
A 980 K. S. SI NGKI

I'(k) is known experimentally and hence (A17) can be numerically evaluated for a given x for different q's using
R as a parameter. No doubt formula (A17) is valid for all R, but if we follow the above procedure we no more
have an explicit formula for the width. E&ven formula (A17) does not circumvent the difhculty of not knowing
I"(x) very accurately. To see this we proceed to make some approximations.

R R2 - i +&

W(x+ q) —8'(x) = — kl'(k)dk exp ——(a—k)'—
2/tr ir s 4 2q

R2
exp ——Px'+2(~ —k)xj —1 dx. (A18)

Expanding the exponential in the curly brackets and integrating we have

R' a2 1 R2
&(~+tl) —~(x)= —— kI'(k) exp ——(a —k)' L:,'R'(K —k)' —1)dk,

2/~a 12 s

where we have retained terms up to order q2 only. From a scrutiny of the integrand one sees the importance of the
weighting factors. It is obvious that if the function I'(r) is not known accurately in the region of x values where
the function is rising rapidly, we would introduce a large error in the value of the integral. It is also clear that one
obtains a large negative value for the integral for that value of x for which there occurs a peak in I'(x). Detailed
numerical computation would be justified when more accurate experimental data are available.
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A theoretical study is made of the density-proportional paramagnetic shift of the resonant magnetic Geld
observed in nuclear magnetic resonance studies of Xe12l) in pure xenon gas by Streever and Carr. The theory is
based on a computation of the chemical shift in "diatomic molecules" formed by colliding Xe atoms, includ-
ing the e6'ects of van der Waals and exchange interactions on the wave function of the colliding atoms. The
results of this calculation show that only the exchange interactions between the colliding atoms make a
significant contribution to the chemical shift. When averaged over the various types of collisions, the follow-
ing value is obtained for the shift in the resonant field: DFF= —2.85(10) rFFp, where FF is the field strength
and p is the density in amagats. This is in order-of-magnitude agreement with the observed result: AH
= —4.3(10) rpFF.

I. INTRODVCTION

' "UCLEAR magnetic resonance studies of Xe'"
(I= s) in pure xenon gas at high pressures have

yielded two interesting and related results. "First, the
spin-lattice relaxation time, although inversely pro-
portional to the density of the gas as expected, ' was
much' too short to be accounted for by the relaxation
mechanism of magnetic dipole-dipole interactions be-
tween the nuclei of colliding atoms. ' Secondly, there was
a paramagnetic shift of the resonant value of the mag-
netic 6eld, which was proportional to the density of the
gas and to the magnetic 6eld strength.

The relation between these results was established by
Torrey, ' who pointed out that in a diatomic molecule,
which may be used as an approximate representation of

*Work supported by the U. S. Bureau of Naval Weapons, De-
partment of the Navy, under Contract No. NOw62-0604-c.' R. L. Streever and H. Y. Carr, Phys. Rev. 121, 20 (1961).

2E. R. Hunt and H. Y. Carr, Phys. Rev. 130, 2302 (1963).
3 H. C. Torrey, Phys. Rev. 130, 2306 (1963).

a pair of colliding Xe atoms, Ramsey's theory of mag-
netic shielding connects the chemical shift and the
nuclear-spin rotational coupling constant. ' The nuclear-
spin rotational coupling is a potential relaxation mecha-
nism because it permits the nuclear spins to exchange
angular momentum with the rotational momentum of
the colliding atoms. Torrey showed that if one assumed
that the observed shift in the resonant Geld was due to
chemical shifts in "diatomic molecules" of colliding Xe
atoms, and used the experimental value of the shift
together with Ramsey's formula to determine the
nuclear-spin rotational coupling constant, then one
obtained a computed value for the Xe'" relaxation time
which was in good agreement with experiment.

Therefore, the sole remaining task in connection with
this problem is to compute the chemical shift expected
for a pair of colliding Xe atoms as a function of separa-
tion, and to see whether such a shift averaged over all

' N. F. Ramsey, Phys. Rev. 78, 699 (1950).
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types of collisions is in agreement with the observed re-
sult. Such a calculation also tells us which of the inter-
atomic forces experienced by the colliding atoms, that
is, attractive van der Waals forces and repulsive ex-
change forces, makes the greatest contribution to the
chemical shift. Actually, such a calculation was carried
out some time ago by the author in an attempt to ex-
plain the Xe'" relaxation by the nuclear-spin rotational
coupling mechanism. ' This calculation considered only
the van der %'aals part of the interatomic interaction
and gave a value for the nuclear-spin rotational coupling
constant which was much too small to account for the
observed relaxation. A more reined calculation of the
contribution of the van der Waals forces to the chemical
shift, which will be described in this paper, also gives a
negligible result. Recent extension of Hartree-Pock cal-
culations to the very large atoms' has provided us with
xenon atomic orbitals which are suf6ciently accurate to
permit an approximate calculation of the contribution of
exchange forces to the chemical shift. The result of this
calculation is sufficiently close to the experimental re-
sult to prove that exchange interactions between collid-
ing Xe atoms provide the chemical shift and spin-
lattice relaxation of Xe"'

II. THEORY

I et us consider a pair of xenon atoms with a separa-
tion R measured along the s axis, and with the external
magnetic field along the x axis. We denote these atoms
as A and 3, and we compute the magnetic shieMing for
atom A. It has been shown by Ramsey4 that if the mag-
netic field is parallel to the internuclear axis of a di-
atomic molecule, then all magnetic shielding effects
which depend on the interaction of the two atoms
vanish. Thus, we calculate the chemical shift for the
Inagnetic field perpendicular to the internuclear axis,
and later average over all possible field orientations.

The calculation of magnetic shielding effects can be
simplified, and physically reasonable approximations
made more readily discernible, by proper choice of the
gauge of the vector potential of the magnetic field. '
Since we are computing the magnetic shielding for
nucleus 2, the best choice for the vector potential A~~

of the external magnetic field H is

AIr ——-';H x r. ,

where r, is the radius vector from nucleus A. The ad-
vantage of this choice of gauge is that it puts the orbital
Zeeman perturbation in terms of angular momenta
measured about this nucleus, with the result that con-
tributions from that part of the electronic wave function

' F. J. Adrian, thesis, Cornell University, 1955 (unpublished);
available from University Microfilms, Inc,

6F. Herman and S. Skillman, Atomic Structure CalcuLations
(Prentice Hall, Inc. , Englewood Cli6s, New Jersey, 1963).

A good discussion of gauge considerations in magnetic shield-
ing calculations is given by C. P. Slichter, Princi p/es of magnetic
Resonance (Harper and Row, New York, 1963), Chap. 4.

which is spherically symmetric with respect to this
nucleus can be eliminated by inspection. For another
choice of gauge, the contribution of the spherically
symmetric part of the wave function, although still zero
in principle, appears as two terms whose exact can-
celation may be lost in approximate calculations.

In this two-center calculation, however, use of Eq.
(l) complicates the vector potential seen by the elec-
trons of atom B.This is a significant feature of the cal-
culation. It is seen below that this vector potential act-
ing on the electrons of atom 8 produces orbital polariza-
tion of the closed electronic shells of this atom, and that
the transmission of this orbital polarization to atom A
via the exchange interaction produces the observed
chemical shift. Except for interatomic exchange terms,
however, this form for the vector potential is an un-

necessary complication. In computing matrix elements
involving orbitals of one atom only, it is possible to
choose the gauge separately for each atom so that the
vector potential always has the simple form of Eq. (1).
Formally, this is done by using gauge-invariant atomic
orbitals. ' For atom 8 these orbitals are defined by the
equation

b (rs) =b;(rb) exp(MArrs. rs/Ac),

where b; is the ith atomic orbital of 8, b; is the cor-
responding gauge invariant orbital, rb is the radius vec-
tor from nucleus 3, and Arrb is the vector potential at
nucleus S. A similar set of orbitals can be defined for
atom A. The advantage of the gauge-invariant orbitals
is readily seen if we consider the momentum operator

Lp —(e/c)Arr) for a vector potential de6ned with respect
to an arbitrary origin. Using the relation y= —B'AV

and. Eq. (1) for AH, it is readily shown that

(b ( p (%)A~—
~

b )= (b, ~ p —(e/2c) H x rs ) b;) . (3)

This equation shows that use of gauge-invariant orbitals
for calculating matrix elements of the momentum opera-
tor between orbitals centered on the same atom is
equivalent to using ordinary orbitals and choosing the
vector potential so that it is zero at the nucleus of this
atom.

The disadvantage of the gauge-invariant orbitals
appears when exchange and overlap integrals must be
considered, because such integrals will contain the 6eld-
dependent phase factors present in these orbitals.
Since exchange and overlap effects are of paramount
importance in this calculation, and since the appearance
of field-dependent factors in the overlap and exchange
integrals is an undesirable complication, we adopt the
following procedure. First, we compute the magnetic
shielding considering only the relatively long-range van
der Waals interaction between the two Xe atoms, using
the gauge-invariant orbital procedure. It is found that
the resulting chemical shift is negligible. Then we con-
sider the short-range exchange interactions. For this

s F. London, J. Phys. Radium 8, 397 (1937);J. A. Pople, Mol.
Phys. 1, 175 (1958).
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calculation me choose the gauge so that the vector po-
tential is given by Eq. (1).

A. van der Waals Interaction

Following the procedure just discussed, we use
ordinary atomic orbitals, and pick the gauge inde-
pendently for each atom so that each atomic orbital
sees a vector potential of the form of Eq. (1) with the
origin at the center of the orbital. This gives the
following Hamiltonian:

X=+„A (2m) 'Pp„—(e/2c)H&&r, „—(e/c)A~, .„]'
+Q,B (2m) 'Lp, —(e/2c)H&&rb„—(e/c)A~, „]'

+ i A+ &B+Xv. (4)

Here, P„A and P„Bdenote the sum over the electrons of
A and 8, respectively; Vp„and V& are the internal po-
tential energies of atoms A and B, and X~ is the van der
Waals interaction Hamiltonian. The quantity AA, „ is
the vector potential of the magnetic moment of nucleus
A acting on the vth electron. It is given by the expression

AA.,= @AXr../r. ,', (S)

where p~ is the magnetic moment of nucleus A. We neg-
lect all terms associated with the operation of AA, „on
electrons of B.It has been shown by Torrey' that such
terms are negligible, the reason for this being that the
magnetic effects associated with the nuclear moment of
A fall off rapidly (as 1/r, ') with distance. Thus, ex-

panding the Hamiltonian of Eq. (4) and retaining only
those terms which contribute to the magnetic shielding
gives the effective Hamiltonian

XA+XB+Xv+Q A (e21fpA/2mc')

&&(y-+ -')/". +E."y~L.,
+2PI AL.../r. ,')+Z.B P&Lb., (6)

In deriving the foregoing Hamiltonian we have also
used the facts that the magnetic 6eld H is directed
along the x axis and that the nuclear moment of A is
quantized in the direction of H. The new symbols in

Eq. (6) have the following meanings: XA and XB are
the Hamiltonians of the isolated atoms A and B, re-

spectively; p is the Bohr magneton; and L,„and Lb,„
denote the x component of the orbital angular momen-
tum of the vth electron about the nuclei A and B, re-

spectively. The orbital angular momenta are in units
of A.

Let us take the zero-order Hamiltonian to be 3'.~
+XB+Xv and compute up to second order those
terms in the perturbation energy which are linear in H
and p&. Following Ramsey, 4 we equate the resulting
change in the nuclear Zeeman energy to a change —O.,H
in the magnetic 6eld at the nucleus, where the magnetic
shielding constant a., is given by the expression

0,=(e2/2mc2)(QIQ A (y '+e ')/r, „'IO)
+2P'2-'(Eo —E.) 'L«IZ "L.*/"'l~)

X(~
I ZPL..„+ZP Lb.„I0)+«]. (7)

Here, - CC denotes the complex conjugate of the 6rst
term in the square brackets.

The first term in Eq. (7) is just the diamagnetic shield-

ing of the isolated atom plus small changes due to the
perturbation of the Xe atom wave function by the van
der Waals interaction. It is readily shown, as it has been

by Torrey, ' that the change in the diamagnetic shield-

ing due to the van der Waals interaction is negligibly
small. The reason for this is that the slowly varying func-
tion (1/r) is very insensitive to small changes in the
wave function.

Thus, we turn to the paramagnetic shielding which is
given by the second term in Eq. (7). Here, there is the
possibility that the van der Waals perturbation of the
atomic wave functions, which may be described as a
partial excitation of the 5p orbitals to higher states,
combined with the Zeeman interaction between the ex-
ternal magnetic field and the orbital momentum of these
distorted orbitals, produces a net electronic current in
the Xe Sp orbitals. Such a current would produce a
large magnetic field at the nucleus and, hence, a large
magnetic shielding. The results of this calculation
show, however, that this effect is small because of al-
most complete cancelation of terms corresponding to
currents of this type.

In this calculation, the problem of summing over a
variety of excited states is treated by the usual method
of equating the energy of all excited states to an aver-

age value. This should be a reasonably good approxi-
mation because the energy difference between the low-

est excited state of an Xe atom and the ionized atom is
small compared to the ionization potential. Since the
lower excited states should Inake a somewhat larger
contribution to the sums than the higher states, we take
the average energy of an excited state to be given by the
formula

AE= (Eb—E„), =-,'(E,—Ei)—-',E;.„——9.6 eV. (8)

Here, E~ is the energy of the lowest excited state and

8;,„ is the ionization energy. By use of this approxi-
mation, the paramagnetic part of the magnetic shield-

ing constant, given by the second term in Eq. (7), can
be rewritten as

~„,= (4P /m)(0 I (g,' L..„/...')
&&(~,"L...+Z;L ..)I0) (9)

The van der Waals Hamiltonian has the form"

Xv= (—e'/R')
XpbA gp(2e. bzb„—&.b&b, —y.byb„), (10)

where the two sets of. coordinates with origins at A and

R. F.Bacher and S. Goudsmit, Atomic Energy States {McGraw-
Hill Book Company, Inc. , New York, 1932), p. 505.

"J.O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases amd Liquids {John Wiley 8z Sons, Inc. , New
York, 1954l, p. 923.
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(npPp) Bey (n'8 )
+=noPo+2' n;P, ,

~,i (Ep E~)+—(Fp E,)— (12)

where 0.0 and 0.; denote, respectively, the ground and
ith excited states of the isolated atom A, and similarly
for Po and P;. Even though the change in the magnetic
shielding is of second order in the van der Waals inter-
action, we do not need to consider second-order terms
in the van der Waals perturbed wave function. This is
because all cross products involving the ground-state
and second-order terms in the van der Waals perturbed
wave function vanish because of the identity

(Zo L o+2 Lb )noPo=0 (13)

Use of 4' given by Eq. (12) as the ground-state wave
function in Eq. (9) for o ~„and summation over the ex-
cited states by use of the "average-energy approxima-
tion" for the energy denominators of 4, gives the
equation

-,.= Dl'/(»)'j
X(,P.IX,(g; L.../... )
X(Z."L-.+2'Lb*.)3('v InA) (14)

The evaluation of this expression is straightforward. In
its evaluation two classes of terms arise according to
whether the operator L„„/r,„s operates on the same
electron orbital as the van der Waals operators or on a
different orbital. It is the latter class of terms which
describes the potentially large effect of the van der
Waals excitation of a Sp electron followed by a magnetic-
field-induced current in the resulting 5p "hole." These
large terms vanish if one includes intratomic exchange
terms, a necessary step which was omitted in the
author's original calculation. ' Thus, it is found that the
contribution of the van der Waals interaction to 0„,
is given by the expression

tr,.= L36e'P'/&'(»)')(r')b, (1/r)o„(15)
where (r')s„and (1/r)oo are the expectation values for a
Xe Sp orbital. A rough estimate of this quantity
shows that it is negligible. Taking (1/r)b„1ap, AL—~—

= —9.6 eV, and introducing the experimental value of
the polarizability" 0, through the approximate relation"
n=4e'(r')sr/», gives o~,= —(10) ' at 8=4 A. This
is already less than the observed shift at 1 amagat
density" and is completely negligible when one aver-

n Homdblch der Physik, edited by S. Fliigge (Springer-Verlag,
Berlin, 1956), Vol. 36, p. 192.

~ H. Eyring, J. %'alter, and G. K. Kimball, QNanfum Chemistry
(John Wiley gr Sons, inc. , New York, 1944},p. 354.

8, respectively, are related by the transformations

nb=a„yb=y, ; zb=z, +R.
The van der Waals perturbed wave function to terms
in 6rst order is

ages over collisions, since a given atom only spends a
very small fraction of its time within 4 A of another
atom.

The perfect cancellation of the large terms in summing
Eq. (14) for a„, is, of course, a result of the average
energy approximation. Since the dependence of these
large terms on the radial integrals is (r')b„'(1/r')s~,
which is several orders of magnitude larger than
(r')b„(1/r)b„, the following check was made on the
accuracy of the "average-energy approximation. "The
obvious differences in excitation energies depend on
whether the Sp electron is excited to an s, p, or d orbital,
and the spin-orbit energy of the resulting Sp "hole."
Thus, a calculation was performed in which excited
states were classified according to whether the excited
electron was in an s, p, or d state and whether the Sp
"hole" was Spots or Spris, and different excitation ener-

gies were assigned to the various types of excited states.
(The classification of the various excited states and.
their separate summation was done with the aid of con-
ventional methods of computing matrix elements of
angular momentum operators. ")

This calculation, which, although fairly straight-
forward, is too lengthy to describe in detail here, gave
the expected result. This was that no reasonable assign-
ment of the various excitation energies gave a result for
0„, which was appreciably greater than the result
given by Eq. (15).

B. Exchange Interactions

We now consider the contribution of exchange inter-
actions between the colliding atoms to the magnetic
shielding. As discussed previously, we take the vector
potential in this calculation to be given by Eq. (1).
Now it may seem inconsistent to choose one gauge for
computing the exchange terms, while using a different
approach based on gauge-invariant orbitals for com-
puting those magnetic shielding effects which do not
involve interatomic exchange. This, however, is not the
case because, in this calculation, we can always dis-
tinguish between exchange and nonexchange terms no
matter what gauge is used. Consequently, each set of
terms will be individually gauge invariant, and each
can be computed using the most convenient choice for
the vector potential. In fact, this calculation can be
carried out using the vector potential of Eq. (1)
throughout with the same results. The only difference
is that in this approach two large terms of opposite
sign appear in the nonexchange part of the magnetic
shielding. It can be shown that these terms cancel
exactly, but their appearance lengthens the discussion
of the previous section, and detracts from its clarity.

With the vector potential of the external Geld given

by Eq. (1), the same procedures that led to the Hamil-

"G. Racah, Phys. Rev. 62, 438 (1942}.



F RA i& K J. ADRIAN

tonian of Eq. (6) give the Hamiltonian

Se=Be~+Xs+3.'~a+ P„"(e'Ifpo/2mc')

X(y.,'+..')/. .„'+P„"(PaL.,„
+2PP~L.*,/", ')+2'P7--IL.... (16)

The only differences between this Hamiltonian and that
of Eq. (6) are that the interaction between atoms is now
represented by K», and, as a consequence of our choice
of vector potential, all orbital angular momenta are
measured with respect to nucleus A.

It is readily shown that the change in the diamagnetic
shielding due to the exchange interaction is negligible.
I.et us take the ground-state wave function to be an
antisymmetrized product of one-electron orbitals of the
interacting atoms

I
«po&= gg o(1)g o(2)g, o(3)b o(4)b o(5)b o(6) . (17)

Here, Q, denotes the operation of antisymmetrization
and renormalization; g, , o, g„,o, and g, , o are the 5p
orbitals of atom A directed along the x, y, and s axes,
respectively; and b, , o, b„,o, and b, , o denote the cor-
responding orbitals for atom 8. Since we are neglecting
spin-orbit effects, we can treat the set of electrons with
spin "up" separately from the set of electrons with spin
"down. " Thus, the wave function in Eq. (6) and all
subsequent calculations include only that set of elec-
trons with one of the two possible spin orientations.
The results of these calculations will thus be multi-
plied by two to obtain the total result. With this wave
function, it is readily shown that the change in 0.& due
to the exchange interaction is given by the approximate
formula

ho e.——(e'/mc') &g, , o I
b. , o&

X&b..oI (y.'+e ')/~ 'I g, o&——(2e'/mc'R) (g, , o I b, ,)'. (18)

Since, as is discussed below, &g.,oIb*,o)'=4.3(10) ' at

R=4 A, Ao.e,= —6(10) '. This is negligible when aver-
aged over collisions.

Thus, we turn to the effect of exchange interactions
on the second-order paramagnetic shielding. If we neg-
lect possible effects due to the distortion of the ground-
state wave function by the exchange interaction, the
qualitative features of this process are as follows. If the
operator P„a L„„is expanded in terms of coordinates of
atom 8 using the coordinate transformation given by
Eq. (11), the result is

Q,a L, „=Q.a Lo,„iR—(B/By») (19)

The operator iR(B/Byo) can couple excited states of
atom 8 with the ground state, thereby producing orbital
polarization of this atom. In the absence of interatomic
exchange, atom A is unaware of the orbital polariza-
tion of 8, and the magnetic shielding at A is unaffected
by this polarization. Exchange interactions permit a
partial transfer of the polarization of 8 to A, or, in other
words, complete a circuit for the Row of field-induced
electron currents from 8 to A. This current results in an
additional magnetic Geld at nucleus A.

The transfer of the orbital polarization from 8 to A
occurs in two ways. The first way, which we call the
overlap eGect, is a consequence of the overlap of the
orbitals of A and 8 combined with the Pauli exclusion
principle. The second way, which we call excitation
transfer, occurs because the exchange interaction couples
states such as

I «P ), where A is in the ground state and
8 in the eth excited state, with states such as In+o),
where A is excited to the mth excited state and 8 is in
the ground state. The exchange coupling of such states
is described by the matrix element &g~poIX~sI«pn&.
The exchange interaction can also couple the state
I«p„& to doubly excited states such as In po&, but we
neglect these highly excited states. A perturbation
theory calculation of the paramagnetic shielding in-
corporating these effects gives the following equation
for 0.„.

(«po I En Lnn*/&nn I «pn&&«pn I gn iR(B/By») I «po&—
o.„,=2p' p„'

Qo

&«Po I &."L"./"' I g-po&(geo I ~~a I «p-&&«P. I 2' iR(B/B—y, ) I «po&+Z-' 2-' +CC . (20)
(&o—& )(&o—E.)

Here, CC denotes the complex conjugate of the expres-
sion in the square brackets. The first sum in the brackets
represents the overlap efIect, and the second sum is due
to the excitation-transfer eBect. As usual, the sum over
the excited states in Eq. (20) is performed by replacing
all the energy denominators by the average excitation
energy given in Eq. (8).

There are several different sums in Eq. (20), depend-
ing on which orbital of 8 is initially excited. I.et us con-

sider the case where the b. o orbital in Eq. (17) is ex-
cited. It is easily seen that the operator iR(B/Byo) can
couple this orbital with excited orbitals of d„, sym-
metry, which are denoted as b„, „.When this excitation
is transferred to atom A, the excited states of A must
have the corresponding symmetry, namely, they must
be antisymmetric with respect to reQection in the xs
plane. Such states can result either from the excitation
of the u, 0 orbital to any excited orbital of y symmetry,
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that is,

~~,p ~ ~v, ~

result

or the excitation of the av, p orbital to any excited orbital
of s symmetry namely,

~v, p ~ ~z, m (22)

For the excitation described by Eq. (21), the matrix
element of the exchange interaction which transfers the
excitation from 8 to A is

(a pol~~sl~op. &

a.,o(1)b„, ~(2)&~ab, ,o(1)a„,~(2)dr, dr«. (23)

Unfortunately, the evaluation of this integral cannot be
performed with any degree of precision because of our
ignorance of the excited-state wave functions. The best
we can do is follow an approximation sometimes used in
molecular orbital theory" and set this integral equal to
the product of the corresponding overlap integrals and
an energy factor. This energy factor should be negative,
since exchange integrals involving overlapping orbitals
are negative and of' the order of the excitation energy
0E. This approximation gives the result

a, o(1)b„,„(2)K&sb, o(1)a„,~(2)dr«dr«

=DE&a„olb, , o)&b„...la„, ).

C. J. Ballhausen, Introduction to Li gund I'i etd Theory (Mg-
Graw-Hill Book Company, jnc. , New York, 1962), p. 162,

For the excitation described. by Eq. (22), the matrix
element (n polXxalnop ) is given by an exchange in-

tegral between mutually orthogonal orbitals. Such an
exchange integral will be considerably smaller than the
exchange integral in Eq. (23) which involves overlapping
orbitals. We therefore neglect excitation transfers of the

type described by Eq. (22).
Using the approximation given in Eq. (24) for the

excitation-transfer integral all of the sums involved in
Eq. (20) for o.«„can be evaluated. We describe thisproc-
ess in some detail for the initial excitation b, p ~ $v, „
combined with the excitation transfer state a, ,p ~ gv

In simplifying Eq. (20), we recall that the effect of the
operator L„on p orbitals of A is given by the relations

I~,g~= 0; L„av=za» L,,~a, = —za„.

We need not consider the effect of L„on non-p orbitals
of A, because the matrix elements of the operator
L, /r, ' vanish for all such orbitals. Reduction of Eq.
(20) using Eq. (8) and Eqs. (23) to (25) gives the partial

t4p'&a*. o I
b. , o&«

Dr p&-p. 2-' &a. ol b, ...&

AE

X&b *.-I —««B/By» lb'o& —
&r '&p.&a..olb„o&

XQ ' P '(b„,pl a„, )(a„,„lb„„„)
X &b„,.I

—R(B/By ) I
b, ,)

—&-' &-' &a.. I' '
I a..-&(a..- I b„, -&

X (bo. , I
—«R(B/Byp) I b, ,p)]. (26)

The primes on the summation signs now mean that we
omit from the sums orbitals which are occupied in the
ground state. The first sum in this equation is due to
the overlap effect and the remaining sums are due to
excitation transfer. The first sum is readily evaluated
because, except for the omission of terms involving
occupied d orbitals of atom 8, which are small because
the overlap of the orbitals of A with the inner orbitals
of 8 is very small, it is given by the relation

&-' (ap. o I bp, , -)(b",- I
—«R(BIBy» I b. ,o)

=-(a„,, I

—«R(B/By, ) I b„).
This is readily seen by considering the expansion of av, p

in terms of the complete set of orbitals of atom B.
Using Eqs. (19) and (25) and the Hermitian property of
L,, and Lp„we can readily show that

(a„,o I
—iR(B/Byb) I b, , o&

=«L—&a*,olb, &+&a.,olb. .o)j (28)

Using the same procedures, we can show that the second
sum in Eq. (26) is negligible. The evaluation of the
third sum uses the same basic method, but for this
case it is not valid to neglect the Spy orbital of A in
summing over ««because the quantity (a„,plr, 'la„,p)
is very large. Thus, we get the following result for this
SUIl1:

Z.' 2-' &ap, o I
r. '

I ap, -&&u. ,- I b",.)
X(b.*,.l

—«R(B/By ) lb. , o&

= (a, , o I

—r. '«R(BIBy»
I
b. , o)

+(r p)o„&a„pliR(B/By,p) lb. ,p). (29)

The first term on the right-hand side of this equation is
negligible because of the factor r, ', and the second
term may be evaluated using Eq. (28). Thus, the total
contribution of the excited states corresponding to the
initial excitation b, ,p

—& bv, ,„to the paramagnetic shield-
ing constant, including a factor of two resulting from an
identical sum over the set of electrons with opposite
spin, is

(b*,o b„, )=(16P'/dE)&r ') „S„($„+P). (30)
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In this equation, we have redefined the overlap integrals
as follows:

for the paramagnetic shielding constant in Xe gas:

S"=-(a.olb. .o); S-=(a., lb. ,o). (31) (~.)=t a.(R) expL —U(R)i&Tjd' (35)

The sign change in the definition of S„is a consequence
of the choice of coordinate axes made in Eq. (11) which
makes (a, ,slb, ,s) negative

Using the same procedures, the contribution to o.„,
resulting from the excitation of a Spy orbital of B was
computed. The result of this calculation was

a~.(bw. o ~ bshe. -)= (16''/A~)
&&(r ') S-(S-+S-) (32)

The excitation of a 5px electron of B does not contribute
to 0„,because the resulting excited states have x sym-
metry, i.e., they change sign upon reRection in the ys'

plane. Application of the operator L, /r, ' to all such
states gives zero. Thus, the net paramagnetic shielding
due to exchange interactions between the atoms is

(33)

Equation (8) gives AE= —9.6 eV, the result (r ')s„
=1.203(10)" cm ' has been computed by Mayer, "
and a calculation discussed in the following section gives
the result (S,+S )'= 0.061 at R= 4 A. Inserting these
values into Eq. (33) gives o.„,= —6.55(10) ' at R=4 A,
a result which is much larger than the magnetic shield-
ings resulting from any of the other effects discussed.
The reason why this term is so much larger than the
others is the presence of the large quantity (r ')s„
This indicates that the external magnetic fieM, aided by
the interatomic exchange interactions, has induced an
electronic current in the 5p orbitals of atom A. This re-
sults in a relatively large additional magnetic field at the
nucleus of this atom.

Finally, we consider the case where the magnetic
field makes an angle 0 with the internuclear axis instead
of being perpendicular to it. Since, as shown by Ramsey4
O„vanishes when the field is parallel to the internuclear
axis of a linear molecule, 0-„ for the general case will be
given by the formula

a,= (16P'/A&)(r ')s.(S-+S-)'»n'~' (34)

III. RESULTS AND DISCUSSION

The net paramagnetic shielding of an Xe nucleus
in gaseous xenon as a function of density will be given
by an average of Eq. (34) for a.~ over all types of
collisions. The average over collisions, which is essen-
tially a time average, may, according to the usual
procedures of statistical mechanics, be replaced by an
ensemble average. This gives us the following expression

"D. F. Mayers, as quoted by J.R. Morton and W. E.Falconer, '

J. Chem. Phys. 39, 427 (1963).

Here, U(R) is the interaction energy of a pair of Xe
atoms, and p is the density.

For U(R) we have used the modifmd Buckingham
(6-exp) potential"

U(R) = ~ R&Rmax ~

With the aid of experimental data on second virial co-
efficients and the crystal properties of xenon, Mason and
Rice'~ determined the following values for the param-
eters of this potential: R =4.450 A, e/4=231. 2'K, and
n= 13.0. This potential has the advantage that it is more
flexible than the Lennard-Jones 6-12 potential, " and
gives a more realistic exponential variation of the re-
pulsive exchange forces. It has the disadvantage of
having a spurious maximum at R=R, , but this really
offers no diIIficulty because R, is much smaller than
any reasonable interatomic distance. For this calcula-
tion it is helpful to rewrite this potential in the form

R
V(R)=4 ' exp(—

—Rp

R &~ R, , (37)

where Rs 3.930 A, e'/k=226——.1'K and n'= 11.48. The
point Rp where the attractive and repulsive energies
cancel Inay be regarded as the collision diameter, since
the steep rise of the repulsive part of the potential does
not permit appreciable interatomic penetration beyond
this point.

The overlap integrals which determine the dependence
of 0-„on R were computed by fitting" four exponential
terms of the form ar4e s" to the outer lobe of the Xe 5P
Hartree-Pock orbital given by Herman and Skillman. '
The computation of the overlap integrals could then be
performed using the analytical formulas of Mulliken
et a/. ' It was found that for the interval 3.5 A &R&5 A&

"Reference 10& p. 180."E A. Mason an.d W. E. Rice, J. Chem. Phys. 22, 843 (1954).' Reference 10, p. 162.
"The process of Qtting an analytic form to a tabulated wave

function is described by J. C. Slater, Phys. Rev. 42, 33 (1932)."R. S. Mulliken, C. A. Rieke, D. Orlo8, and H. Orloff, J.
Chem. Phys. 17, 1248 (1949).

6 R-i
U(R)= —exp n 1—

[1—(6/n)] n R )
R„'

R)R, (36)
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which accounts for nearly the entire contribution
to (o~), the function (S„+S )' could be fitted very
well to the simple exponential function 7.27(10)—'
)&exp f—9.851((R/Rs) —1j}.With this result and the
constants given following Eq. (33), o „(R)can be written
as

o.„(R)= —7.82(10) ' exp( —9.851((R/Ro) —1)}sin'8.

(38)

Insertion of Eqs. (37) and (38) into Eq. (35) gives the
result

(39)(o „)= —5.21(10) '(4s pRss)I(T*) .
Here

I(T*)= exp~ —9.851(r—1)

(expL —11.48(r—1)]—r s}
~

r'dr, (40)

(o.„)= —2.85(10) 'p.

where the density p is in amagats. One amagat is the
density of an ideal gas at 273'K and 760 mm Hg
pressure. The agreement of this result with the experi-
mental result' '

(o,)= —43(10)—'p (42)

is only fair, but is as close as can be expected from an
approximate calculation of this type. Thus we may con-
clude that exchange interactions between colliding Xe
atoms are responsible for the observed chemical shift.

Since Torrey' has established the connection between
the chemical shift resulting from collisions and the re-

where r=R/Rs and T*=kT/e'. The evaluation of this
integral, which, together with the other calculations de-
scribed in this section, was done on a computer, is of
some interest because it gives the dependence of (o.~)
on temperature. The values of I(T*) at a number of
values of T* are given in Table I.

At room temperature, T*=1.31 and I(T*) varies
slowly with T* in this region. Thus, it is expected that
the variation of (o.„) with temperature will be too
small to be observed, which is in agreement with the
experimental results. ' ' By plotting the results in Table
I it is found that I(1.31)=0.267, and our final result
for (o„) is

(41)

TAnr. z I. Values of the integral I(2'*) which determines the
temperature variation of the chemical shift in gaseous xenon.2'* is the reduced temperature kT/e', where e' is a close approxi-
mation to the maximum energy of attraction between two Xe
atoms.

i.0 1.5 2.5 5.0 10.0 25.0
I (2'*) 0.299 0.254 0.244 0.277 0.35g 0.557

laxation of Xe'", there is no need to repeat this cal-
culation. Moreover, Torrey' has pointed out that the
relation between the chemical shift and the relaxation
time does not depend critically on the way o„varies
with R. Thus, his result is not appreciably afI'ected by
the fact that it is the short-range exchange forces rather
than the longer-range van der Waals forces which
produce the chemical shift.

Finally, it may be pointed out that a calculation
similar to the treatment of the van der %aals forces
shows that the chemical shift due to an external elec-
tric 6eld acting on an Xe atom is also negligible. Thus,
even in collisions of an Xe atom with polar molecules,
the chemical shift and relaxation of Xe'" are determined
solely by the exchange interactions. Thus, measurement
of the chemical shift in mixtures of Xe with other gases
might shed light on the exchange interaction of Xe with
various species, although this method will be limited by
the fact that the chemical shift is small and hard to
measure except in pure Xe at high pressures. Alter-
natively, it might be possible to obtain nuclear polariza-
tion of Xe"' using techniques analogous to those
used to obtain polarized He'."The loss of polarization
of such a sample upon introduction of a burr gas
would be a measure of the strength of the exchange in-
teractions between the Xe and buGer gas particles.
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