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One suggestion which is obvious from this considera-
tion is to attempt a measurement of the shear-wave
deformation by taking the difference between the
experimental and predicted residual attenuation at
large q/ values.

CONCLUSION

This article reports and interprets experiments which
were conducted to determine the temperature depend-
ence of shear-wave attenuation in superconducting
aluminum. Some of the main results are:

(1) In contrast to the longitudinal-wave attenuation,
the experiments showed a strong frequency dependence
of the reduced attenuation (tr,/tr„) as a function of
temperature.

(2) The temperature variation of (n, /n„) could be
separated into two parts:

(a) a very sharp decrease with temperature very
close to the transition temperature and

(b) a residual attenuation having a temperature
dependence similar to that for longitudinal waves.

(3) A theoretical formulation was made which used
approximations expected to be valid near the transition
temperature. This theory employed a self-consistent
treatment of the electron-impurity collisions and quali-
tatively reproduced the features of the experimental
data.

(4) It was found that the specific details of the data
could be predicted by this theory when the function
2f(e) was used for the normal electron density.

(5) In particular the residual attenuation was shown
to be gL2f(e)), and the width of the region of rapid-
falling attenuation was shown to be determined by co7..
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A new form is given for the triple-collision term in the generalized Boltzmann equation which is more
similar to the well-known binary-collision expression than those given heretofore. The form involved is a sur-
face integral over a five-collision parameter space which is the generalization of the two-dimensional collision
parameter space for binary collisions. For "soft" repulsive interactions, the expression involves both the
asymptotic properties of three-body collisions before and after the collision, and the dynamics of binary col-
lisions during the collision process. For hard spheres, the expression involves only the asymptotic properties
of ternary and binary collisions.

I.' INTRODUCTION
' 'N recent years, several authors' "have written on

- the structure of the asymptotic three-body collision
term in a modified Boltzmann equation appropriate to

dense gases. At the present time, it appears that all
methods of derivation lead to the same result, albeit
in different mathematical forms. ' "7 In a form derived
by the author, ' this operator may be written

'N. N. Bogolyubov, "Problems of a Dynamical Theory in
Statistical Physics, " translation by E. K. Gora from Studies in
Statistical Mechanics, edited by J. deBoer and G. E. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1962), VoL I.' M. S. Green, J. Chem. Phys. 25, 836 (1956).' M. S. Green, unpublished letter to G. E. Uhlenbeck.

4 M. S. Green, Physica 24, 393 (1958).' S. T. Choh and G. E. Uhlenbeck, thesis, University of
Michigan, 1958 (unpublished).' R. M. Lewis, J. Math. Phys. 2, 222 (1961).

r S. Rice, J. Kirkwood, and R. Harris, Physics 27, 717 (1961).' E. G. D. Cohen, Physica 28, 1025, 1045, 1060 (1962).
E. G. D. Cohen, Ii Nndumerlta/ Problems As Statistical Mechanics

(North-Holland Publishing Company, Amsterdam, 1960).' M. S. Green and R. A. Piccirelli, Phys. Rev. 132, 1388 (1963)."P. Resibois, J. Math. Phys. 4, 166 (1963}."E.G. D. Cohen, J. Math. Phys. 4, 183 (1963).

Is erst S(123)—S(12)S——(23)—S(12)S(13)+S(12)j
&&f(1)f(2)f(3)d(2)d(3) (I)

where 1, 2, etc. , are abbreviations for the momentum
and configuration p&, xi,- p2, x2 of particles 1„2, etc. ,
S(123), S(12) are the substitution operators which
have been defined for instance in Ref. 10, and will be

"S. Ono and T. Shizume, J. Phys. Soc. Japan 18, 29 (1963).
'4 R. Zwanzig, Phys. Rev. 129, 486 (1963).
'5 J. Weinstock, Phys. Rev. 132, 470 (1963).
re G. Sandri, Ann. Phys. (N.Y.) 24, 332, 380 (1963)."P. Resibois (private communication).
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defined explicitly in Eq. (3) below, Liouville operator in the form

F» is the force exerted by particle 2 on particle 1.
Although expression (I) has a very symmetric and

compact form, it is disparate in several important
respects from the corresponding well-known expression
for the two-body collisions in the spatially uniform case.

Lf(pi')f(p~') —f(pi)f(p2))

where 2i(i) = (p,/rw) V, Then

S(1 .e)=lim exp( —iZ„) exp(tZ„').

If we write this as

(3)

where p~'p2' are the momenta of particles 1 and 2
before the collision, considered as functions of the
momenta pip2 and collision-parameter vector b after
the collision. Expression (II) also can be written more
compactly in terms of 5 operators as

I2 $$(12)—1——)f(1)f(2) (~ pi —p~ ~ /m)dbdp, . (II')

Perhaps the most obvious disparity between (I) and
(II') is the absence of the operator gi2 in (II'). A second
disparity is the fact that in (II') the collision parameter
b runs over a plane perpendicular to the relative final
velocity p~

—p~, and not over the full configuration
space of particle 2, while in expression (I) the integra-
tion is over the complete configuration space of particles
1 and 2. The most signi6cant disparity from a practical
point of view, however, is that, while expressions (II)
and (II') involve dynamics of two-body collisions only
through the asymptotic relationship between momenta
before and after the coHision, expression (I) involves
the dynamics of three- (and two-) body collisions while
the collision is in progress.

The purpose of this paper is to exhibit the three-body
collision term in a form which in many, but not all
ways, is analogous to expressions (II) or (II') for the
binary-collision term. More particularly, we will

exhibit the three-body term as a configuration integral
over a five-dimensional collision space, analogous to
the two-dimensional collision space for binary collisions
in which the only aspect of three-body dynamics
involved is the asymptotic rela, tion between the mo-
menta of the particles before any collision event has
begun, and the momenta of the particles after all
collision events are completed. The operator
however, is not completely eliminated. But it appears
only in conjunction with two-body substitution oper-
ators $(i,j). In the last part of the paper we mal~e this
form more explicit for the hard-sphere model.

There are two means by which the transformation is
effected. The first means is a commutation relation
satisfied by the $(1. N) operators. .Let us write the

the result is of course independent of r. Differentiating
with respect to r we have

0=lim —Z„exp/ —(t+r)Z„) expL(j+r) i'.')

+expL —(j+r)Z„) expL(/+r)2„0)Z„O, (5)

or
0=2&„—$„2„'.

Using Eq. (1), we may also write"

2„'5 —S„Z„'=Q8;,5„.
i& j'

(7)

If we operate with the right-hand side of Eq. (6) on a
function p„(pi. p„) of momentum only, we obtain

&nSn =P fjijSny

1
I3= Loi2r~ (12,3)+8i3r2(1—3,2)+tt23r2(23, 1))

2

Xf(1)f(2)f(3)ii(2)d(3), (9)
where

r2(12,3) =$(123)—$(12)S(13)
—$(12)$(23)+$(23). (10)

The contribution of the second term in parentheses
to the integral is equal to that of the first term, since
2 and 3 are dummy indices, while the contribution of
the third term is zero. Expanding Eq. (9), we obtain

"Iam indebted to Robert Piccirelli for this formula.

which is an expression of the well-known fact that
$„2„(p, p„) is an integral of motion for e-particle
dynamics. Equation (6) or (7) can be considered to be
the modification and generalization of this statement
to arbitrary functions.

The second means is the symmetrization of the
integrand in (I) with respect to the indices of all three
particles. Ke may write
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the expression (I') for the triple-collision contribution

—Oi25(12) LS(13)+5(23)]
—OiaS(13)LS(23)+5(13)]
—8235(23)$5 (12)+5(13)]

+Oi2S(12)+8,3S(13)

+8»5(23)f(1)f(2)f(3)d(2)d (3) (I')

I3=- (8»+Oil+823)5(123)
2

II. TRANSFORMATION OF THE BINARY OPERATOR

We propose to transform the six-dimensional volume
integral in Eq. (I) to a five-dimensional surface integral
using Eq. (7). Before we do this, let us consider the
well-known transformation which takes the form (II")
for the binary-collision integral (the form which arises
first in the Bogolyubov theory) into the form (II')
or (II). The form (I") is

I2= OiiS(12)f(1)f(2)d(2),

since for this case we may replace Eq. (7) by Eq.
(8), 5(12)fi(1)fi(2) depends only on Rim and 220
= P(p2 —yi)/m] Vii. Now since Oi2 contains tile intel'-

First of all, it should be emphasized that I2 has a
nonlocal significance; it depends on a variety of spatial
points. I2 can only be transformed into the form
(II') or (II) for spatially independent f's The nonl. ocal
part, the so-called collisional transfer term, is included
in (II") but not in (II') or (II).This is also true of the
transformation of I3 to a surface integral form; the
transformation can only be effected for spatially
uniform fi

For fixed p2 and, of course, p~ and x~, the configuration
integration in (II") can be considered to be carried
out with respect to the relative configuration Rii
= x2—x&. We may use the commutation relation, Eq.
(7), to replace 8»5(12)fi(1)fi(2) in (II") by

$2205(12) —5(12)gu'] fi(1)fi(2) .

Because we are dealing with the spatially uniform case,
we have

I y2
—pil

~ ~i, r 5(12)—1]f(1)f(2)dp2dRi~, (11)

molecular force as a factor, we may suppose the con-
figuration integration in Eq. (12) to be over the interior
of a closed surface of large diameter compared to the
range Eo of intermolecular forces. As has been pointed
out elsewhere, ' the function LS(12)—1]fi(1)fi(2) is
different from zero on this surface only in a region of
diameter Eo surrounding the point of intersection with
the surface of the ray from the origin in the direction
of the relative velocity vector. It is possible to trans-
form Eq. (11) by Gauss's theorem. It is simpler,
however, to proceed by breaking up E» into a com-
ponent L(p2 —pi)/m]r parallel to the relative velocity
vector and a component b perpendicular to this vector.
Then

20=8/Or.

I2 IS——(21)—1]f(1)f(2) di dbdp, . (12)
BT m

Integrating first with respect to r for fixed b, we obtain

ly2 —yilI,= LS(12)—1]f(1)f(2) dbdpi ) (13)
m

in which the integrand is evaluated on the portion
of the boundary surface in the neighborhood of the
positive ray. For such points, of course, 5(12)f(1)f(2)
=f(pi')f(p~'), where pi'p2' are the initial mornenta
considered as functions of the final momenta and
collision parameter.

III. TRIPLE-COLLISION INTEGRAL

We turn now to the transformation of the expression

(I) for the triple-collision contribution for spatially
uniform f For fixed p. iy3 and, of course, yixi, we may
consider the configuration integration in (I') to be
confined to a large region V with surface S surrounding
the origin in the six-dimensional relative-configuration
space x&—x&, x3—x&, and we may attempt by means of
the commutation relation to transform (I') into a
surface integral over S. For the first term in the inte-
grand, we may immediately apply Eq. (7) or, since f
is supposed to be spatially uniform, Eq. (8), for n=3.
In the remaining terms, which contain factors of the
form 8,;5(ij), it is convenient to modify Eq. (7) for
e= 2. We have, for instance,

z305(12) —5(12)z,,o= 8»5(12), (14)

since Zio(3) commutes with S(12). Applying Eq. (8)
for x=3 and Eq. (14), we obtain

I3——
2

Z3'(5(123) S(12)ES(13)+5(23)] 5(13)ES(12)+5(23)]—S(23)LS(12)+5(13)]

+S(12)+5(23)+S(13)}—(5(12)23'[5(13)+5(23)]+5(13)23'LS(12)+5(23)]

+5(23)z3"LS(13)+5(12)]}f(1)f(2)f(3)d(2)d(3). (15)
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We may immediately carry out the integration for
the first group of terms with respect to t by evaluating
the integrand for ti(bsi, bsi, r) and for ts(bsi, bsi, r). We
have for their contribution

(5(123)—5(12)LS(13)+5(23)j
S(13)LS(12)+5(23)j 5(23)LS(12)+5(13)]

+5(12)+S(23)+5(13)+2}

Xf(1)f(2)f(3) (I ps p—il/~) (I ps p—il/~)

Xdrab»&b». (16)

FIG. 1.Actual successive binary collision.

The first group of terms in Eq. (15), in which the
operator Z3' appears to the left, can be transformed
immediately to a surface integral. We may proceed
as we did in the transformation of the binary-collision
term and break up the six-dimensional configuration
integral in relative-configuration space (xs—xi, xs —xi)
into an integral along lines parallel to the six-dimen-
sional relative velocity vector and an integral over the
five remaining spatial coordinates. Now the volume
element in the relative-configuration space can be repre-
sented as

«,s(j ps —p, [/m)dbis «si(l ps —pi l/m)dbsi

where tsi, bsi are the time" and collision parameter,
respectively, of the 21 collision and similarly tsi, bsi.
The volume element dt»dt», moreover, may be written
dtd7, where t=t2i and v=tai —t2i. Variation in t with
fixed r, bsi, and bsi (and pi, ps, and ps) corresponds to
the motion of the representative point in configuration
space along a line parallel to the six-dimensional relative
velocity vector (ps —pi, ps —pi). We may therefore
represent the five-dimensional surface element as"
(l ps —pi l/m) (l ps —pil/m)drdbsidbsi.

The boundary 5 may be divided into two parts 5& and
S2 such that for a point on 5~ the representative point
moving with the relative velocity vector will leave V,
and for a point on S2 the representative point wil) enter
V. It is clear that the boundary surfaces 5& and 5& may
be chosen so that lines parallel to the relative velocity
vector will intersect Si once for t= ti(bsi, bsi, r), and will
intersect Ss once for t=ts(bsi, bsi, r); and that on Si all
three particles are receding from each other, and on 52
all three particles are approaching each other.

"To be specihc, we may define the time of a collision to be the
time when the two particles, moving along the asymptotic
straight line paths would have been closest.

20 This, of course, is not the only possible representation of the
surface element. We may, for instance, construct two others
based on the pairs 23, 21 and 31, 32.

On 52, all 5 operators and products of S operators
become unity, and the +2 in Eq. (17) represents their
net contribution. The remaining terms represent the
contribution from S~.

The second group of terms in Eq. (15) cannot, of
course, be represented as a difference of contributions
from 52 and 5&. We may, nevertheless, carry out first
the integration with respect to t keeping all other
variables fixed. The resulting expression will be a
function of r, bsi, b», and may then be combined with
the expression LEq. (16)$ in a single integral. We have

r(123)— dt S(12)Zsst 5(13)+5(23)$
8 E2

+LS(13))ZssLS(12)+S(23)j
+LS(23)gz,'LS(12)+S(13)j

Xf1( )1fi ( )2fi ( )3

Xdrdbsidbsidpsdps, (17)

where r(123) is the operator in curly brackets in Eq.
(16). The integration over dt is for fixed values of
r, bsi, bsi (and, of course, dpsdps), and the limits of
integration over r, bsi, bsi indicated by the subscript S
on the integral are over values of these variables for
which the corresponding line in configuration space
intersects Si and 52.

This expression LEq. (17)$ for Is is independent on
the choice of the region V in configuration space in
two ways: the integral with respect to t is limited by
ts and t, , and the integration over rbs4bsi is limited to
the projection of V onto the space of these variables.
Since we know, however, that the original expression
(I) for Is is independent of the choice of V, the depend-
ence of Eq. (17) on V must be only apparent. If we
could be assured that the integrand in the t integral
is different from zero only for small t, and that the
integrand of the remaining integrations is different
from zero only for small values of r, lb»l, and lb»l,
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we then could remove the limits of integration and the
apparent dependence on V. Neither statement is true
for the individual parts, but both are true for the total
integrand. In order to see this, it is convenient to Qlake
several rearrangements in the integrand in Eq. (17).
First we re-express the integrand in terms of U operators
(Ursell operators) dered below. If we replace 5(12),
5(13), etc , ev. erywhere in the time integral in Eq. (17)
by U(12)=5(12)—1, U(13)=5(13)—1, etc. , the change
in the time integral thereby produced can be compen-
sated by adding 25(12)+2S(23)+2S(13)—6 to r(123).
It is then easy to see that Eq. (17) can be written

1
I3——

&1

U( )U(P) — d~U( )~ 'U(P)
a&P t2

I p~ —pil I p3 —yil
Xf(1)f(2)f(3)

Xdrdb2idbgidy2dy3, (18)

U(123) =5(123)—5(12)—5(13)—5(23)+2 (19)

and n, P represent any one of the three pairs 12, 13, 23.
Secondly, we note that since 230 is simply d/dh, we

can integrate the time integrals by parts. %e have

d
dhU (n) U(p)—

dI,

=U( )U(p) dh —U(n) U(p) . (20)
tg

« —U() U(p)
rz&P t2 tA

Iy2
—1il Iya —yil

Xf(1)f(2)f(3)

Xdrdl3idlgidpndp3. (21)

As has been pointed out elsewhere, U(123) is different
from zero for large values of r, b3i, b2i for two types of
collision events, which have been called real and hypo-
thetical successive binary collisions. ' For a real succes-
sive binary collision (Fig. 1), particles 12 are aimed so
that they collide if their present paths are carried
backward in time to —t~~. Particle 3 is aimed to collide
with the continuation of the actua/ path of particle 1 at
some time —$3I' earlier than —f2~, for a hypothetical

Since U(a) U(p) is zero at t&, the first term in Eq. (20)
is simply U(n)U(P) evaluated on Si, which cancels
the product U{u) U(P) already appearing in Eq. (18).
%e have Anally

FIG. 2. Hypothetical successive binary collision.

dt —U(n) U(p) =
70+&

di' —U(u) U(p)

= U( ) U(p)

= U(~)«(P)~o,

binary collision (Fig. 2), particles 12 are aimed to
collide at —t2&, but particle 3 is aimed to collide vrith
the continuation of the motion of particle 1 uloeg u
hypothetical straight lime path at some time —t» earlier
than —t'ai. For the events of Fig. 1 and Fig. 2, U(123)
reduces to the product U{12)U(13). In general, for
any real or hypothetical successive binary collision,
U(123) reduces to U(n) U(P), where the a collision is
the latter and the p the earlier event. As long as the
three momenta and the collision parameter of the 0.
and p collisions are fixed, the time between collisions
can be varied at vrill without changing the value of
U(123) . Thus, the first term in the integrand in Eq. (21)
yields contributions for large values of r, I b» I, I

b2i I.
Ke turn now to the evaluation of the time integra1

terms in Eq. (21). Now (d/df)U(n) is different from
zero only when the particles of the pair cx are close
together. Otherwise U(n) is either zero or independent
of t. Thus, in order for a term of the second group in
Eq. (21) to be different from zero, r, b2i, b23 must have
such values that the pair o. are aimed to collide when
their paths are projected backwards in time. I,et us
suppose this takes place for values of t in an interval
(ro —8, 70+5). If the pair p is also aimed to collide at a
time in this interval, both operators in the time integral
depend on I and no reduction is possible. If, however,
this is not the case, U(P) is constant during the interval
(ro 8, ro+fi),—and we may write
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where in the last expression U(u) is evaluated at
so+8 )U(a) evaluated at so —5 is zero), or what is the
same thing, at ti. U(P) of course is evaluated in the
neighborhood of ro. For U(P)

~ „to be different from
zero, the pair P must be aimed so as to collide at some
time earlier than 7.p either actually or hypothetically.
If this is the case, its value for 7 p is equal to its value
for t&. The value of the time integral t Eq. (22)$ is zero
except for genuine triple collisions and successive
binary collisions in which n is the later, P the earlier
collision. For such a successive binary collision, the time
integral is equal to U(0) U(P) evaluated on the surface
Si. Note that the product U(n) U(P) is different from
zero for other events than successive bina, ry collisions,
but the time integral vanishes for these.

We see that the second group of terms in Eq. (21)
yields contributions for precisely the same dificult
events (successive binary collisions) as the first term.
The values of the erst term and the second group of
terms for these events are equal, and their net is zero.
We have proved therefore that contributions from
successive binary collisions are not really present in the
integrand of Eq. (21) Lor Eq. (17)j. The net contri-
bution from the time integrals comes only for genuine
triple collisions (i.e., for small values of r, ( bai (, ~

b2i (),
for a small range of t in the neighborhood of the time
of the genuine triple collision. Thus, we ma, y extend
the limits of integration of Eq. (21) to —~, ~ for t,
and for U(123) evaluated for an arbitrary distant and
indefinitely extended outgoing surface of configuration
space. We have, finally

1
I3———

2

00

U(123)—P dl —U(n) U(P)
a~P

Ip2 —pil

ipse

—pil
X drdbaidb2idpndpa. (23)

IV. THE HARD-SPHERE CASE

In the previous section, we have shown how the
three-body collision contribution to a modified Boltz-
mann equation for dense gases can be transformed to a
surface integral form tEq. (23)j which is analogous
to the well-known expression (II) for the binary colli-

' sion integral. The main significance of this form is that
the dynamics of three-body collisions enters into the
expression only through the asymptotic relationships
among the parameters of the approaching and receding
particles. The dynamics of binary collisions, however,

enters into Eq. (23) in a more complex way than in
expression (II) because the evaluation of the integral
terms in Eq. (23) involves the details of the binary
collision while the two particles are close together,
whereas. expression (II) involves only asymptotic rela-
tionships between approaching and receding particles.

In the case of the hard-sphere model, all collision
events are complexes of binary collisions of infinitesimal
duration, so that it should be possible to express Eq.
(23) completely in terms of the parameters of approach-
ing and receding pairs of particles. We shall not carry
out the reduction of U(123) to pairwise collisions. We
shall, however, show how, for the hard-sphere model,
the time integral in Eq. (23) can be carried out. In fact,
we have already pointed out that, except for cases in
which an n collision and P collision overlap in time, the
integral expression, Eq. (22), is different from zero
only for successive binary events in which the n collision
is prior to the P collision, and for such events it has the
value U(n)U(P). Since two binary collisions between
hard spheres cannot overlap in time, the later expression
is valid whenever the time integral is different from
zero. Thus we may write

1
EU(123)—2 U(~) U(P)3

2 u)P

Ipm
—pil lpa —»I

dr, dbaidb2idp2dpa

where the symbol n)P means that for any set of
collision parameters the sum is taken only over those
terms (usually one or none) for which the (real) a
collision is prior to the (real or hypothetical) P collision.
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