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Coherent Scattering of Slow Neutrons by a Liquid*
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The convolution approximation of Vineyard to treat the coherent scattering of slow neutrons by a mon-
atomic liquid is extended. The correction term, which takes care of correlations between neighboring atoms,
is evaluated on the basis of a "quasicrystalline" model of a liquid. In the calculation proper account is, how-
ever, taken of the geometrical arrangement and dynamical behavior of atoms in a liquid. Expression for the
width of the "quasielastic" scattering is derived which exhibits a characteristic oscillatory behavior as a func-
tion of momentum transfer. Explicit numerical calculations for the width have been made for liquid argon
near the triple point, which are in reasonably good agreement with experiment. An interesting feature of the
basic formula of the paper is the temperature dependence of the width for a given momentum transfer, which
is also in qualitative agreement with experiment. There are other features which need to be tested by further
experiments, suggestions for which have been outlined.

I. INTRODUCTION
' '

~~URING recent years considerable effort, both
theoretical and experimental, has been directed

towards understanding the scattering of slow neutrons
by an incoherent liquid. Comparatively, little experi-
mental work has been done with a coherent liquid,
despite the fact that most liquids, and particularly the
simple ones, are coherent scatterers —one of the reasons
being the lack of a theory on the basis of which coherent
eFfects could be analyzed. Coherent scattering is obvi-
ously far more complex than incoherent, since the latter
involves only the self-motion of an atom whereas the
former involves the correlated motion of different atoms
in a liquid. To treat coherent scattering, Vineyard
proposed his convolution approximation, which con-
nects the coherent to the incoherent scattering through
the Fourier transform of the static-pair correlation
function of a liquid, which is known experimentally.
The great virtue of this approximation lies in the fact
that, besides being simple, it does not introduce any
adjustable parameter in the theory. Unfortunately, the
convolution approximation is not fully borne out by
experimental facts and seems to have validity only
over a limited range of momentum transfer. In fact,
recently Brockhouse et al.2 have pointed out that the
oscillations in the width of the "quasielastic" scattering
of 4.06-A neutrons in liquid argon as a function of
momentum transfer which they have observed, could
not be explained by the convolution approximation.
Earlier, Palevsky, ' Brockhouse and Pope, 4 and others
had also remarked that this approximation was not in
accord with their observations.

~ Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

' G. H. Vineyard, Phys. Rev. 110, 999 {1958).
'B. N. Brockhouse, J. Bergsma, B. A. Dasannacharya, and

N. K. Pope, Inelastic Scattering of Eeutronsin Solids and Liqgids
(International Atomic Energy Agency, Vienna, 1963), Vol. 1,
p. 189.

3H. Palevsky, Inelustic Scattering of neutrons in Solids und
Lr'rju&s iInternational Atomic Energy Agency, Vienna, 1961),
p. 265.

4B. N. Brockhouse and N. K. Pope, Phys. Rev. Letters 3,
259 (1959).

II. CONVOLUTION APPROXIMATION

The differential scattering cross section can be written
in the following form'.

d'o;. /dQad(o = lpga, .t,'(k/kp) S,.a(x,rp),
and

d'rr;„,/dQd~= Jtra;.,'(k/kp)S;„, (vp);
where

and

S,.h(~, (p) ——e
—'"'F(~ I)dt

2'
1

S (x(p)=—e '"'Ii (~I)dh
2'

1"he intermediate scattering functions Ii occurring in

'L. Van Hove, Phys. Rev. 95, 249 {1954).

The present paper is an attempt in the direction of
improving upon the convolution approximation. This
improvement is based on two basic assumptions: (a)
that the convolution approximation is valid for atoms
whose distance of separation is greater than a certain
distance R which occurs as a parameter in the theory;
and (b) that the correction term can be evaluated
analogously to the case of a harmonic solid, with due
care regarding the geometrical arrangement and dy-
namical behavior of atoms in a liquid. Both these
assumptions, in particular assumption (b), are hard to
justify. They are, however, made with reliance on
physical intuition and shouM be judged by the success
of the results they yield. The basic formula derived
here for the scattering function S(v.,cp) should in general
be valid for all coherent monatomic liquids for small and
intermediate values of the momentum transfer x. Ex-
p1icit numerical calculations for the half-width of the
"quasielastic" scattering as a function of x have been
made for liquid argon near the triple point, and are
surprisingly in good agreement with experiment. ' Our
basic formula, undoubtedly quite crude, has, neverthe-
less, several interesting features which shouM be tested
by future experiments.
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Ao~= (ir,'/2m) (ko2 —k'),

where m is the neutron mass. The other symbols occur-
ring in Eqs. (1)—(6) have their usual meaning. Rp(t) is
the position vector of the Pth atom at time t in the
Heisenberg representation. We shall not discuss the
properties of either the G or the Ii functions since they
are well known.

The convolution approximation consists in writing
F(x,t) as

F(x,t) —& F(x,0)F,(x,t), (9)

which follows from the assumption that the bracket
( . )z in (5) after introducing the identity operator
exp[ital R, (0)7 exp[ —i' R;(0)7 can be broken up into
a product of two factors. This amounts to assuming'
that the motion of an atom P situated at r' at time zero
from an atom 0. at the origin at time zero, is independent
of the presence of the atom n. The most obvious defect
of this approximation is a geometrical one. As Vineyard'
clearly points out, it is difFicult to know the error in
this approximation, but qualitative considerations sug-
gest that it may be good for small values of x, i.e. ,
large r. The exact domain of x values for which this
approximation is valid is hard to know. Its merit,
however, lies in the simplicity and direct way in which
it connects the coherent to the incoherent scattering.

Now there are two objections against the convolution
approximation. The first, and the one which is very
often cited, is that it violates the moment relation

coh av =fte'S,.a (x,te) dto hid T

'[1/F( 0)l, (1o)
MfSgoh(tt)GO)dte

as pointed out by De Gennes. ' From (9), however, it
follows that

2N&coh Jav, con= &inc av q

6 P. G. De Gennes, Inelastic Scattering of Eeutrovs in Solids and
Isgrsids (International Atomic Energy Agency, Vienna, 1961l,
p. 239.

the above equations are defined by

F(x t) =1V-' P(exp[i' R.(0)7
nP

Xexp[—ix Rp(t)7)r, (5)
and

F,(x,t) =E—'
Q(exp[ital R.(0)7

Xexp[—ix R (t)7)p, (6)

and are, respectively, the space transforms of the now
well known G(r, t) and G, (r, t) functions introduced by
Van Hove. 5 Ace and Ax are, respectively, the energy and
momentum transfers and are related to the incident
and Anal wave vectors ko and k of the neutron through
the relations

(7)

and hence the convolution approximation violates the
moment relation (10). The second objection, also first
pointed by De Gennes' and later on more explicitly
stated by Singwi and Sjolander, ~ is that in the limit
x —& 0 (case of light scattering by a liquid) the con-
volution approximation predicts an undisplaced Ray-
leigh line whose width is determined by the macroscopic
self-diffusion constant, whereas in actual fact one gets
three lines —the central Rayleigh line corresponding to
entropy fIuctuations and the two displaced Brillouin-
Mandelstam components corresponding to density
fIuctuations. The width of the former is determined by
the coeKcient of heat diffusion and that of the latter
by the coefficients of heat conduction and viscosity.
Thus we see that the convolution approximation fails
the test wherever it is possible to test it rigorously.
Nevertheless, this does not preclude its usefulness, as
has often been stated by the author and as will be evi-
dent in the sequel.

We mentioned earlier that for small x and ~ values,
the convolution approximation might be good. This can
be seen from the following argument. For small values
of tt, the function S(tt,&v) has a very pronounced peak
near co=0 and, therefore, the major contribution to
the integral in the denominator of (10) comes from
under this peak. In this region of x and co values we
therefore apply the Vineyard approximation and calcu-
late S,.a(tt, &o). On. the other hand, the major contribu-
tion to the integral in the numerator of (10) comes
from large ~ values, for which, as we know in solids,
the incoherent approximation should be good. It then
follows that

~coh av

f(v'deaf I', (rs t)e '"'dt 1

. ,
=(~'-')', (11)

F(v.,0)fdef'F, (x,t)e '"'dt F(x,0)

which is the same as (10). Under the above-mentioned
assumptions the convolution approximation, therefore,
does not violate the moment relation (10). The argu-
ment is obviously approximate.

The second objection appears to us somewhat unfair
in the sense that the convolution approximation was
never intended to be applied to such long-range correla-
tions —correlations which are in the "hydrodynamic"
range and should indeed be calculated from the hydro-
dynamic equations of a liquid.

The range of x values which one normally encounters
in slow-neutron scattering by a liquid lies between
x=0.2 and 4 A ' or more. Surely, in this range interest-
ing effects occur which are not covered by the convolu-
tion approximation. For example, it was pointed out by

' K. S. Singwi and A. Sjola,nder, Phys. Letters 9, 120 (1964).
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De Gennes' from a very general analysis of second and
fourth moments of S„s(x,co) that for values of r. corre-

sponding to one of the diffraction peaks in the x-ray
pattern, i.e., F(x,0), the ratio (~„h'), /3(~„s'), ' be-
comes large, since (~„h'), becomes small, as is evident
from (10).This implies for such x values a distribution
S.,h(x,~) which is broad in the wings and narrow at the
center. This narrowing e8ect predicted by De Gennes
has unquestionably been observed by Brockhouse et al.'
De Gennes gave a recipe for the half-width of the dis-

tribution as a function of x which has a characteristic
oscillatory behavior. However, as De Gennes himself

mentions, many important questions, such as the tem-

perature dependence of the width, the shape of S„h(x,&u)

when x is kept constant on a maximum of F(x,0), and

others, remain unanswered. We shall in what follows

attempt to answer these questions by extending the
convolution approximation of Vineyard.

III. MATHEMATICAL FORMULATION

Equation (5) can be written as

F (v.,t) =F,(r.,t)
&8

+X—'P (exp[i' R (0)]exp[ —ix Rp(t)])
a&P

+N 'P (exp[i'. R (0)] exp[ i—r. Rp(t)])r,
a&P (12)

where the index &E.on the summation sign means that
for a given a we sum over all atoms P which lie within
a sphere of arbitrary radius R drawn with n as the
center, and the index )R means all atoms P lying out-
side this sphere. This is a trivial step splitting the sum
into two parts. Our first basic assumption is that for all
atoms sich that

~
R —Rp

~
)R, we can apply the Vineyard

approximation. In other words, we assume that when
atoms n and P are far separated, i.e. , for large R, which
implies x small, the motion of P is uninfluenced by the
presence of n. Equation (12) then becomes

PR
F(r.,t) =F,(x,t)+1lt' ' g (exp[ivR(.0)7 exp[ —ix Rp(0)])r

&&(exp[i' Rp(0)] exp[—ix Rp(t)7)r+1V 'P (exp[i' R (0)]exp[—ix Rp(t)])r,

which can be rewritten as

F(x,t) =F,(x,t)+X ' P (exp[i' R (0)]exp[—ix Rp(0)])z(exp[i'. Rp(0)] exp[ —ix Rp(t)])r

+cV ' P (exp[i@ R„(0)]exp[ —ig. Rp(0)7)r(exp[i@ Rp(0)] exp[—ix Rp(t)])r

+X 'P (exp[i' R (0)]exp[—ix Rp(t)])z

—1V 'P (expfir. R (0)] exp[—ix Rp(0)])z(exp[i' Rp(0)] exp[ —iv. Rp(t)])r, (13)

where we have added and subtracted the same term. Combining the second and the third terms in (13) we can
write it as

F(x,t)=[1+1'(x)]F,(x,t)+X—'Q (exp[i' R (0)] exp[—ix Rp(t)])r

&R
N'g (exp[i' R (0)]—exp'[ —ix Rp(0)])z(exp[i' Rp(0)] exp[—ix Rp(t)])r (14)

where

I"(x) = g(r)e'"'dr

is the Fourier transform of the static pair correlation function g(r), which is defined by

g(r)=X—'g (8(R (0)—R (0)—r))r.

P. G. De Gennes, Physit a 25, 825 (1959).
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In the Appendix we have defined I'(x) through Eq. (A3), which is the same as Eq. (15) except for the term in-
volving go, which gives a contribution only for x=0.

If we neglect the last two terms in (14), we get the convolution approximation. They, therefore, represent a
correction to the Vineyard approximation. We shall henceforth denote them by H(zz, t).

H'(r. ,t)—=N 'P (exp[i'. R (0)] exp[—ir. Rp(t)])z —N 'g (exp[zzz R (0)]exp[—izz Rp(0)])z

X(exp[ir. Rp(0)] exp[ i—zz Rp(t)])z. (17)

The main problem now is to evaluate H(x, t), and it is here that our second assumption enters. We asszzzrze that i t

can be treated azzaiogozzsly to the case of a harmoizzc solid. This is prizma facie an ad Izoc assumption; but it is based on
the physical idea that the main contribution to H(x, t) arises from times during which the atoms have not moved
far from the positions they had at time t=0. In fact, the essential idea behind a "quasicrystalline" model of a
liquid is that the atoms do stay in their temporary equilibrium positions for a time which is greater than a few
times their period of oscillation. During this time all that the atoms do is to develop their thermal cloud, and if
that is so, it is not unreasonable to treat their motion as one does in a solid. In doing so, one automatically makes
the assumption of a harmonic approximation, but this is the best that one can do at present.

The evaluation of H(x, t) now becomes a straightforward matter and we shall briefly outline the method. For the
moment let us forget the index (R on the summation sign in H(zz, t) which we shall take care of later by intro-
ducing a damping factor. Consider

P (exp[i' R (0)]exp[ irR—p(t.)])z ——g (exp[i(rR) .exp( —
ized Rp)])z

Xexp[ix. u (0)]exp[—zx. up(t)])r, (18)

where R and Rp are the equilibrium positions, and u (0) and up(t) are, respectively, the displacements of atoms u
and P about their equilibrium positions. Now

where

(exp[iL u (0)]exp[ —ir. up(t)])r=exp[ —M, (0)—Mpp(0)+2)II p(t)],

2M.p(t) =([x u. (0)][+ up(/)])r (20)

(see Ref. 5). The displacement u~(t) can be written as

uzi(t) =P(I'z/2MNcu, )'t'e, (a, exp[i(q R—cu,t)]+a,* exp[—i(q R—~,t)]),

where the symbols have their well known meaning and the sum over s includes the sum over both wave-vector q's
and the polarization of the vibration. Substituting (21) in (20) we have

where

2M p(t)=Q Q g,„exp[i(q (R Rp)) —itz(o, t]—,
s p=+I

lz 1 t' Ace

g,„= (zz e,)'—
~

coth- —p, ~.4' ~o, i 2kzzT

(22)

(23)

p is +1 for absorption and —1 for emission of a phonon. Similarly,

(exp[ir. Rp(0)] exp[—ix Rp(t)])&=exp[—2Mpp(0)+2Mpp(t)].

The usual phonon expansion consists in writing

exp[2M p(t)]=1+2M p(t)+-,'[2M p(t)]'+

(24)

(25)

We shall in what follows retain only the first two terms of the above expansion, i.e., neglect two and higher phonon
terms, which become significant only for very large values of x. In the cv region of interest here their contribution
is small.

We now write

&8
N 'P (exp(ix R ) exp( —zzz Rp))r —N'P (exp-(i~ R ) exp( —ix Rp))r exp[ —~R —Rp~'/R'], (26)
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where we have introduced a smooth cutoff factor. We further make an approximation in which we replace R and
Rt) on the right-hand side of (26) by R (0) and Rt)(0). Now

I
rl' 1

I
rl'

ere'rg(r) exp — =—ee" exp — P ((I(R (0)—Rt)(0) —r))rdr
R' .V aWP

=)V 'P (expix [R (0)—Rp(0)])r exp[ —
I R~(0) —Rt)(0) I'/R']. (27)

Therefore
gB

(It—i Q (eel Rne er. .RP)r— . cia rg(r) exp
aWP E' (28)

Using Eqs. (17)—(28), it follows that

H(x, t) =e 2 ( & P g,„e eo"" e'("+'))'g(r) exp — dr — e'"'g(r) exp — dr
R' E2

(29)

where e '~&'& is the usual Debye-Wailer factor, which
in the limit T)&0~ becomes

6T~
exp[—2M (0)]=expl—

2MItB~D eD f
(3o)

Since we shall be interested in q(&x, we can make
Taylor's expansion of I'(x+q, ). After performing the
angular average over the direction of q, we have

I'(~+q )—I'(~) =-.v*'[I' (~)+(2/I ~l)r (~)]
+terms involving higher powers of q, (32)

[see Eq. (A9)]. On using (32), (31) becomes

H(x, t) = exp[—2M(0)]

&&2 g"c *"""eV'[I'"(~)+(2/Ikl)P'(~)]. (33)

where OD is the corresponding Debye temperature for
a liquid.

The parameter R in Eq. (29) is unknown. It is cer-
tainly of the order of a few interatomic distances. In
the following discussion we shall take the limiting case
of R —+~ and shall derive the correction terms depend-
ing on R in the Appendix. As is seen from Eq. (A11) of
the Appendix, to estimate the correction one needs to
know the third and higher derivatives of I'(x), which at
present cannot be done with any reasonable accuracy
from the x-ray data regarding I'(x). One can, however,
evaluate the term in the curly brackets in (29) nu-
merically using formula (A17) (for details see Ap-
pendix); but then it involves an enormous numerical
computation and one loses all the transparency of the
final formula for S(x,(o) in which we are really interested.
For the present crude calculation, we shall be satisfied
with the limiting case R —&~. For this case (29), on
using (15), becomes

a(~,t) = exp[—2M(0)]

&&2 g..-'-"[I ( +q.)—I ( )] (»)

For a solid in the Debye approximation

(o dQ),
2' c p

(36)

where V is the volume and we have used the linear
dispersion relation q=(o/c, c being the nte(te velocity
of sound. In a liquid we shall replace (36) by

U " 2o)
oP exp ——dM,

2%' c
(37)

where co is the value of co for which there occurs a
maximum in the assumed frequency spectrum in a
liquid. One might identify this spectrum with the Fourier
transform of the velocity autocorrelation function in a
liquid. ' Now c is related to co by

c= (8sr'tt) 't'(o, (38)

where n is the number density of particles. ~ is the
parameter of our theory. Since co for a liquid is much
less than that for the corresponding solid, the density
of states in a liquid for small cv's is very much greater
than that in a solid.

K. S. Singwi, A. Sjolander, and A. Rahman, Inelastic Scattering
of Neutrons in SoHds and liquids (International Atomic Energy
Agency, Vienna, 1963), Vol. 1, p. 215.

We shall consider the case of phonon absorption, i.e.,
p, =1. Also for all co, 's of interest here A~,(&2k~T, and
in that case Eq. (23) simplifies to

g, +,= (IeIsT/2%M) (s(..e,)'(1/(o, s) .
On using (34), (33), for an isotropic case, becomes

kgT q'
B(x,t) =exp[—2M(0)] g x'

q 12' a),'
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I'rom (35) and (37) we have

+oo x'k T
e &at+—(~ ])J( e—2M—(0)

27r- 24n-'c'p

IV. WIDTH OF THE QUASIELASTIC SCATTERING

The value of ~ at which the intensity falls to half its
value at co=0 is, as follows from (40), determined by
the equation

(~2D)2
Xl I'"(x)+ I"(~) l~'e '"'"", (39) -', = +expl —44'a/44' (x'D)

(AID)2+ad 24~pc'

where p is the density in g/cc of the liquid.
The total differential scattering cross section is given

by the sum of Eqs. (1) and (2). Since we do not know
5;„,(44,&o) for a liquid, recourse has to be taken to
models ' ' "of which the simplest is the simple diffusion
model. We shall use the latter in this paper. Extension
to the jump diffusion model' is straightforward. Using
Eqs. (1)—(4) and Eqs. (14), (17), and (39) and the
simple diffusion model for S;,(tt, td), we have xp=MNt/244 D

& (43)

a;„,'/a, .g'+ 1+1'(x)

where we have put 2M(0)=44'a, a being the mean-
square amplitude of the thermal vibration of an atom.
On putting

(42)
and

x'Dk a;„,'
+L1+I'(~)$

acoh (x'D)'+co' vr

(41) becomes

where
—,
' = (1+x')—'+n (x)x'e—'~*&,

&AT ( 2
+e '~"'|4'

l
I"'(44)+ I"(44) (&u'e »I"~—

24~'pc' 4

(40) and

I'"(~)+(2/l ~ l)I"(~)
n (44) = expL —x'afy8 8 (45a)

tt; .'/tt. ,h2+1+ I'(|4)

In writing the above equation, we have neglected the
recoil term in 5;,(x,~), which is indeed small for our
case, and have assumed as before that A~(&2k~T. Equa-
tion (40) is the basic equation of our paper. The second
term in square brackets in (40) represents our correction
to the convolution approximation. This term has a
simple structure and exhibits an oscillatory behavior
arising from the factor I'"(44)+ (2/ l

tt
l )I"(x).This factor

is negative for values of x corresponding to the peaks
in I'(x), its largest negative value occurring at the first
peak. In the vicinity of the peak in I'(44), the char-
acteristic feature of this factor is that it rises sharply
from a very small to a large positive value for a x value
below that corresponding to the peak, and then falls
sharply to a negative value at the peak and rises again
to a positive value, continuing this oscillatory behavior.
As x increases, the abruptness with which this function
rises and falls obviously diminishes, as is apparent from
the form of I'(x) in a liquid. The above-mentioned
features, as we shall see in Sec. VII, are reflected in the
width of the "quasielastic" scattering as a function of x.
The other interesting feature of this factor is its teID-

perature dependence. The temperature dependence of
I'(44) is complicated. As the temperature increases, the
peaks of I'(44) move to somewhat lower values of 44 and
get progressively smeared out, thus resulting in an
appreciable change in the magnitude of the correction
term.

"K.S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960).
'A. Rahman, K. S. Singwi and A. Sjolander, Phys. Rev. 126,

997 (1962).

8= kit TDt/24vrpc4. (45b)

For every 44 value, Eq. (44) has to be solved numerically
to determine x.

Consider the case x«xo. Equation (44) then becomes

2n(x) x4—x'L1 —2n(x))+1=0. (46)

For a(44) small enough that L4n'(44) —12n(x)$«1, x is
given by

x= 1+2a(44) . (47)

where we have put 2co=DF., the full width at half-
height. Hence, whenever a(r) satisfies the above-
mentioned condition, the change in width relative to
that given by simple diffusion is given by (48). For
negative values of n(44) there always exists a solution
of Eq. (46), but for positive values of n(x) there does
not exist a solution of interest (such that x&&2) for

n(x))n . (x)=0.086.

Since n(x) has both positive and negative values, it
follows from (48) that the width as a function of the
momentum transfer x will oscillate around the value
2x'Dk given by the simple diffusion formula. This
result is general and holds for all coherent liquids. The
magnitude of the oscillations will, however, depend on
the value of a(x). The temperature dependence of n(x)
is obviously very complicated.

We are always interested in the smallest root of Eq.
(46). From (46) and (42) it follows that

(d,E—2x'D)/2x'D =2n (x)
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2or i(s(L)
(49)

where

x(x) = 2o)t(s(x)/2x'D, (50)

(51)

The occurrence of the logarithmic derivative in the
above equation eliminates the uncertain constant 8
LEq. (45b) j. Hence, the extrema in the width function
do not depend on this constant in cr(x).

V. REMARKS ABOUT SCATTERING NEAR THE
CRITICAL POINT

The phenomenon of scattering at the critical point
of a liquid in the limit x —+ 0 is well known by the name
of critical opalescence and is studied using ordinary
light. Here, we shall discuss the case of coherent neu-
tron scattering near the critical point for not too large
values of x. The region of large x values is not of much
interest, since the structure in I'(x) is nearly washed out
with the exception of the first peak, in the vicinity of
which it is still of considerable interest to study the
scattering. As one approaches the critical point, the
velocity of sound (because of &o ) would diminish. The
absolute value of the function I'"(x)+(2/~x~)l"(x)
would also decrease because of the broadening of the
peak. The over-all magnitude of the correction term in
(40) is hard to predict. It should, however, be kept in
mind that the validity of our formula in this region is
questionable. These factors put together make the ex-
perimental study of neutron scattering all the more
interesting as one approaches the critical region.

It follows from the standard thermodynamic argu-
ment that very near the critical region and in the limit
x ~ 0, I'(x) has the form given by"

1+I'(x)= kiiT/n, (a+be'), (52)

where u and b are constants and e is the number density.
Even for the smallest x values attainable in cold-neutron
scattering experiments, it is very doubtful whether one
could use formula (52). If, however, one uses this for-
mula, it is a simple rnatter to calculate the scattering
cross section using (40).

and oit~s(x) is the half-width.
At points of extremum in the half-width we have the

condition
)eti)s(x)/Bx= 0,

which on using (49) gives us the following equation

0
0.5

Kfk i)

I

3.5 4.0 4.3

Fio. 1. 1+7 (x) curve as a function of x (A ') drawn smoothly
through the experimental points of Gingrich and Tompson (Ref.
13) obtained from x-ray scattering data for liquid argon at
T=84.25'K and P=0.710 atm.

We shall now apply the foregoing considerations to
the speci6c case of liquid argon for the following rea-
sons: (a) Brockhouse et al 'ha. ve recently made a very
careful study of the "quasielastic" scattering in liquid
argon near the triple point and have analyzed their
data in a way suitable for the direct application of the
present formulation; (b) fortunately Gingrich and
Tompson" have also studied x-ray scattering in liquid
argon near the triple point, thus making available the
experimental values of I'(v) as a function of r. ; (c) liquid
argon being a simple monatomic liquid with weak
interatomic forces of the van der Waals type, one might
expect that the self-motion of atoms would be more
nearly described by the simple Langevin equation; and
(d) finally, it is one of those liquids whose properties
have been studied over a wide range of temperature and
pressure, thus making it possible in the future, when the
present theoretical considerations have been more firmly
established, to make detailed and extensive neutron-
scattering calculations.

Figure 1 represents a smooth curve drawn through
the experimental values of 1+I'(x) as obtained by
Gingrich and Tompson. "Figure 2 is self-explanatory.
The first derivatives of I'(x) were obtained from the
curves of Fig. 1 using the mirror method, and the same
method was used to get the second derivatives from the
curve for the first derivatives. Notice the behavior of
the final I"'(tc)+(2/)x~)I"(it) curve, which will be
rejected in the width of the "quasielastic" peak. The
experimental accuracy of I'(r) is such that the derived
values of I'"(x) cannot be relied on much, particularly
in the region of x where it changes abruptly from a
large positive to a large negative value; but what is of
signi6cance for our present purpose is the characteristic
behavior of the function I'"(ic)+(2/~x()I"(x) as a
function of x.

'2 L. D. Landau and E. M. Lifshitz, Statistical Physics (Perga-
mon Press Ltd. , London, 1958), p. 369.

IN. S. Gingrich and C. W. Tompson, J. Chem. Phys. 36,
2398 (1962).
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35— was obtained for the value 5X10 " (in proper units).
For argon" u;„,'/a~h' ——0.8.

tgt2)

+K &'iK)

o P(K)

-40
0

t

3.0
K lb-&)

I

4.0

Fro. 2. Dotted curve represents (2/~ x ))r'(x) (L~) as a function
of x (A. ') obtained by the mirror method using the smooth curve
of Fig. 1. Open circles denote P"(x) obtained from I"(x) curve
using the same method. Solid curve represents P"(x)+(2/~x()
Xr'(x) (A~).

'4 N. F. Mott, Proc. Roy. Soc. (London) A146, 465 (1934). See
also L. S. Kothari, K. S. Singwi, and S. Viswanathan, Phil. Mag.
2, 694 (1957).

"A. Rahman (to be published)."J.Naghisadeh and S. A. Rice, J.Chem. Phys. 36, 2710 (1962).

In order to calculate x and hence the half-width from
(44), we need to know the value of u in the Debye-
Waller factor exp( —x'a) and co . The velocity of sound
c is related to &v through Eq. (38). The Debye tem-
perature 0~ for solid argon is 80'K, and if we assume
Mott's formula' we get for liquid argon at the melting
point a Debye temperature of approximately 40'K,
which on using formula (30) gives us a=0.2 A'. In fact,
calculations were made for three different values, a= 0.1,
0.2, and 0.25 A'. The paranieter ar was chosen such that
Ace =0.2k~T. For this choice of ~ a reasonably good
fit with experiment was obtained. It was somewhat
comforting to note that this choice of co was in fair
agreement with the computer calculations of atomic
motions in liquid argon by Rahman, " who finds a
broad maximum in the frequency spectrum of the
velocity autocorrelation function in the range given by
Ace =0.25k~X. The value of the macroscopic diffusion
constant D=2.0X10 ' cm'/sec near the triple point
that we have adopted for our calculation is from a
paper by Naghizadeh and Rice."The value of D used

by Brockhouse ef al. ' is 1.53X10 ' cm'/sec. The density

p of liquid argon at the triple point was taken as 1.4
g/cc. With the above choice of the values of the pa-
rameters and the constants, the value of the factor
8=k&TD'/247rpc' in a(x) in Eq. (45) is fixed. We get a,

value of 8=4X10—"(in proper units). The calcula-
tions were, however, made for three different values,
+=3&&10—"4)&10—", and 5)&10—' and the best fit

VII. RESULTS AND DISCUSSION

In Fig. 3(a) we have plotted the calculated full
width ~ at half-height as a function of x together
with what one would get using the convolution ap-
proximation. The open circles represent the experi-
mental values of Brockhouse et al.' as read from their
published curve. The error bars of the experimental
values are not indicated. The crosses in the 6gure
denote the values calculated for 8=4X10 ".With the
choice of the parameters a=0.2 A', A~ =0.2keT and
8=5X10 " (in proper units) (solid curve), Eq. (44)
does not admit the desired solution for x=1.7 A ', in-

dicating that the "quasielastic" peak has become so
broad's that the curve for S(x,cu) as a function of ~
starts turning upwards before it attains hal. f its value
for co=0. Since it is not seen in experiment, this could
probably arise from (a) the uncertainty in the values
of the derivatives I"(x) and I"'(v) in the region of v.

values ( 1.7 A ') where the I'(x) curve rises very
steeply, (b) the choice of the value of the parameter u,
which is probably somewhat small, and (c) the neglect
of the contribution of the terms involving R'. For the
choice @=0.25 A' Ae =0.2keT, and 8=3X10 " (in
proper units), one obtains solutions for all L values,
and the calculated points are plotted in Fig. 3(b), but
the agreement with experiment is not so good. On the
whole, judging from the crudeness of our calculations,
the agreement with experiment is surprisingly good.
%e do not wish to stress this quantitative agreement
in view of our basic assumptions, the approximations
made, and the uncertainty involved in the values of
the derivatives of I'(r); but what we do wish to stress
is the characteristic oscillatory behavior of the width
as a function of x, which is in conformity with observa-
tion. This behavior is partly dynamic and partly
geometric, as is revealed by a closer examination of our
correction term to the convolution approximation. The
precise physical nature of the eft'ect is, however, some-
what obscure to us.

From our assumed value of ~, we get for the mean
velocity of sound a value of 187 m/sec. The measured
longitudinal velocity of sound for co —+ 0 is nearly 800
m/sec. The velocity for transverse waves is always less
than that for longitudinal waves. A low value of the
mean velocity that we have obtained implies a large
dispersion in the range co 10"/sec in liquid argon,

"G. E. Bacon, Nel)ron Dsgractsoa (Oxford University Press,
London, 1962), 2nd ed. , p. 61.

"From the published data of Cocking, Inelastic Scattering of
Neutrons in Solids and LiguHs (International Atomic Energy
Agency, Vienna, 1963), Vol. 1, p. 234, Fig. 4(c), on the "quasi-
elastic" scattering of 4.1-A neutrons by liquid sodium for 75
scattering angle and X=198'C, it appears to us that such a case
perhaps does occur; and if our interpretation is correct, it would
be interesting to repeat this experiment.
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FIG. 3 (a). Full width rsF (meV) at half-height of the "quasi-
elastic" peak as a function of the momentum transfer x (L ') for
liquid argon (T 84 5'K =and . o=1.4 g/cc). The solid curve is
drawn through the calculated points for the values of the pa-
rameters a =0.2 A', 8=5 X10 n (proper units). The crosses repre-
sent the points calculated for B=4X10 " (proper units). The
open circles are the experimental points of Brockhouse (et al.
Ref. 2) as read from their published curve for =24.58' aKnd

8=550 mm Hg. The curve DE=2kx'D is calculated for D=2.0
X10 ' cm'/sec. (b) Same as (a) except that the solid curve is
now drawn for the values of the parameters a=0.25A', 8=3
X10 " (proper units), and%a& =0.2k&T.

VIII. REMARKS ON SCATTERING IN LIQUID LEAD

Palevsky, ' using Be-filtered neutrons (h 4A), has
studied the width of the "quasielastic" peak for 90'
scattering angle as a function of temperature of liquid
lead. His main conclusions are (a) that the width is
much less than what one would expect for a simple
diffusion model (Brockhouse and Pope' have also
arrived at somewhat similar conclusions) and (b) that

which might welf be the case. Basically, the constant c
as it occurs here should be interpreted through Eq. (38).

the temperature variation of the width is much less
than the temperature variation of the macroscopic
diffusion constant. In fact, Palevsky' finds that the
activation energy for diffusion from his neutron meas-
urements is almost half of that obtained from macro-
scopic diffusion measurements.

There are possibly two reasons for such a small width:
(a) narrowing due to coherent effects and (b) that the
mean-square displacement of lead atoms as a function
of time is far from attaining its asymptotic value for
times of importance for neutron scattering. The latter
point has been discussed in detail by Rahman et ul."
Ke shall here examine the former. For incident neu-
trons of wavelength 4 A and scattering angle 90', the
x value corresponds to the position of the main peak in
the P (x) curve. This would mean a large negative value
for the factor I"'(x)+(2/~~~)P'(ic) in (45). From (45)
and (48), the approximate expression for the width at
the peak in I'(x) is

AZ =2x'D —exp( —tc'a) x"

I

&"(~)+(2/I ~l)&'(~) I
& TD'

X (53)
a; .'/ ,a+s1+P(x) 6n pc'

The temperature dependence of the second term on the
right-hand side of (53) is very complicated. As tempera-
ture increases both the D'ye-%aller factor and the
geometrical factor in the second term on the right-hand
side of (53) diminish, whereas the last factor increases.
It is physically reasonable to assume that since the
density does not change much, and judging from the
nature of these factors, the decrease is more than com-
pensated by the increase in the value of the factor
/ttsTD'/67rpc' with temperature. Thus (53) predicts a
temperature dependence of AE which is in the right
direction. VJe have not attempted to make, for the
present, a quantitative comparison with experiment for
lack of necessary data. It would be interesting to meas-
ure the temperature dependence of the width for a
value of x for which P"(x)+ (2/

~
x~)P'(x) is large and

positive. The sign of the second term in (53) is then
positive. It might also be mentioned that the general
behavior of S(x,to) as a function of x in liquid Pb
observed by Brockhouse and Pope' for not too large
values of x is what we would expect from the considera-
tions of this paper. It is unfortunate for us that these
authors have not expressed their data in terms of the
width as a function of x, but we did not venture to
do this.

Recently, Cocking and Guner'0 have studied the
scattering of 4.0- and 6.2-A neutrons in liquid tin at
240'C for various scattering angles. They have been

' A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 122,
9 (1961).

n S. J. Cocking and Z. Guner, Inelastic Scattering of 1Ventrons
in Solids and Liquids (International Atomic Energy Agency,
Vienna, 1963), Vol. 1, p. 237.
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mainly concerned with the energy transfer region Ace

»2Ax2D. Our formula can easily be extended to this
case by neglecting the diffusive peak in S;„,(x,a&) and
making the usual phonon expansion for the wings.
Ke shall defer this calculation to the future. Ke might
mention that, in the one-phonon approximation, our
formula for S(x,pr) predicts in general, for small energy
transfers, large coherent effects for x values corre-
sponding to the peaks (largest for the first peak) in
the 1+I"(x) curve; these effects, however, disappear
for large values of the energy transfer.

IX. CONCLUSIONS

The main conclusion of the present paper is that our
extension of Vineyard's convolution approximation
seems to account reasonably well for the known experi-
mental facts regarding the coherent scattering of slow
neutrons by liquid argon. The results should be appli-
cable to all coherent monatomic liquids. The inter-
ference effects in slow-neutron scattering are, as we have
seen, the result of both the dynamical behavior and the
typical geometrical arrangement of atoms in a liquid,
and may indeed prove to be a very sensitive test of the

theories of the liquid state. It should be borne in mind
that the simple diffusion model adopted in this paper
for S;,(x,p~) is valid for only small x values. Extension
of the present considerations to more complicated
models for S;„,(x,&p) can be easily made.

Future work ought to proceed in examining more
critically the basic two assumptions outlined in Sec.
III, and the significance and quantitative role of the
parameter R introduced here. The present considera-
tions must be regarded as only a erst step towards
understanding the 6ner details in coherent scattering of
slow neutrons by a liquid. On the experimental side one
would like to have a very precise study of the "quasi-
elastic" scattering in some typical monatomic liquids
for diferent x values at small intervals and at diferent
temperatures. Study of the coherent scattering in the
critical region is no less interesting.
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APPENDIX

W(x) = e'"'g (r) exp( —r'/R') dr

e'"'(g(r) —gp) exp( —r'/RP)dr+gp e'"' exp( r'/R')dr, — (Al)

where gp is the value of g(r) for r ~~. The parameter R would be of the order of a few interatomic distances. If
g(r) —

gp becomes small for r(R, we can expand the exponential exp( —r'/R') in the first integral in (A1). Retaining
terms of order 1/R', we have

where

W(x) =r(x) —— exp(ix r)I g(r) —gp$r'dr+gp exp(ix r) exp( —rP/RP)dr,
R2

(A2)

r(x) = expix rI g(r) —gpjdr, (A3)

which depends only on the magnitude of x.
From (A3) we have

slIlKf

( r( ))=—4 '
L ()—(O)]d .

I&I a~' p ~r
(A4)

Using (A4) and performing the second integral in (A2), we have

w(x) =r (~)+ (1/ I xI R') L2r'(x)+
I xI r"(x)j+gom"'R' exp( —R'I LI '/4) .

Similarly,

w(~+a) =r(~+a)+(1/I ~+&IR') I:2r'(~+a)+
I
~+&Ir"(~+a)j+gp~"'R' exp( —R'I ~+&I'/4) 9«)

Now

r(~+q) —r(~) =p; ~;(ar(~)/a~;)+-; p;; ~;~;(a'-r(~)/a~, a.;)+ . , (A7)



SLO~ NEU TRONSCOHERENT SCATTERI NG OF SL

inin terms of order q' only, orIllaKlng a ayI ylor expansion and retaining

(q ) BI'(~) 1 1 81'(x) 1 1 81'(x) 1 O'I'(v. )
(AS)

Similarly

r avera e over the directions of q for a given r. we have

I (.+q)-I (.) =l~'IX" ( )+(2/I I" ~ ~ (A9)

—2 - p'(-) =-' 'IX'"'(-)+(4/I l)l"'(-)]+I'"( +q)+(2/I +ql)1"( +q) —I'"( )—(2/I I

I'

sinin A9 and (A10) we have from (A5) and (A6)g(

I' ~) +-—I""(~)+ r"'(~) y "
'~'R' exp —x2R'/4)]{exp( —R2q'/4)[sink(R2ag/2)/( xg/ )]-g07c R exp —lc R

(A10)

In the text we have used theide of,A11) which is important. In t e
hb h d f 0 d h f

For large Ritls t e rs
a part o y in the neig or oo ogcop y

. F fi 't values of R, an estimate o e co
f hhf h

ur ose. or ni e
ot be estimate rom x-

rude estimate shows
'g

1 ho e that this correction is small or reasona
I o i h i o i di ),that for R& 10 A (a distance roughly equal to twice

'
an or s o

ln ~A11, all compared to the erst.
merica wor, wo e ex onentialroach but involving a lot of numerica w

1 h llf h d
'

Ain (A1). We outline this procedure below. We s a orge
We write

—r2 R'W(x) = exp(ix r)[g(r) —go] exp( —r R (A12)

f the Fourier transforms we haveUsing the convolution theorem o e

where

1
W(x) = I'(k)F(L —k)dk,

(2m)'
(A13)

F( —k) = e'&" ~&' exp( r'/R')dr—
=m'~'R' exp[—I

L—k
I
'R'/4].

the an ular integration we haveUsing (A14) in (A13) and performmg the ang

(A14)

W(x) =
R'R 1

kl'(k) exp ——x-——( —k)' —exp ——(~+k)' dk. (A15)

h in a straightforward rn.armer thatSimilarly one can sriow in a s

—R'(i —k)'/4] —exp[—R'(1+k)'/4]}dt,kI'(k) dk— {exp-
2+n' IxI 0 2g

ver the directions of q. Hence,where the bar on ~x qW( + ) denotes the average over

(A16)

R 1 " 1
W{x+q) —W(x) = —— — kI' exp[ ——,'R'(~ —k+x)'](k)dk

' ~—k ' —exp[ —-'R'(~+k)']} d*. (A17)—exp[ —x'R'(~+ k+x)'] —{exp[—~R' {~—k)']—exp ——,
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I'(k) is known experimentally and hence (A17) can be numerically evaluated for a given x for different q's using
R as a parameter. No doubt formula (A17) is valid for all R, but if we follow the above procedure we no more
have an explicit formula for the width. E&ven formula (A17) does not circumvent the difhculty of not knowing
I"(x) very accurately. To see this we proceed to make some approximations.

R R2 - i +&

W(x+ q) —8'(x) = — kl'(k)dk exp ——(a—k)'—
2/tr ir s 4 2q

R2
exp ——Px'+2(~ —k)xj —1 dx. (A18)

Expanding the exponential in the curly brackets and integrating we have

R' a2 1 R2
&(~+tl) —~(x)= —— kI'(k) exp ——(a —k)' L:,'R'(K —k)' —1)dk,

2/~a 12 s

where we have retained terms up to order q2 only. From a scrutiny of the integrand one sees the importance of the
weighting factors. It is obvious that if the function I'(r) is not known accurately in the region of x values where
the function is rising rapidly, we would introduce a large error in the value of the integral. It is also clear that one
obtains a large negative value for the integral for that value of x for which there occurs a peak in I'(x). Detailed
numerical computation would be justified when more accurate experimental data are available.
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Theory of the Nuclear Magnetic Resonance Chemical Shift of Xe in Xenon Gas*
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A theoretical study is made of the density-proportional paramagnetic shift of the resonant magnetic Geld
observed in nuclear magnetic resonance studies of Xe12l) in pure xenon gas by Streever and Carr. The theory is
based on a computation of the chemical shift in "diatomic molecules" formed by colliding Xe atoms, includ-
ing the e6'ects of van der Waals and exchange interactions on the wave function of the colliding atoms. The
results of this calculation show that only the exchange interactions between the colliding atoms make a
significant contribution to the chemical shift. When averaged over the various types of collisions, the follow-
ing value is obtained for the shift in the resonant field: DFF= —2.85(10) rFFp, where FF is the field strength
and p is the density in amagats. This is in order-of-magnitude agreement with the observed result: AH
= —4.3(10) rpFF.

I. INTRODVCTION

' "UCLEAR magnetic resonance studies of Xe'"
(I= s) in pure xenon gas at high pressures have

yielded two interesting and related results. "First, the
spin-lattice relaxation time, although inversely pro-
portional to the density of the gas as expected, ' was
much' too short to be accounted for by the relaxation
mechanism of magnetic dipole-dipole interactions be-
tween the nuclei of colliding atoms. ' Secondly, there was
a paramagnetic shift of the resonant value of the mag-
netic 6eld, which was proportional to the density of the
gas and to the magnetic 6eld strength.

The relation between these results was established by
Torrey, ' who pointed out that in a diatomic molecule,
which may be used as an approximate representation of

*Work supported by the U. S. Bureau of Naval Weapons, De-
partment of the Navy, under Contract No. NOw62-0604-c.' R. L. Streever and H. Y. Carr, Phys. Rev. 121, 20 (1961).

2E. R. Hunt and H. Y. Carr, Phys. Rev. 130, 2302 (1963).
3 H. C. Torrey, Phys. Rev. 130, 2306 (1963).

a pair of colliding Xe atoms, Ramsey's theory of mag-
netic shielding connects the chemical shift and the
nuclear-spin rotational coupling constant. ' The nuclear-
spin rotational coupling is a potential relaxation mecha-
nism because it permits the nuclear spins to exchange
angular momentum with the rotational momentum of
the colliding atoms. Torrey showed that if one assumed
that the observed shift in the resonant Geld was due to
chemical shifts in "diatomic molecules" of colliding Xe
atoms, and used the experimental value of the shift
together with Ramsey's formula to determine the
nuclear-spin rotational coupling constant, then one
obtained a computed value for the Xe'" relaxation time
which was in good agreement with experiment.

Therefore, the sole remaining task in connection with
this problem is to compute the chemical shift expected
for a pair of colliding Xe atoms as a function of separa-
tion, and to see whether such a shift averaged over all

' N. F. Ramsey, Phys. Rev. 78, 699 (1950).


