearly seen from the angular-
momentum character of the wave functions (9) about
the lattice sites. This information can be obtained from
the transformation properties of the functions or, more
easily, by expanding them in power series in r around

FIG. 2. The Grst three
k vectors contributing
to the wave functions
at E.

to the Ei (Er) and Es (Es, ICg) 'levels. Group-theoretical
arguments tell immediately which of these matrix ele-
ments are nonzero. It is convenient, however, for making
arguments more explicit, to give as an example the
following combination of plane waves Lor orthogonal-
ized plane waves (OPW)j which have the required
symmetry':

in the three-band approximation

6moAC= a (12)

as can be easily seen from (11), (10), and Tables II
and III.

Having defined the matrix elements of the velocity,
the application of (8) to the Er and Es levels gives:

r
cc mg r greg 2mg(A —C)g 2grcg(A+C)g

(13)
'cm, nsy„E—6 3 E 6 3

(m ..) E+6/3

o
' mo 2mo A C' 3mo&'

i=1+ +
m, ,) m„„) E+6/3

SmoC'

E,+6/3

TABLE II. Matrix elements of the "spinless" velocity
operator P= p/sg.

E can have either sign, but 6, the "atomic" spin-
orbit splitting, is defined positive. This implies that
only Er or Es can be the (third) level corresponding to
the "needle, " depending on whether E is larger or
smaller than —6/3.

The velocity operator (7) can be divided into a
"spinless" part P= (1/greg) y and a spin-orbit part
R= (1/2grcggc')sX VV. Symmetry considerations show
that many of the matrix elements are zero, and those
which do not vanish can be expressed in terms of three
parameters A, 8, and C which are real. Tables II and
III give the matrix elements of P, P„,P, and R„R„,R„
respectively. It should be noted that: (a) in general, A
and 8 are expected to be much greater than C, which is
only a relativistic correction; (b) A and 8 are of the
same order of magnitude, and in fact in the three-plane-
wave approximation A=8; (c) since the spin-orbit
Hamiltonian is a function of P and R,

X„=(1/2gigggc')y sX VV= rrcgP. R,

"It should be understood the functions shown in {9) are not
those actually used in computations. In fact all the arguments
following should be interpreted as referring to general functions
which have the same symmetry as I1), Ia), and Ib).

0
0

Ib)
A

0

0
iA

—iA

—iA
0
i8

iA
—iB

0

P,

A11
zero
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TAsz.z III. Matrix elements of the spin part of the velocity operator. R=sXvV/2m'c'.

A 1001

&lTI

&ill
&oT I

&ol I

I IT)

0
C
0

—C
0

R

lll) IoT) lbl& l&T&

0 C 0 —C
0 0 C 0
0 0 0 0
C 0 0 0
0 0 0 0

-C 0 0 0

IIT)
0 0 0

—C 0 0
0 iC 0
0 0 —$C
0 iC 0
0 0 —iC

R„
Io1'& l f1&
—iC 0

0 iC
0 0
0 0
0 0
0 0

If T& I ol&
—iC 0

0 iC
0 0
0 0
0 0
0 0

I IT& I tl)
0 0
0 0
0 —2C

2C 0
0 0
0 0

Rs

loT) lfl& lfT& lol)
0 2C 0 0

—2C 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ek {Os~ v(ns")X(es" [v(0s')
s Up s (24)2' ns" jv

$=E/6 n =mpA'/6) 0 P =mph'/6&0. (17)
where e represents all other bands.

By means of (7), (10), and Tables II and III, (24)
can be straightforwardly computed, with the results

Equations (13)—(16) can be simplified to

4' mp

tp —
p

m*
(( 1 (18)

'(p.) '(p,.) 2mpC(A+C)
0~=

kp i kp i
(25)

E+6/3 3)+1mp Szp 2Q 3 szp
(1~)

m.,i '(p, „~ s(q„~ 2m, C(A+C)

E@pi 4 @pi
(26)

(m) (m) E+6/3 3/+1
(20)

We are interested in (13) and (14) for E(—6/3, and The expression for Ipi, which is due to the unquenched
(15) and (16) for E)—6/3. In either case, since m„orbital motion, is"
=m», (13) or (15) should be equal to mp/m*, i.e., 133.
With this in mind, and by neglecting terms of the order
C' and using the definitions, we obtain

3. THE CALCULATION OF THE g FACTOR E—S/3

' p,) mp(A+C)' mp(A —C)'

Iapi — E+6/3

2(~—)
o,= o „(27)

3p r

In what follows we calculate the g factor according
to theory of Cohen and Blount" and Blount. ~ The
effective-mass Hamiltonian for the relevant spin-de-
generate band in the presence of a magnetic field is
given by

Ii' e )' ( e
&.—A. f+J &.——A,

2m* cfi i 5 ch

ks ( e
~

u, --A, ~+E. a„,
2m„k

cjoy

—(s( ll(s')'H. (21)

Here s and s' indicate the spin states in the degenerate
band, o indicates Er (if E)—6/3) or Es (if E(—6/3),
Es is given by (10), and Ix is the intrinsic magnetic
moment of the electron, consisting of an orbital part

. p~ and a spin part p,

p,) mp(A+ C)' 3mpB'

p i E+6/3 2A

n 3P
(28)

-&+s

-2

where 0. , cT„, a., are the Pauli matrices, and the last
expressions are obtained with similar approximations
to those which led to (17)—(20). It is interesting to
point out that all components of the magnetic moment
can be expressed in terms of the Pauli matrices without

p= pi+ps &

Pz = —2PpS.

(22)

(23) Fia. 3. The g factor as a function of (=—E/A.



A 1002 A. J. BENNETT AND L. M. FALICOV

Ryd
a)

0-

K5

-0.005-

EF

K~

Ks K(

K5

Ks'

Ks
K~

K5

Ks

E;0

Ks

--I
Ks

"O.OIO-
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Fzo. 4. The three possible orderings of levels which
correspond to a g factor of 89.

any contribution of the unit matrix; this means that no
magnetic moment is apparent in this approximation. "

We now analyze the case in which the magnetic field
is parallel to the hexagonal axis. In that case g,
=2(p,/pp); from (18) and (27) the parameter n can
be eliminated and

This function is plotted in the left-hand portion of
Fig. 3, and it is seen that it can only vary between 0
and —1, giving ~g~ (133.

The same condition )g~ (133 can be obtained from
(19) and (28) by requiring n)0, P)0. As a conse-
quence, only one of the three possible experimental
values (4), namely (4a), is compatible with this calcula-
tion. The variation of g, with the energy difference
between Eq and E5 cannot be explicitly found if no
relation between a and P (i.e., 2' and 8') is known.
For the sake of clarity, and in order to give an explicit
example, we have assumed the relation satisfied by the
linear combinations of three plane waves, namely n=P.
In that case, by eliminating n between (19) and (28)
we obtain

g,no*/nap= (—3&+1/3&+3), P) ——,'. (30)

20 Note added in proof. The hexagonal-close-packed structure
possesses a center of inversion and consequently shows no mag-
netic moment. However, the pieces centered about E are not sym-
metric under inversion individually; this results in a nonzero
magnetic moment corresponding to each piece for fields in arbitrary
directions. The total moment of the tmo "needles, " which are
related by inversion, is on the other hand exactly zero.

This function varies between —1 and +1 and it is
plotted in the right-hand side of Fig. 3.

We can now assume that the experimental value

~ g,m*/mp
~

=—', is the right one, and determine from (29)
and (30) the various possibilities for the ordering of
levels. The three possible values for $ are —0.5, —0.2,
and +3, which from (17) and (10) correspond to three
orderings shown in Fig. 4. It is interesting to note that
in every case E and 6 are of the same order of magni-
tude, i.e., the energy gap due to the lattice potential is
as small as the spin-orbit splitting. We are now in a
position to study the variation of the g factor with
angle, i.e., the energy splitting of the two spin levels
when the magnetic field is rotated off the hexagonal
axis. A diagonalization of the p I term of (21) for H
forming an angle 0 with the sixfold axis yields an energy
difference E~ between the two spin states which in
turn gives a g factor

2 sin8)' 'I'
g(0)= (a. cos~)'+

3)+1)
For the three values of f chosen to give g, =89, the

second term in (31) is much smaller than the erst for
all angles up to, say, 70'; this gives for the g factor a
cose variation.

This result is in agreement with preliminary experi-
mental information" based on a detailed study of the
line shape of the de Haas —van Alphen oscillations in
the "needle. " This analysis shows that, within experi-
mental error the product of g and the cyclotron mass
m, is independent of orientation for magnetic fields
not too close to the basal plane. It is also known from
experiment' that m, varies very nearly like the secant
of the angle 8.
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