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Relations described by Einstein connecting the rates of spontaneous emission, stimulated emission, and ab-
sorption of radiation by an atomic system in free space are generalized to apply to broadband spectra of
quantized systems dilutely distributed in a dielectric medium. Although the gross features of the broadband
emission and absorption spectra can be qualitatively diBerent (especially at low temperatures), the various
spectra are connected at any speci6c frequency by simple expressions. For a two-level system imbedded in a
medium at temperature T, typical equations connecting stimulated-emission and absorption cross sections
~(a&) to the rate f(cu) of spontaneous emission of photons per unit solid angle per unit frequency interval are:
0, (u&) o,=(~). exp/it(p cu)/k—Tj=f(~) (27rc/cue)', where Iip is a temperature-dependent excitation potential
and n is the index of refraction of the host material.

If for this density the average rate of radiation absorp-
tion by systems in each lower state (energy Ei) is
B»u(~), the rate of stimulated emission by systems in
each excited state (energy Es) is Bsiu(co), and the rate
of spontaneous emission per unit frequency interval by
systems in those excited states is A», Einstein found
that

' 'N a classic paper, Einstein described relations eon-
' ~ necting the rates of spontaneous emission, stimulated
emission, and absorption of radiation by an atomic
system in free space having two sharp energy levels.
In the present paper we derive generalizations of Ein-
stein's relations which pertain to broadband spectra of
systems dilutely distributed in a dielectric medium such
as a liquid, a solid, or a dense gas. As we have indicated
elsewhere, " these generalizations are of considerable
practical importance for the analysis of laser systerns4
in which the spectra might typically derive from a
dilute concentration of impurity centers in an insulating
solid and for which the spectral width reQects the inter-
action of the discrete impurity "electronic" levels with
the quantized vibrations of the host lattice. Although
the gross features of the emission and absorption spectra
of such systems can be qualitatively diferent (especially
at low temperatures), ' we shall verify that at any
specific frequency the various spectra are connected by
relatively simple expressions. I'or a pair of sharp levels
in free space our results reduce to those previously
given by Einstein. Our results are not inconsistent with
the work of Fowler and Dexter' since those authors
compare spectra at diferent frequencies whereas we

compare spectra at the same frequency.
Let us brieQy summarize Einstein's results relevant

to a two-level quantum system (energies Ei and Es
with Es)Ei, level degeneracies gr and gs) in free space
interacting with radiation of angular frequency

te= 2m v=- (Es—Er)/A. (~)

If u(~) is the stagy density per unit volume of radia-
tion per unit frequency interval hv=ho~/2s, then in
free space in thermal equilibrium at temperature T
that density is given by the Planck. expression

(3a)g1~12 g2~21

+el= 167I A(N/27I c) Bsl ~

and that

To generalize these expressions, we consider an en-
semble of independent quantized "impurity" systems
uniformly distributed in a homogeneous dielectric
medium filling a box of large but 6nite volume V. %e
assume that the impurity energy levels can be grouped
into metastable sets whose total populations Xj per
unit volume can be independently specified (perhaps to
within the trivial constraint that g,X; be fixed).
Within each set all states are in equilibrium at some
common average temperature T&0. Although we neg-
lect nonradiative transitions in our analysis, we expect
our results to apply to all systems for which the time
required for thermal equilibration within each meta-
stable set is short compared to the lifetimes (total) of
the different sets.

Radiation in the doped dielectric can be characterized
by an angular frequency co and by wave-vector and
polarization indices (k,X) which specify the plane-wave
spatial eigenmodes of the box. In degenerate cases X

can indicate either plane or circular polarization. %e
define a dimensionless function fx(k,co);; such that
fx(k,&o);;dQ&x is the average intensity in photons/sec
per unit frequeecy setervcil of X-polarized frequency-oi
radiation emitted into the solid angle dQkq as a result
of the ontaneo s radiative deca of an im urit in

den—fx(k, to), ;.
— 27r

sp u p
the excited metastable set j to the lower lying set i(j

exp'~/P2) I l,2~c/
' If r;; is the sPontaneous-emission lifetime for the

transition, then'A. Einstein, Physik Z. 18, 121 (1917); cf. also, A. Einstein
and P. Ehrenfest, Z. Physik 19, 301 (1923).' D. E. McCumber, Bull. Arn. Phys. Soc. 9, 280 (1964),

~
—' ——z~ dQ (4)' D. E. McCumber, Phys. Rev. 134, A299 {1964). 7 ji ~X ~k'A

4 L. F. Johnson, R. E. Dietz, and H. J. Guggenhein, Phys. Rev. 4'
I etters 11, 318 (1963).' W. B. Fowler and D. L. Dexter, Phys. Rev. 128, 2154 (1962). AVe define o.„(k,co),, to be the cross section for a single
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impurity in the metastable set i to be excited to the
set j by the absorption of a plane-wave (k,)c,co) photon.
We take o,x(k,co);; to be the cross section for an im-

purity in the set j to decay to the set i by the stimulated
emission of a, (k,k,co) photon. If we multiply the.absorp-
tion cross section, say, by the density E, of initial-set
impurities, we obtain an inverse absorption length
characteristic of the impurity-doped material. Further
multiplication by the group velocity of light gives the
time rate of photon absorption.

In order to determine the relations connecting the
two cross sections, we label the energy eigenstates (in
the absence of interaction with any perturbing external
radiation field) of each impurity plus any surrounding
dielectric with which it interacts by the metastable-set
index j and by a second index cr ranging over all (pos-
sibly degenerate) states within the set j. If the state
(jcr) has an energy E;, then the probability p; for
that state to be occupied in true thermal equilibrium
at temperature T is

(a)

(b}

(c)
Fn. 1. Absorption and emission processes appropriate to a

photon wave packet traveling from left to right. Parts (a) and (b),
respectively, indicate photon absorption and emission by the small
material body indicated by the open rectangle. The net result of
successive absorption and emission processes is equivalent (except
for a time delay and a concomitant loss of phase coherence) to
process (c) in which the photon passes right through the body
without interaction. It is clear that process (b) is not the time
reverse of process (a) because in the time-reversed process the
photon wave packet would be traveling from right to left, a dif-
ferent radiation mode combination from that relevant to (a).
The general Einstein relations (9) and (19) of the text apply
separately to each radiation mode, not to pairs of modes con-
nected by time reversal.

p; =exp( E; /kT)—/Q; Qp exp( —E;p/kT) . (5) If we further note from Eq. (5) that

Consider next the interaction of the impurity-doped
dielectric with radiation. We restrict ourselves to the
lowest order "linear" interactions (implicit in our previ-
ous cross section and fluorescence-function definitions)
of any radiation mode with any given dielectric-per-
turbed impurity. ' We characterize the perturbing ef-
fects of any particular radiation mode (k,X,co) by the
set of matrix elements M, , ;p(k,h, co) connecting the
different states (jcr) and (iP) Vsing. these matrix ele-

ments with the definitions given previously, we can
relate the absorption and stimulated-emission cross
sections by the ratio

iV,o,x (k,co);,

X;o,g(k, co),;

g.,pp;pi 3I;,;p(k, )c,co) i o(E; E;p h(v)— —

P.,pp;. ~iV;p, ; (k,)t,co)
~

o(E; E;p Ace)— —

where here X;=P p; . We have used the fact that
whatever frequency-dependent or mode-dependent fac™
tors and local-field corrections are relevant to the
absorption cross section are also relevant to the emis-
sion cross section. This is an immediate consequence of
the fact that the component of the total system Hamil-
tonian which describes the interaction of radiation with
the impurity-doped dielectric is necessarily Hermitian
(real). This same fact ensures that

) M;. , ;p(k, X,co) i'=
) lE;p,;.(k,X,co) i'.

6 In this paper we do not consider spectral functions character-
istic of nonlinear optical processes. Generalized Einstein relations
do exist for such functions but they are less useful and somewhat
more complicated than the relations we consider here for the
linear spectral functions.

p,p5 (E, E,p Aa))— —
=p, exp(Ac0/kT)8(E, ,—E;p—Ace), (8)

then it follows from (6) that'

o x(k,co),,=cr,x(k,co);; expLA(co —fc;,)/kT), (9)

where, if (1V;/$,),o is the ratio of the total set-j and
set-i populations in true thermal equilibrium at tern-
perature T,

exp (—Alc, ,/AT) = (1V;/cV;) „. (10)

7 Compare the more formal but essentially equivalent operator
statements of this result given in Secs. 2 of D. E. McCumber,
J. Math. Phys. 5, 221 (1964); 5, 508 (1964).

Equivalently, the temperature-dependent excitation po-
tential Ap;; equals the net free energy required to excite
one impurity from the set i to the set j)i chile main-
taining the initial dielectric temperature T.'

Equation (9) is the generalization of Eq. (3a) we
have been seeking. It correctly reduces to Eq. (3a)
when the spectral linewidth is less than kT/A and B,a
is defined as in Eq. (20) below. In deriving Eq. (9), we
used the facts that the desired cross sections relate to
the lowest order radiation-impurity interaction and that
the system Hamiltonian must be Hermitian. Since our
proof does not depend upon time-reversal invariance,
the results also obtain for systems in equilibrium in
static magnetic 6elds and for systems described by
equilibrium ensembles having net linear or angular
momentum. The irrelevance of time-reversal invariance
to the arguments of this paper is apparent in Fig. 1
where we have schematically indicated absorption and
emission processes for a photon wave packet incident
upon an absorbing medium.

Einstein was able to infer his relation (3a) from
detailed-balance relations of the type we shall use
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below to determine the function f&, (k,a&),;. This was
possible because his parameters 2;; and 8,, refer only
to a single pair of energy levels and do not depend upon
the detailed thermal occupation of different energy
levels within metastable sets—that is, they are tem-
perature-independent. This temperature independence,
used in conjunction with the fact that thermal-equi-
librium blackbody radiation is described by the cele-
brated Planck formula, is sufhcient to determine the
two coefficient ratios of Eq. (3) from a singte detailed-
balance relation. Because our functions are implicitly
temperature-dependent (when the spread of energies
within a metastable set is large relative to kT), we
cannot proceed in precisely the same way but must
supplement the detailed-balance relation by the micro-
scopic arguments of Eqs. (6)—(8) above.

To generalize Eq. (3b), we relate the emission cross
section to the fluorescence function fq(k, e~);,. Using
microscopic arguments, we can easily verify that for
fixed j )i the function f&, (k,io);, is only related to that
emission cross section a,i, (k,e~);; which belongs to the
same metastable sets j)i as fi, (k,&o);,. The specific
relation connecting these spectral. functions can be
inferred from Eq. (9) and Einstein's detailed-balance
argument' that at thermal equilibrium the total rate of
spontaneous plus stimulated emission of (k, X,o&) radia-
tion in j—& i transitions must equal the rate of ab-
sorption of such radiation in i —+ j transitions, the
equilibrium radiation density being given by a general-
ized Bose-Einstein-Planck distribution function for
temperature T.

In our derivation we assume that the radiation fre-
quency + is uniquely related to the mode indices

(k,X) by
(o=(vi, (k) —=ck/ng(k, e~),

where n&(k, ei) is the real part of the index of refraction
of the impurity-doped dielectric. When the effective
radiation-dielectric interaction is very strong (as it is,
for example, near the intrinsic absorption edge of an
insulator or semiconductor), the mode (k,X) will not
have a unique frequency but will have a spread of fre-

quencies (or in some cases a single complex frequency)
near the frequency (11) and also frequencies near the
intrinsic resonances of the impurity doped dielectric.

(Equivalently, a unique real wave vector cannot be
assigned to each real frequency e~.) In such cases Eq.
(11) is inapplicable and special techniques are required. '
For essentially this reason the results we derive below

relating fq(k, co);; to o,v(k, ei);, are inapplicable whenever

the index of refraction ni, (k,&o) of the impurity-doped
dielectric varies rapidly over the interval characteristic
of the frequency wave vector uncertainty. For example,
if at the frequency cv the doped dielectric is characterized

by the absorption constant n(cm '), then our results

8 3. J. Hopfield, Phys. Rev. 112, 1&55 (&&58)

are strictly valid only if

iong(k(a) ' deil(k)- —'
pi, (k,~)=

2xc dk
(13)

At temperature T the average photon occupation of each
radiation mode is given by the Bose-Einstein-Planck
distribution function

n(~o) = Lexp(Ae~/kT) —1j—',
which is a function only of the frequency ~ of the mode.
Combining Eqs. (13) and (14), we have in p&, (k,M)n(ca)
the average density per unit solid angle per unit fre-
quency interval of X-polarized frequency-co photons.
Multiplying this density by the photon energy A~,
summing over the two polarizations P, and integrating
over the solid angle 4z, we obtain an expression for the
radiation energy density per unit frequency interval
which for free space with nq(k, io) =—1 correctly reduces
to the N, (ei) of Eq. (2).

At thermal equilibrium the density of (k,X,&v) radia-
tion is a constant of the motion. For thei ~j transition
the rate at which spontaneous emission acts to increase
this density is

where cV;I,o is defined as in Eq. (10). The rate of
stimulated emission of (k,h, e~) radiation equals
density p~(k, e~)n(er) of (k,X,io) photons times the grolp
velocity de~i, (k)/dk of light in the material, the emission
cross section &r&(k,e,&),;;and , the upper state population

o.~(k,~);;pi, {k,~)n(~) Ld~v(k)/dpj». I., (16)

The rate of absorption is similarly

o.g(k, M),,pi, (k,co) n(ei) I de)i, (k)/dk$Ã;I „. (17)

Equating emission and absorption rates, we require for
detailed balance that

deil(k)
f),(k,~),;+~,),(k,e)),,pg(k,~)n(~)» I.,

dk

d~), (k)=o.g(k, io);;pi, (k,a))n(ei) — X;I„. (18)
Zk

E$ QC
ni, (k,M))&a.ei—ng(k, e~) = —n„(k,„). (12)

ng(k, e~) dei

Note, however, that these restrictions do rot apply to
the more general relations (9).

If pq(k, er)dQqq is the unit-volume density per unit
frequency interval of modes of X-polarized frequency-~
radiation propagating in the solid angle dO~q, then,
when Eq. (11) obtains,
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Using Kqs. (9)—(14) in Eq. (18), we find after some and
straightforward algebra that

o,g (k,co)pi ——Ci (k,M) (d~) (da')

fi, (k,(o)t;——~r, i, (k,co),;pi, (k,a&) d(oi(k)/dk (19a)

=0,&, (k,M);,$&ami, (k,&0)/2ircj', (19b)

which results are the desired generalization of Eq. (3b).
For a narrow spectral line centered at frequency

Eqs. (9) and (19b) correctly reduce in free space to
Eqs. (3) provided we identify

dM—fi(&,~)2i
43' 2x

(20a)

l(d
+21 QX alki

u(&o) 4 2~

x0,),(k,a)), ipse (k,(u)I (a&)da&), (k)/dk

O.,g(k, cv) d(ui(k) '

(20b)
av

0,i(kp))i2=C&(k, a&) (di)(da')

etc. Note that, as Fowler and Dexter have observed, '
Kqs. (3) do Not obtain with the definitions (20) unless
the spectral line is narrow. The generalization of
Einstein's results is not to be found in the definitions
(20) but rather in Eqs. (9) and (19) above.

An application of the preceding results to spectra in
solids has been discussed elsewhere. ' As another simple
but instructive illustration of the general validity of
Eq. (9), let us briefly consider the Doppler broadening
of a spectral line of a dilute molecular gas of tempera
ture T. We consider the radiative transitions between
two sharp levels of separation Aco2~ =E~—E~ for a mole-
cule of mass M. The molecular velocities are described
by a Maxwell-8oltzmann distribution for which the
probability for velocity v is proportional to exp( —Mii'/
2kT). If the matrix element for the molecular transition
is independent of velocity, the cross sections for the
absorption and emission of frequency-~ radiation are,
respectively,

Xexp( —3A'/2kT) 5(Mv —Mv' —Ak)

Xb(v'M/2+A~2, (a—')'M/2 Ao—)), (21b)

where the unspecified factor Ci(k, a&) is a slowly varying
function of the parameters (k,X,~) and is the same in
both cross sections. As is well known, the Doppler
line-shape results automatically from the energy and
momentum 5 functions present in Eqs. (21).Performing
the v and v' integrations in Kqs. (21), we obtain the
results () k~ =co/c):

0.), (k)~) i2
Mc M2i AN= Cg(k, a)) exp — 1——— ~, (22a)
2kT co 2Mc'i

0' zy &GO 2y

A
= Ci(k, io) exp —

~

1——+ ~, (22b)
2AT( (o 2Mc'j

where we have introduced a new coefficient Ci, (k,~).
Comparing Eqs. (22), we find that

O.i, (k,~) in
——0,g(k,~) 2i exp/A((v —(oui)/kT). (23)

This is of the form (9) with p2i ——cv2i, the unshifted
molecular frequency expected from Kq. (10).Note that
a result of the type (9) obtains only when we retain the
recoil energy corrections &A~/2Mc' in the second factor
of the exponents of Eq. (22).

The exponential factor in Eq. (23) is important only
if the Doppler spectral width co(kT/Mc')'t' is large
compared to kT/A —tha, t is, if

Aa) & (Mc'kT)'t'.

If the molecular mass is one atomic mass unit and if
T=300'K, the right-hand side of Eq. (24) equals
4.91&& 10' eV, an x-ray energy. While the exponential
factor in Eq. (9) thus does not have a significant
frequency dependence in the usual Doppler-broadened
optical spectra, it is often significant in the much
broader vibrationally perturbed optical spectra of solids
and liquids. '4
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