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Recent laser experiments have shown that two coherent light waves of slightly different frequency, when
simultaneously incident on a photodetector, produce a photosignal modulated at the beat frequency ~f.The
theory of this photomixing process is developed by means of a modification of the usual semiclassical treat-
ment of radiation. This modification takes into account the finite lifetime w of excited electronic states in the
quantum-mechanical equations of motion. The photosignal is found to be proportional to $1+ 4n'r'(5 f)'P '".
This result suggests an experimental means of determining the lifetime by measuring the frequency response
of the photosignal to the beat frequency. The theory compares favorably with experiments on P-type ex-
trinsic gold-doped germanium.

I. INTRODUCTION

ECENT experiments' with lasers have shown that
two coherent light beams of slightly different

frequency, when simultaneously incident upon a photo-
detector, produce a photosignal which is modulated at
the difference frequency.

Ke examine the theory of this photomixing process
in a detector in which the photosignal is proportional
to the number of photoexcited electrons (e.g. , photo-
conductor operated in Ohmic range). We review first
the so-called semiclassical treatment of radiation and
its application to the absorption of incoherent light by
matter. Then, we show the complications which arise
in an attempt to apply the same theory to coherent
light.

These complications are avoided by modifying the
usual semiclassical treatment in a phenomenological
way, so as to take account of the 6nite lifetime of
excited electronic states directly in the quantum-
mechanical equations of motion. '

This study of absorption of coherent light indicates
a new technique for determining the lifetimes of excited
states in photoconductors by measuring the frequency
response of the photosignal to the beat frequency
between two coherent light beams. This experimental
technique is discussed by Penchina and Levinstein. '

II. PHOTOCONDUCTIVITY

In an Ohmic photoconductor with a steady bias
voltage applied, the photosignal is proportional to the
number of optically excited electrons. In addition to th, e
external radiation which, excites electrons from their
normal states, there are competing mechanisms which

return the electrons to their normal states. These
competing processes (e.g. , radiative recombination,
etc.) may, in general, be quite complicated to treat .,

theoretically. However, in many cases of interest they
are such that if the external radiation is turned off, the
number of electrons in excited states decays exponen-

tially to the equilibrium number. 4
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t Present address: University of Illinois, Urbana, Illinois.
' See, e.g. , G. Lucovsky, M. E.Lasser, and R. B.Emmons, Proc.

IREE Sl, 166 (1963); M. DiDomenico, Jr., R. H. Pantell, 0.
Svelto, and J. N. Weaver, Appl. Phys. Letters 1, 77 (1962); A.
Javan, W. R. Bennet, and D. R. Herriott, Phys. Rev. Letters 6,
106 (1961);C. M. Penchina and H. Levinstein, Bull. Am. Phys.
Soc. 9, 237 (1964).

'We proposed this modification in a paper presented at the
St. Louis Meeting of the American Physical Society, 25—28
March 1963 t C. M. Penchina, Bull. Am. Phys. Soc.8, 234 (1963)g.
As a result of that paper, we received communications from the
respective authors indicating their treatments of photomixing
which have since been published. They are: P. S. Pershan and
X. Bloembergen, Appl. Phys. Letters 2, 117 {1963);G. J. Lasher
and A. H. Nethercot, Jr., J. Appl. Phys. 34, 2122 (1963).Pershan
and Bloembergen use quantum mechanics in the density matrix
formulation to study the excitation of photoelectrons in a metal
but do not treat the recombination process. Lasher and Nethercot,
Jr., use quantum mechanics in the density matrix formulation
to calculate the excitation of electrons in an intrinsic bulk photo-
conductor, but treat the recombination process phenomeno-
logically using a rate equation with an assumed lifetime.

Our present treatment uses ordinary perturbation theory in a
one-electron approximation and is simply a phenomenological
modification of the usual semiclassical treatment of radiation.

Our result di6ers from that of Lasher and Nethercot, Jr., who
find a dependence of the number of excited electrons on the
intraband scattering time. As one is interested in the total number

A

of excited electrons rather than their exact states within the band,
and as intraband scattering changes, only the state within the
band and not the total number of excited electrons, intraband
scattering does not affect the result. As a rule the intraband
scattering time is usually much shorter than the recombination
time, thus the difference between the two results is usually quite
difEcult to measure experimentally. An interesting exception is
the case of InSb at low temperatures. There, the intraband
scattering time can be even longer than the recombination life-
time, and the difference between our two results would then be
much more evident experimentally.

In a treatment inspired by that of Lasher and Nethercot, Jr.,
LC. M. Penchina, in Proceedings of the 1964 International Confer
ence on the Physics of Sernicondnctors (to be published) g we use a
completely quantum-mechanical approach in the density matrix
formulation to study both the excitation and the recombination.
This treatment allows for an actual calculation {at least formally)
of the lifetime and leads to the same result as we get in our present
phenomenological approach.

3 Penchina and Levinstein, Ref. 1.
4In particular, this exponential decay does not occur, if the

recombination is through traps. In such cases, the decay might
sometimes be characterized by a sum of exponentials. We treat
only those cases in which the decay is essentially exponential with
one time constant. The effects of trapping in photoconductivity
are widely discussed in the literature. For surveys and references,
see, e.g., R. H. Bube, Photocondnctioity of Solids Qohn Wiley gr

Sons,, Inc. , New York, 1960); R. A. Smith, Semiconductors (Cam-
bridge University Press, Cambridge, England, 1959).
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III. SEMICLASSICAL TREATMENT OF RADIATION'

We treat the solid in a one-electron approximation.
We write the wave function as a linear superposition
of a complete set of orthonormal eigenstates I of the
field-free (unperturbed) Hamiltonian Hs

iP(/)=P a„(t)u exp( —io„t), (III.1)

The usual means of treating the problem of photo-
conductivity makes use of a rate equation'

d(BN)/dt= G R—,

in which one assumes the deviation from equilibrium
is small so that the recombination rate E is simply
Bzz/r Th. e generation rate is claimed to be proportional
to the intensity of the incident light. ' This claim is
justified for incoherent light by means of the so-called
semiclassical treatment of radiation, ' which treatment
ignores recombination. Thus the generation and re-
combination are treated independently, their combined
effects being handled by means of th, e rate equation.

In Sec. III we apply this semiclassical treatment to
coherent as well as incoherent incident radiation. It
is seen that for coherent light, the justification of the
assumed generation rate is no longer clear.

In order to get around this difficulty, we propose a
modified semiclassical treatment of radiation, in which
the recombination is no longer ignored in calculating
the optical excitation. This modification allows for a
direct calculation of the number of excess excited
electrons as a function of time without using the rate
equation as an intermediate step.

and the probability that an electron which was initially
in state NI will be in state I;at time t is, to erst order, "

Pz(1) =P P»(t). (III.6)

However, due to the time limitations on the validity
of our approximation, one can not really hope to get a
steady-state solution by this means. On the other hand,
one can hope to 6nd the rate of excitation per unit
time at any time for which the a (1) have not changed
much from the a (0). This generation rate is then

dPz(z) dPz z(t)

dt + dt
(III.7)

the additional subscript I indicating that the electron
was initially in state u&.

I et us note that the above approximation is valid
only for times short enough that all a (1) change very
little from their initial values. This may be a long time
only if the perturbation is weak. Also, the time must
be short compared with the lifetimes of the excited
states in order that the results approximate the actual
situation.

The probability that the electron is in any excited
state is found by summing the above expression over
all allowed (unfilled) excited states

where
+ONm ~elm ~mN771, ~

In the presence of a radiation field, with interaction
Hamiltonian K, the Schrodinger equation yields dP(&) dPz(&) dPz z(&)=ZZ

dt I Ct » dt
(III.S)

(III.3)a;= (—i/k)g a e'"'"'X

The total rate of generation of excited electrons in the
(III.2) solid is found by summing over all the filled initial

states nl,

where
sC; =(u, IscIu )

n; = (o;—(u = (1/A) (E;—E ) .

A. Application of Semiclassical Treatment

If the incident radiation propagates in the x direction
and is polarized in the s direction

To 6rst order in the field strength

SC= (iefi/mc) A.v, (1114) where

A=+ A„expi(k„r —u„1)+c.c. , (III.9)

~ See, e.g., R. H. Rube, Ref. 4, pp. 63—64.' Bube, Ref. 4, p. 64, footnote.
~This treatment is discussed in most textbooks on quantum

mechanics; see, e.g., F. Seitz, The Modern Theory of Solids
(McGraw-Hill Book Company, Inc. , New York, 1940), p. 215 6;

- I. I. Schiff, Quantlm Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1955), p. 2468; D. Bohm, Qmantlm Theory
(Prentice-Hall, Inc. , Englewood Clips, New Jersey, 1951l,p. 417 6.

8 See Ref. 7. Although the semiclassical treatment is widely
discussed in many textbooks, we review it in this section to
provide a basis for the section on applications. The application
to coherent radiation is not treated in the standard texts on
quantum mechanics.' F. Seitz, Ref. 7, p. 234 8, also p. 326.

Thus

A„= (0,0,~„), 2 „=
I
A „I exp (ia„),

i~„= (k,0,0), co„=k„c.

2

zzzz(t)= g P Kzz"~
n m=1

expfiL z+(—)" -j~) —1
X (111.10)

~ zp z+ ( )"~n—
"We assume that zf,; is a state in an unfilled band.



THEORY OF OPTICAL BEATI NG I N PHOTOCONDUCTORS A 913

where
XFz"'= (iek/fztc)A„(p„) Fz,

xFI"'——(iek/fftc)A *('p„*)Fz,

(p.)Fz (u—F—
~

e" *8/es((uz),

(p *)Fz= (uF'(e "*8—/esi(ui)

Taking the absolute square of the transition amplitude
apq, to find the transition probability Ppl, leads to a
large number of terms. These terms fall into two groups:
direct terms, i.e., those which are the absolute squares
of the individual terms in Eq. (III.10);and interference
terms, i.e., those which are cross terms from taking the
absolute square of the complete expression in Eq.
(III.10). We find

2
P„(t)d;„,t=—p g ~XFI""~

$2 n en=1

1 cosLMFz+'( —) Majt
(III.11)

~r — n
and"

PFZ (t) interference

j.
=—Q' xFI" (xFI")*IFFI""a' (III.12)

jP nm, eb
where

so that for all e

then

where

(pn)FI —(pfz)FI I ~n, —tfif )

cp/ct =DI,

(III.16)

(III.17)

Z. CohererIt Eadiatiorl,

If the sum of plane waves in Eq. (III.9) is a coherent
sum, i.e., if the various phases e„have de6nite relations
to one another (rather than being random), then we
must consider the interference terms as well as the
direct terms.

We find from Eq. (III.12)

dP pl interference

4x2e2

2 I (p~)FI I P(~1), (III Ig)
52 CGO~ ~FI=eeN

where P(tcz)C(cz is the number of initially filled states
in the energy range betWeen (eZ and tcZ+Ckcf, and Where

I is the c/assical intensity for the incoherent radiation.
In particular, if the allowed final states are Sg

acceptor states, all with energy very close to E&=Lr&,
we find

4+2e2
D= P, ~ (P~) Fz

~ P(~1) . (111.19)
m ceo~ t I'=~A; ~I=~A—AN

ef(Q+(i) t e—f(Q—8) t+ef28t

(Q+e) (Q—e)

QFI"""=e)FI+f/( )"e).+( —)'~.j/2)—,
eab p( , )a—r~ + ( )b~ j/2

where

1 nm, ab

=—p' xFI" (x,z")*
jP nm, ab dt

CW —i(Q+ 8)e'("+') '+i (Q—8)e'(" ') '+2iee'""

(III.20)

The total transition probability is just the sum of these
two sets of terms

PFI (t) PFI (")direct+ PFI'(t) interference ~ (III 13)
e j28t

(Q+ 8) (Q—e)

sin(Q —8)t sin(Q+8)t

1. ImcohererIt Eadiatioe

If the sum of plane waves in Eq. (III.9) is an in-
coherent sum, i.e., if the e„are independent and random,
the interference terms essentially cancel and

P (tF)izco enre ht= nP I(tF) ire tdc(11114')

This is the case usually treated in textbooks. The
well-known solution is

iL1—cos (Q—8)tj iL1 —cos(Q+ 8)tj
(III.21)

Let us examine CW/Ct more closely. The two terms with
sines in the numerator are functions just like those
which arise for incoherent light' and are considered as
Dirac delta functions with respect to any slowly
varying functions. The other two terms are

dP 27) e

, , I (p.)FII'IA-I'P( I)
d$ n, & m2P o)1 I=ozn ~

(III.15)
1—cos (Q—8) t 1—cos (Q+ 8) t

g(Q, e, t) =i (III.22)
0 0 Q+8

" Z' mealls
nmab

g(+8, 8, t) = —iL(1—cos2et)/28$; (III.23)ZZ ZZ
In=1 a b=l

but exclude terms for which the ordered pair (nm) is equal to the
ordered pair (ab) as they are the direct terms of Eq. (III.11).

and for QA+8 and t large, g(Q, e, t) oscillates rapidly as
a function of Q. One might thus be tempted to say that,

If the radiation covers only a s~all range of frequencies This expression is finite everywhere. At the zeros of the
denominator it becomes
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we substitute Eq. (III.26) into the rate equation,
Eq. (II.1).We find in the steady state

I
I

---lLa
)P' 6

cosf (M„—M.)t—(n.—a.)—tan- (M„—M.)rj
D+ (M M )2T2)1/2

cosf (M„+M,)t—(u +u,)—tan '(M„+M )rf

L1+( d +M )2rsil/2

(III.27)

i

t
f

I

I
I

j

I
I
I

I
I

I

Fio. 1. Schematic sketch of g(0,//, t). Dotted
curve shows time average.

in general, for sufliciently large t and arbitrary f(Q)
00 ?

f(Q)g(Q, 8,t)dQ —+ 0. (III.24)

However, combining terms in Eq. (III.22), we find

2iI 8 8cosQ—t cos8t —Q sinQt sin8tj
g(Q, 8,t) =— (111.25)

0'—82

which, we see, oscillates about an average value of
2i8/(Q' 8') rat—her than oscillating about the Q axis
(see schematic sketch in Fig. 1). It is then obvious by
examination that Eq. (III.24) is not valid in general.
LFor an example of a simple function which violates
the conjecture of Eq. (III.24), see Appendix A.]

It is interesting to note, however, that if we neglect
g(Q,8,t) in Eqs. (III.20) and (III.21) (and that is quite
a big if), then we find, using approximations similar to
those used in the preceding treatment of incoherent
light, that

dl'(t)/dt =DI(t), (III.26)

where I(t) is the classical intensity as a function of
time, and D is given by Eq. (III.18) or (III.19). The
actual calculations are performed in Appendix 3.

We emphasize that the result of Eq. (III.26) is
based on the false assumption that the conjecture of
Eq. (III.24) is valid. If, on the other hand, we do not
neglect g(Q, 8,t), then we are unable to draw any simple
qualitative general conclusions, but require very
detailed information about the particular system of
interest.

Now, in order to take account of the finite lifetime
v. of the excited electronic states of the photoconductor,

COSL (MII MI)) t (CEII QN) tail (M II
—MI)) T)

. (III.28)
1+ (M M )2T2$1/2

This result, being based on the invalid conjecture of
Eq. (III.24), is now on a very tenuous footing. In the
following section, we use a different derivation which
will arrive at the same result, putting it on a much
firmer basis.

IV. MODIFIED SEMICLASSICAL TREATMENT
OF RADIATION

In order to eliminate the problems we found in
treating coherent radiation in the usual semiclassical
manner, "we propose a modification which retains the
essential features of the classical treatment of the field
and quantum treatment of the electrons but which
takes account of the lifetime of excited states in the
quantum-mechanical equations of motion for these
states.

Equation (III.3) assumes that if the radiation field
is turned off, the electron no longer makes any transi-
tion, whereas we know that it relaxes from the excited
state back to the normal state. For the case in which
the relaxation is exponential with a time constant r, the
relaxation mechanism is accounted for in a phenomeno-
logical way by adding an additional term Hi to the
Hamiltonian. We take this additional term to be
diagonal in the eigenstates of the unperturbed Hamil-
tonian, with diagonal matrix elements

(II/)); = iA/2T— (IV.1)

for any excited state j; all other matrix elements are
zero. The equation of motion (Eq. III.3) then becomes

"See Ref. 2. This method is reminiscent of the %'eisskopf-
Wigner method. See W. Shockley, E/ectrons and Vol'es irl, Semi-
coedlctors (D. Van Nostrand Company, Inc. , New York, 1950),
p. 487 6.

We note that if the range of optical frequencies is small
compared with the average frequency, we can neglect
the second group of terms compared with the first. Thus,
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(for any excited state j)
a;= (—i/k)p a e~a™X;—(a;/2r). (IV.2)

We see that if the radiation is turned oR at time to,
then

and thus
a;(t) =a;(tt))e ('—ta)"',

~ (t) =
I
a (t) I'=~ (to) -" "",

(IV 3)

(IV.4)

a„(0)=g z, (IV.S)

the recombination process now assures us that for all
time

(IV.6)az(t) =1 and a, (t)&&1, jWI,

and hence, from Eq. (IV.2), we find to first order

az z ( i/A) e'a~"3C———b z (az/2r) . — (IV.7)

Since the above equation of motion, unlike Eq.
(III.S), is valid for all time, we can solve directly for
the steady state excitation probability rather than just
the excitation rate. The steady-state solution is

e~[~11+(—)~(anal &2r
apz(t) = ZP X~z""—

j$ n
(IV.8)

1+i[~„+( )-~„52r '—
Summing over initial and final states, and replacing the
sum over initial states by an integral, we find

4r2
P(t) = P

diaz

p(~z)

nta m, b j.
Zttmp(& ab)aV , ttmab(IV 9)

where

V= et2bt/([1+i(0+8)2r5[1 —i(0—8)2r5), (IV.10)

which indeed exhibits the desired exponential decrease
in the probability that the electron is in an excited
state, the time constant being r.

Taking account of the lifetime in this manner assures
us throughout that the probability that the electron
is in an excited state remains small and the probability
that it is in the normal state remains close to unity
for all time. The fact that the matrix elements of Hi
are imaginary simply reflects the fact that we are not
conserving probability (i.e., we are not accurately
counting the occupancy of the normal state) when we
approximate the probability of occupancy of the normal
state by unity. Note also that we do not trace the
actual return path followed by an electron between the
state to which it was excited and the normal state. For
example, in an n-type extrinsic photoconductor, we do
not trace the actual transitions an electron might make
within the conduction band before returning to a donor
impurity state, since the photocurrent is essentially
independent of the exact position of the electron in the
conduction band.

Assuming again the same initial conditions as in
Sec. III, i.e.,

& q- —1

&& 0 i,.i —g.i .i ——
l

d0»"i ". (IV.12)
2,r

The remaining integral is easily evaluated by a contour
integration. The result is

2mre
jt'(t) = 2 p(~z)l~.~.(t3 )~z(&.)»l

F,n, a

cos[(to„—(u )t—(n„—n,)—tan '((o —~ )r5
X

[1+(cu„—cd )2r25'(2

4&(t»aa+~a)/2 ~ (IV.13)

0 and 8 are given by Eq. (III.12). Thus

4r2e2 ()0

P(t) = — P dorz p((oz)
mg F,n, a

(p ) g 8[(p ) 5@et(aa—a„)t

X
[1+i2r((t)»—tt) „)5[1—i27' (ct)»—tt)a) 5

&-*(~-*)-&.[(~.*)-5*""=""
[1+i2r(ut.z+u )5[1 i2r—(uzz+~ )5

A.(P.) t;z A.[(P.*)pz5*e—'(""+".) '

[1+i2r(tt)pz tt) )5—[1 i2r (tt)bz+—co )5
2 *(P *)»A *[(P )t z5*e"""+""

[1+i2r(tdzz+u„) 5[1 i 2r (b—)pz b)a) 5—
(IV.11)

Note that the magnitude of [1+i(0+8)2r5 ' has a
peak at 0= %8 with half-width v3r/2. V is the product
of two such peaked functions. If 8& 1/r, then the peaks
overlap, and V is largest around 0=0. If we assume that
the matrix elements and density of states in Eq.
(IV.11) vary slowly over a range of frequencies of the
order of 1/r, we can then take them outside the integral
(evaluating at Q=O), provided 8&1/r. Some terms in

Eq. (IV.11.) have values of 8 of the order of optical
frequencies, i.e., of the order of 10" sec ' and since
lifetimes in photoconductors are typically much longer
than 10 ' sec, we have 8 10'/7 )&1/r For these. terms
V is the product of two peaked functions whose peaks
are widely separated, and thus these terms are small

compared to those for which 8&1/r They wil. l be
neglected henceforth. Again, because of the Pauli
exclusion principle, the number of allowed final states is
negligible for orb &coz. Thus, we find that Eq. (IV.11)
simplifies to

e
&(t)= P P(~Z)&.&a*(P.)bZ

fg2g2 F,n, a

y [(p ) 54et(raa a„)t—
(0jt'I= ((t)fb+(t)@)/2

——1z
tti, al+

l

gal, al
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If the range of incident frequencies is small compared
with the average frequency, then the probable number
of excited electrons which we find from Eq. (IV.13)
agrees with that found in Eq. (III.28).

Let us compare the modi6ed derivation with the
semiclassical one. In our modified treatment, we found
a function V which is not really a delta function, and
thus does not accurately conserve energy. However, the
spread of this peak is caused by the finite lifetime v, as
would be expected from uncertainty principle considera-

tions, and decreases inversely with the lifetime. In the
semiclassical derivation, we found a function 8' which

had a delta-like part and a nondelta-like part g(0,8,t).
The delta-like part is spread out with a width of order

1/t, and since the treatment is valid only for times short

compared with the relaxation time, the spreading is
greater than 1/r. The function g(0,8,t) was simply
discarded to obtain Eq. (III.28). Omission. of this term

was a procedure we could not justify. The physical
meaning of this neglected term is not clear.

Thus, we see that in our modified treatment the

approximation of V by delta functions is at least as

good as the approximation of sinxt/x by a delta function

in the semiclassical treatment. Also, the deviation of V

from a delta function is easily understood physically,
whereas that of lV is not clear.

V. SVMMARY

Our theoretical study of absorption of light has
demonstrated the difficulties which arise in an attempt
to apply the usual semiclassical treatment to coherent

radiation. These difhculties were eliminated in a
modified treatment which considered (phenomeno-

logically) the finite lifetimes of excited, states in the

quantum-mechanical equations of motion.
The result found in Eq. (IV.13) suggests that the

lifetime would be determined by measurement of the

frequency response of the photosignal to the beat

frequency between two plane waves. This experimental

technique is discussed by Penchina and Levinstein

(see Ref. 1), who find good agreement between experi-

ment and the theoretical result of Eq. (IV.13).
The same theoretical result can be derived in a

completely quantum-mechanical treatment using the

density matrix (Penchina, Quantum Theory of Optical

Beating in Photoconductors, Ref. 2). Although more

rigorous, that treatment lacks the intuitive simplicity

of the modified semiclassical treatment of this paper.
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f(0)=1, 8+2(0&8+8, B)A)0 (A1)

f(0)=0 for all other values of 0.

We find

f(0)g(0,8,t)dQ

1+B

g (0,8,t)dQ

'+~ dQ
=2i~ 8 —8 cos8t

g+~ 02—8'

'+~ cosQ/dQ

'+~ 0 sinQt—sin8t dQ
~

. (A2)
s+~ 0'—8'

The second and third terms above decrease rapidly
due to cancellation as t increases. Thus for sufficiently

large times we get

f(0)g(0,8,t)d0=2i
'+~ dQ

+g 0'—0'

B(28+2)
=i ln AO, (A3)

A (28+8)

which can indeed become quite large if A&&8, 8. Hence
we have disproved the conjecture of Eq. (III.24).

B. Senuclassical Generation Rate

From Eq. (III.20), if we neglect g(Q, 8,t) in Eq.
(III.22), we find for t sufficiently large

APPENDIX

A. Conjecture of Eq. (III.24)

We evaluate the integral of Eq. (III.24) explicitly for
the simple case where

d+ FEinterference =—P' X»-(X» i)*.'2«L8(0 —8)+8(0+8)j,
PP nm, ab (A4)
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interference

dt

dEFIinterference
)(( )—

(K» ) (%Fr ) & P(~r) I 0-1)+ I 0-e
jP nm, ab

xe'
A „(p„)»A, I (pe)»j*&' "' "" ')) (&I) I ~el=~~+ I ~»=M~

m2P I' n a nba

+ g A„*(p~*)pr&ek(po )~ij*&' " ""p(~&)
I ~» ~o+ l~»—~.

n, a; nba

+p Am(pn)»&al (pa*)rr j*e ' ""+"' P(~r) I art=Ma+ I ~ri
n, a

y g g „*(p.*)„a.*p(p.)„j*e'(--+"-)'p(~r) I »=.+ I »-"&
n, a

for a solid with inversion symmetry. (AS)

where we have used Eqs. (III.S) and (III.10). In Eq. see from Eq. (III.10) that
(III.S) we replaced Qr by fdorp(~r).

We note that the sum over allowed final states
vanishes due to the Pauli exclusion principle if cobol &O.
Also we note that e and a above are dummy summation

Then Eq. 7 becomes

d~xnt
Z { Z &-(p.)-&.*L(p.)-j*

df m2g2 Z n, a n~a

X& " p((dr) I ruzr re +c C.

+Z ~-(p-) ~r~.L(p-*)»1*

dP 2me'

2 «~-(p-)~r a(~r)
df m'C' F,n, a

X{g OL(p ) jar ((rupa ~a)—t

—&.L(p.)-3*-'(.-"')-.,--.. (A7 )
n, a

Xe-'(-.+""p(~r)I.»-..+c.c.&. (A6) 0 en
(p )»=

I (p~) ~rj~"~' (A9)

Combining this with dPq(«, t/df from Eq. (III.32), we dp
6nd — p j&.&.(p.)Fr(pa)l rj p(~r)

dt m'C' &.n, a

dP 2xe'
Red (p )Fr

Ch mC &na

X{~.*L(p.)-i*-'-.-- "(-.)
I"(p @) j@e—i(ur~+ru~)tp(~ )} (A7)

where Re—= the real part of what follows.
If the solid has a center of inversion (e.g. , perfect

crystal of germanium, or one in which impurities are
uniformly distributed), then the stationary states uF
and u~ have definite parity under inversion and we then

X{cosL(&u„—~,)t—(n„—n,)—(y rr p) r)j—
—cosL((d, +&d,)f—(n +n )—(p rr vorr)))—

&err=(0 . (A10)

If the range of light frequencies is small so that all

l(p-)»I=l(p~)'rl ~-»=»» u-=a~ then Eq.
(III.26) is verified. Note that if the solid does not have
a center of symmetry, Eq. (III.26) no longer is valid.
Still, Eq. (III.28) does follow as the only change is in the
high-frequency terms which are neglected in any case.


