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In Sec. II we give the basic formulas
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As will be seen our results ares are given as power series
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in pp, arbitrarily stopping with terms of 0(&p ). Such a
representation, though in part dictated by mathe-
matical convenience, seems, more importantly, to be
most appropriate to the physical situation. The point
is simply that the actual &1(o&) for helium and the zero-
order hydrogenic &r(o&) exhibit a series of resonances,
and one would not expect our simple, Qrst-order
perturbation procedure to work vrell near either set of
resonances. ' Hence it seemed reasonable to confine our
attention to low frequencies.

in the preceding terms. The radial functions are
polynomials in the variable(s) designated, the detailed
forms being available on request. '

III. RESULTS

Our result for the index of refraction is

~0
(&22 —1)X 10'= 0.50064 —9+—

4

II. BASIC FUNCTIONS

The basic equations and functions derived from them
in the calculation of the dynamic polarizability of
helium through Grst order are given in this section.

L+(~)+L+(—~)
Q GO

g2

where

I.+ (4 "),W@+—&—'&)+ (4'+&P), (V—E&'&)@+&'&)

+2(+"',(l'—~"')8+) (1)

The functions in Eq. (1) are defined by

(Hp —E&')+o&)e+&"= —We+&'),

(Qp g&p))8+ — W++&p)+1)lir&p)

+&p) —(t-2/lr) e re+~2)—

r1 r2

(|—Z) (t Z)—
l'= —+ — —+

r12 rl r2

/&1) = (@&P) V@&P))

1&= (+&P),W++&P)),

W= —8(r&P1(cos81)+r2P1(cos82)),

with 8, the strength of the electric field; r~2, the inter-
electronic distance; r~ and r2, the distance from the
nucleus to electrons 1 and 2, respectively; and Pl(cos8;),
the ordinary Legendre polynomial. 4'+( ) and 0+ were
expanded in powers of co, and then the coefficients of
each power of co were expanded in terms of radial and
Iegendre functions. Thus, the coefficients of ~" in
4'+( ' and 0+ are of the form

=
t fr&"'(rl)Pt(cos81)Pp(cos82)+ (1~2)je"'

8+' = )f21 (rl)Pp(COS81)P2(COS82)

+ 2 22 (rl) Pp (COS81)Pp (COS82)

+2 fs (rl r2)PI (COS81)Pl(COS82)

+ (1~2)j@&P

where (1~2) means to permute the variables 1 and 2

One might attempt to deal with frequencies near the reso-
nances within a perturbation framework by explicitly extracting
the resonant terms and dealing with them separately.

b p
= (207/16)+36 (f'—Z)

b2= (3983/24)+ (1276/3) (i —Z)

467309794i 29754i
54 + (f —Z)

2764800 72

The terms bs and bp are new; all the others can be found
in the references of footnote 9.

To determine i as a function of o& we follow the
procedure outlined in the introduction. "Taken literally
this would require that

f.+ '(f /f')+ '(b /f') =0

However, consistent with the rest of our calculation,
we have solved this equation for f only through terms
of order m4. The procedure is straightforward and gives
f values which range from 1.641 at o&=0' to t'=1.629
at co=0.456." Figure i summarizes our numerical
results for helium. Its contents have already been
discussed in the introduction.

APPENDIX' AN EXTENSION OF BRILLOUIN'S
THEOREM TO TIME-DEPENDENT PROBLEM

Since, as shown in Ref. i, one can infer the formulas
for arbitrary t from those for f'=Z, we may confine
ourselves to the latter case. %e now recall that the
time-d. ependent Hartree-Pock equations can be derived
from the variational principle. ""

~

~

~

~

~

~

1 8
NHF, H ——O'Hp =0.

i af
The ++(' ) have been given previously by A. Dalgarno and

A. E. Kingston, Proc. Roy. Soc. (London) A259, 424 (1960) in
connection with their calculation of the dynamic polarizability of
hydrogen (in detail their f»~1 —[(—1)~/2 +']4'+& ' &). 8+& & should
appear in the calculation of n(0) for helium by A. Dalgarno and
A. L. Stewart, Proc. Roy. Soc. (London) A247, 245 (1958) and
A257, 534 (1960).However, in fact, their quoted @2(0) is a spherical
average of our &&+&2&; [however, each yields the same result for
o(0)3' This procedure for determining t has the theoretical virtue of
being an a priori one. A posteriori we may remark that one cannot
significantly improve agreement with experiment by use of other
values for f.

"The relation between frequency and wave length is X(A.)=456/co (atomic units)."L. Brillouin, Act. Sci. Ind. , Nos. 71, 159, 160 (1933—4);
C. Mgller and M. S. Plesset, Phys. Rev. 46, 618 (1934)."J. Frenkel, S'ave Mechanics, 2deanced Genera/ Theovy
(Clarendon Press, Oxford, England, 1934), p. 436.
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Here II is the total Hamiltonian including Coulomb
repulsions and time-dependent external Geld (which
we assume to be turned on adiabatically), +Hp is the
Hartree-Fock determinant, and NHp is an allowed
variation, i.e., a one-electron excitation of O'Hp.

0 HF satisfies an equation of the form

i

1
ifHp+ +Irp

i Bt
(A1)

whence writing

that then to first order in I' and all orders in the external
field, 3, involves no one-electron excitations of O'Hi;. If
we can show this, then, as in the static case, it will

immediately follow that to all orders in the external
Geld,

(@,D+)= (chirp, D@np) (1+D(P'))

for any one-electron operator D. If we take for D the
dipole operator, then we have the result announced in
the introduction since one derives n(a~) from the terms
in the expectation value of the dipole operator which
are of erst order in the Geld.

To prove that 6 involves no one-electron excitations
to Grst order in I' we first note that from

II ——+=0

where I' explicitly involves only the Coulomb repul-
sions, and not the external field, we have

(N Hp, PCHp) =0, (A2)

We now want to show that (A2) implies that if we write
the exact wave function + as

and (A1), it follows that to first order in P, 6 satisfies
the equation

I
&Hp+- —~~= —~»

s ati

Now let us assume we have solved (A1) self-consistently
(H&p is in the usual way a functional of %np) subject to
the initial condition that as t + —~—, VHp —&Pirpe 'P"P',
where &Hp is the familiar static Hartree-Fock deter-
minant. Having solved (A1) self-consistently, we have
a definite operator BHp, and we now make use of the
fact that it has a complete orthonormal set of time-
dependent solutions,

(A4)

where as t —& —oo, 4 —+ p e 'E"' Here the p are the
familiar static virtual Hartree-Pock states. " Thus,
the 0 „are derived from %Hi; by 1, 2, . - electron
excitation.

If now we write

it follows from (A3), (A4) and the orthonormality of
the 4'„ that

Froni (A2), it then follows that da„/dt=0 if il is a
one-electron excitation, and since such a 's are zero at

(the usual Brillouin's theorem) it follows that;
a„=—0 for one-electron excitations, which proves the
point.

"See, for example, P.-O. Lowdin, Phys. Rev. 97, 1490 (1953l,
Sec. 3(a).


