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Measurements were made of the ultrasonic shear wave attenuation in superconducting aluminum, using
99.999% pure single crystals with parallel faces in the L100), the L110], and the L1117directions. It was
found that the temperature dependence of the attenuation could be separated into two parts: a sharp de-
crease in attenuation very close to the transition temperature and a residual attenuation having a tempera-
ture dependence similar to that for the longitudinal waves. The method of adiabatic demagnetization was
used to lower the temperature to 0.3'K, and an extrapolated plot of the residual attenuation in this range
could be used to determine an eGective BCS energy gap. The fraction of the total attenuation represented by
the residual attenuation was found to be strongly temperature-dependent. Application of a magnetic field was
found to lower the transition temperature as would be expected. In fact, it was found that the method of
ultrasonic attenuation could be used to determine the critical fields accurately near the zero-6eld value,
where permeability measurements are dificult. A theory was developed to explain the behavior of the shear-
wave attenuation as a function of temperature. The formulation began with approximations which should be
valid in the London region and employed a self-consistent method for determining the dissipative forces on
the lattice. Suitable modi6cation extended the theory to cover the entire superconducting temperature
range. Using the theoretical results, it is possible to determine the parameters ~ and l, the electron relaxation
time and mean free path, for one orientation and frequency and then predict the correct results for other
frequencies at the same orientation. One thus obtains the correct frequency dependence for the total elec-
tronic attenuation. Some correlation was made between results for diRerent orientations.

INTRODUCTION

q ROM the very first observations of ultrasonic
attenuation in superconductors, it was recognized

that the decrease in attenuation as a function of
temperature must in some way reQect the decrease in
the number of "normal" electrons. However, the
observed drop is so abrupt that it could not be recon-
ciled with any other estimate of the temperature
dependence of the normal component of a two-Quid
model. According to the thermodynamic theory of
Gorter and Casimir, for instance, the density of normal
electrons is proportional to (T/T, )', while the observed
decrease in attenuation seemed to be nearly exponential.
In 1957 when the Bardeen, Cooper, Schrieffer' theory
of superconductivity (designated BCS) was presented,
the superconducting attenuation for compressional
waves with propagation vector q))l—' found an im-
mediate explanation. In this case the energy loss can
be calculated on the basis of electron-phonon scattering
and the result is

n,/n„= 2f(e) =2(exp(e(T)/kT)+1) —',
where s(T) is the temperature-dependent energy gap
of the BCS theory. Tsuneto' has shown that for
impurity-limited scattering the same functional form
of n,/n„as in Eq. (1) is valid for all wavelengths less
than those for which hv 2e(T).

Morse ef al. '4 found that the shear-wave attenuation
in superconductors could not be fit quite so easily by
the BCS function 2f(e). In polycrystalline tin at 27.5
Mc/sec the attenuation was found to drop extremely
rapidly just below' the transition temperature to about
50% of its initial value. This rapid fall was followed by
a more gradual decrease on lowering the temperature
which had the same temperature dependence as the
compressional attenuation Pand hence agreed with the
BCS function 2f(e)7. The motivation for the work
reported here was the need for a study of the relative
size of the discontinuity in aluminum as a possible
function of direction of propagation, direction of
polarization, and of q/, where q is the propagation
vector for the sound wave and I is the electron mean
free path.

This observed discontinuous behavior in the shear-
wave attenuation has led many people to assume that
there are two distinct types of interaction involved. In
1956 Holstein' attempted to explain the result in terms
of the shorting out of roughly that fraction of the
attenuation which is due to the thermal relaxation
of the electrons. In a private communication to Morse
in 1958, Holstein further pointed out that if, in addition
to a potential Vl which is electromagnetic in origin,
there is a second potential t/'2 which depends on the
local electron and ion con6gurations, then the latter
would be unaffected by the appearance of super-
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conductivity and would give a contribution to the total
attenuation which would depend only on the effective
density of normal electrons. This is similar to the
suggestion of Morse that perhaps the residual attenua-
tion is due to a shear-strain term which arises in a real
metal because of the complicated Fermi surface.

Recently, Pippard' has given a derivation of the
attenuation in a real metal. In addition to the electro-
magnetic forces, he considers the deformations of the
Fermi surface caused by strain, as well as the force due
to a relative velocity effect arising when an electron
travels between regions which move at different speeds.
Since Pippard's results are quite complicated, a more
simplified theoretical approach is indicated here. The
authors were led to consider the electromagnetic
attenuation close to the transition temperature and to
make certain reasonable approximations in this region.
Using a self-consistent dissipative force which includes
the reaction on the lattice of the momentum exchange
between the electrons and the impurities, a q/ depend-
ence was derived for the residual attenuation which
agrees remarkably well with experiment.

g Morse' has reported on some of the results of this
study elsewhere. However, the detailed results and
theoretical calculations herein have not been previously
published. Some recent work by others on this problem
will be discussed below.

EXPERIMENTAL TECHNIQUE

The attenuation of the ultrasonic wave as it passed
through the sample was measured by a standard pulse
technique such as has been discussed in many places. '—"
The electronic apparatus used in the course of these
experiments for the purpose of generating and displaying
ultrasonic pulses was developed by Truell and his
collaborators at the Metals Research Laboratory at
Brown University. " AC-cut quartz transducers with
fundamental frequencies of 5 and 10 Mcjsec were used
(supplied by Valpey Crystal Corporation, Holliston,
Massachusetts). The material used in these experiments
for making bonds was a high-viscosity (1 500 000
centistoke) Dow Corning silicon fluid.

Three single crystals of aluminum were used in these
studies. Most of the measurements were made in a
crystal grown by the Bridgman method from 99.999%
pure aluminum. It was shaped as a right cylinder with
axis along the L100$ direction; another set of parallel
faces were cut on the sides perpendicular to an equiv-

6 A. B.Pippard, in The Fermi Surface, edited by W. A. Harrison
and M. 3. Webb (John Wiley R Sons Inc., ¹vv York, 1960),
p. 224.' R. W. Morse, IBM J. Res. Develop. 6, 58 (1962).' W. P. Mason and H. J. McSkimin, J. Acoust. Soc. Am. 19,
4W (19&7).

'W. P. Mason and H. J. McSkimin, J. Appl. Phys. 19, 940
(1948).

"W. Roth, J. Appl. Phys. 19, 901 (1948)."H. J. McSkimin, J. Acoust. Soc. Am. 28, 484 (1956).
» 3. 3. Chick, G. P. Anderson and R. Truell, J. Acoust. Soc.

Arn. 82,y186 (1960).
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Fro. 1. A plot of experimental values for the ratios of super-
conducting to normal attenuation versus the reduced temperature
(T/2",). The orientation is [110,110j.

alent L110j direction. Other measurements were taken
in a less pure crystal with $100j faces and in a 99.9990'~
pure crystal with $1111faces.

The low temperatures required for the experiment
were obtained both by the evaporation of liquid
helium and by adiabatic demagnetization of a para-
magnetic salt. The transition temperature of aluminum
was measured to be 1.192'K. The lowest temperature
obtainable by pumping on the vapor phase of the
liquid helium was I.120'K. This temperature was
enough below the transition temperature to allow a
study of the rapid-fall region of the attenuation, plus
a part of the temperature region where the attenuation
falls gradually. However, this information tells nothing
about the total superconducting fall off of electronic
attenuation, nor does it tell much about a possible BCS
energy gap. For these purposes the temperature must
be reduced to at least 0.3T,. A single shot demagneti-
zation system was used to reach this temperature.

Because the complete system necessary for de-
magnetization cooling is rather large and cumbersome,
and because a great deal of helium is wasted in cooling
the apparatus, it was decided to design a simple,
efficient Dewar system for the highly controlled
measurements close to the transition temperature.
Thus the entire temperature range was covered in two
stages w:ith some overlap measurements made on the
demagnetization runs. The pumping system was capable
of lowering the vapor pressure of the liquid helium to
about 300 p. The temperature of the sample in the
region about the transition temperature was measured
in two ways. While the system was maintained in
equilibrium at some temperature by controlling the
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pumping rate, the vapor pressure was read with a
Stokes portable McLeon gauge with the Flosdorf
modiGcation. The temperature could be obtained from
the tables of liquid-helium vapor pressure versus
temperature which were compiled by J. R. Clement at
the Naval Research Laboratory, Washington, D. C.
At the same time that the vapor pressure was read
the resistance of a Speer carbon resistor was measured
(this had a room temperature resistance of 4700). The
resistance was calibrated as a function of temperature,
and further resistance measurements vrere useful for
accurate measurement of very small temperature
changes.

Since it was desired to eliminate the magnetic field
of the earth at the sample, it was necessary to design
a pair of Helmholtz coils which could be mounted about
the Dewars and rotated to the proper angle. In order
to apply a controlled magnetic field on the sample and
observe its effect on the transition as seen by the
attenuation technique, a solenoid vras designed vrhich
could be slipped directly over the nitrogen Devrar and
held in place by a ring stand.
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Fro. 2. A plot of experimental (o,/n„) versus (T/T, )
for the orientation L100, 110j.

SUMMARY OF EXPERIMENTAL RESULTS

Since Morse and Bohm4 had observed what appeared
to be a discontinuity in the shear-wave attenuation
in aluminum at the superconducting transition, the
Grst studies undertook to examine this discontinuity
as a function of such parameters as direction of propa-
gation, polarization, frequency, and sample purity.
The earlier measurements had been with a sample of
relatively short mean free path. Therefore, the first
of this series of measurements were made in a Bridgman

FIG. 3. A plot of experimental (n,/o„) versus (T/T, )
for the orientation &110, 100j.

L100j crystal grown from aluminum of 99.999%
purity. It was hoped that this sample might prove to
have a signiGcantly longer mean free path than the
one used by Morse and Bohm and that any q/ depend-
ence of the discontinuity could be determined.

The first observation was for directions of propagation
and polarization the same as those of Morse and Bohm.
It vras soon found that there was no discontinuity if
the magnetic Geld of the earth were canceled. Although
there was a rapid fall in attenuation in the temperature
range close to the transition point, the slope vras finite
and the variation could be follovred point by point.
At a few thousandths of a degree belovr the transition
there was a rapid change in slope and the remaining
change in attenuation with temperature was much more
gradual. For example, at 25 Mc/sec there was a
decrease of 5 dB between 1.190 and 1.185'K, but there
was a decrease of only 2 dB between 1.185 and, 1.155'K.
A summary of such measurements is contained in Figs.
1 through 3, where the fractional attenuation is plotted
versus the reduced temperature. (The determination
of the total attenuation used in making such plots is
discussed below. ) When the attenuation was measured
without canceling the magnetic Geld of the earth, the
transition temperature vras shifted downward. Since
this narrovred the temperature range of the rapid-fall
region, the change in attenuation necessary to drop
to the original curve vras increased. The net effect vras

to make the change appear more like a discontinuity.
Nevertheless, the change could still be follovred point
by point if care was taken to allovr the sample to come
to equilibrium vrith the bath.
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Fro. 4. A plot of experimental (o,/o„) versus (T/T, )
over the total range for the orientation L100, 010$.

The most striking difference between these data
and that obtained by Morse and Bohm (for short ql)
is the strong frequency dependence of the curves for a
given propagation and polarization orientation. They
found very little dependence of n, /n„on frequency for
the short q/ case. In the present case a,/n„changes from
0.750 to 0.520 at T/T, =0.9700 as the frequency is
increased from 16 to 46 Mc/sec for the case, where tI
is in the t 110) direction and s is in the L100) direction.
We also 6nd a difference in the frequency variation of
n, /o. „ for different propagation and polarization
directions. The frequency dependence seems to be
strongest in the case for tI in the $100) and s in the
$110) directions, while the dependence seems to be
weakest for tI in the L110)and s in the L110)directions.
This latter case was the one examined by Morse and
Bohm.

A discussion of these data in the light of theoretical
work is given in a later section and so further discussion
of these aspects of the data will be deferred to that
section.

The dependence of shear-wave attenuation on
temperature was obtained below 1.1'K by the adiabatic-
demagnetization technique mentioned above. For each
orientation of propagation vector and polarization
several demagnetization runs were made in order to
increase the density of experimental points. A typical
plot of the temperature variation of attenuation is given
in Fig. 4. It is evident from Fig. 4 that the lowest
temperatures reached for these data were about 0.35'K.
On some of the runs it was possible to go to slightly
lower temperatures, the lowest value being 0.29'K.
The points near T, in Fig. 4 are from the studies made
in the smaller cryostat.

The temperatures determined experimentally below
1'K were found by extrapolating the susceptibility of
the paramagnetic salt and by an extrapolation of the
resistance of the Speer resistor.

Deviations of the real temperature from the extrapo-
lated one can significantly alter the apparent tempera-
ture variation of the attenuation. Since this problem
only arose at the lowest temperatures and because

attenuation changes below 0.5'K are small, it is not
expected that the total decrease in attenuation from
the normal state should be seriously in error by tem-
perature errors. However, if one attempts to compare
the data with the BCS temperature variation, in-
accuracy in temperature compounds a problem which
is difticult at best. The usual procedure is to make a
plot of in(n, /n„) versus T,/T. Below T=0.5T, the
BCS energy gap is approximately constant and
the above plot should be a straight line with slope
—es(0)/)sT, Inac. curacies in attenuation measurements
of 0.1 dB become quite significant as 7~0 and the
energy gap is determined by a fitting process. When
systematic errors in temperature are introduced, it is
seen at once that the apparent slope will be quite
different and the empirical energy gap in error.

Bearing these difficulties in mind we carried out the
procedure for determining the energy gap. Since it was
hoped that errors in temperature would be systematic
and would also be consistent from one run to the next,
it was felt that any large differences in energy gap
with direction would show up even though the actual
values might not be very reliable. The following is a
table of the results:

60

$100$ (1107 (1.2%0.2)kT,
L110$ L010j (1.7&0.2)kT,
L110$ L110j (1.2+0.2)k T.

Because of the difficulties in absolute measurement
outlined above, the values of eo must be regarded as
only suggestive. It is felt that the probable error of
~0.2kT is realistic.

Steinberg" '4 has demonstrated by two methods that
if a magnetic fieM is applied perpendicular to both the
direction of propagation and the direction of polari-
zation of an ultrasonic shear wave in a metal with
ql(&1 the attenuation should decrease with increasing
field strength according to

(2)

where co,=eH/rls*c is the cyclotron frequency. Thus,
an estimate of the total electronic attenuation could be
obtained by fitting the experimental variation of
attenuation versus magnetic Geld strength. A com-
parison of the results for the total electronic attenuation
obtained from the magnetic data with those from the
superconducting data shows that they are consistent
within about 3%. In each case the value from the
magnetic variation was larger than that from the
superconducting variation. This fact is interpreted to
stem from a systematic error in the temperature
calibration as discussed above. In later analysis, the
values used for the total electronic attenuation will
be those obtained from the magnetic data. Their close

"M. S. Steinberg, Phys. Rev. 110, 772 (1958).' M. S. Steinberg, Phys. Rev. 111,425 (j.958).
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agreement with the temperature data suggests that
errors would not be more than a few percent and so
would not change signi6cantly the results of the analysis
which will follow.

The transition temperature, as viewed by ultrasonic
attenuation, is shifted to lower values when a magnetic
6eld is applied. This effect should reQect the usual
dependence on temperature of the critical field, " i.e.,

H, (T)=Hp(1 —( T/ T)'$, (3)

where Lto is the critical field at absolute zero. In Fig. 5
the current in the solenoid (described in Sec. 1) is
plotted versus the square of the observed transition
temperature for q in the $110j direction, s in the t 100j
direction, and H parallel to q. The magnetic Geld was
linear in the current and for the current range from
0.1 to 1.0 A the observed 6eld agreed with the calculated
value of 13.9 G/A. Assuming Eq. (3) to be valid, the
extrapolated value of II, is 114 G. Chanin and Caplan"
have recently studied the temperature dependence of
the critical 6eld in aluminum in the temperature range
0.28'K to a measured transition temperature of
1.175&0.001'K. The extrapolated critical 6eld at
absolute zero was 104.0~0.5 Q. While it is not sur-
prising that the extrapolation of the parabolic tempera-
ture dependence from the small 6eld limit gives a
different result, refinements on the use of the ultra-
sonic technique might result in an improved method for
studying the critical field near T,. Cochran et aL'~

measured the temperature dependence of H, and found
a l', of 1.196'K and extrapolated a zero temperature
of Il, of 99~1 G. The measured values of T, in the
ultrasonic experiments ranged from 1.187 to 1.192'K,
lying between the values of T, quoted above. It should
be emphasized that the measurement of small changes

l.200,
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in temperature by means of the resistance thermometer
are much more accurate than the absolute determination
of T,. It is estimated that the values of T/T, plotted in
Figs. 1, 2, and 3 are accurate to &0.0002.

ATTENUATION IN THE NORMAL STATE

Before attempting a theoretical explanation of the
experimental results discussed above, it will be necessary
to consider the methods for calculating the ultrasonic
attenuation in both normal and superconducting metals.
The usual procedure is to start with the Boltzmann
transport equation and solve for the distribution
function f in configuration space in the presence of a
plane sound wave with propagation vector q and
frequency or. The collision drag mechanism causes the
electrons to relax to a Fermi distribution centered
about a local lattice velocity (see Holsteins). A velocity
and coordinate independent relaxation time is assumed
for simplicity. At this point the electron current can be
calculated in terms of local fields, E, from the integral
relation

j,= —e vQdv,

where v is the electron velocity, q =f fp, and—fp is the
equilibrium electron distribution. An additional relation
between current and 6elds is obtained from Maxwell's
equations and the condition of quasineutrality (see
Bardeen's). Both j, and 8 are uniquely determined in
terms of the fundamental parameters of the electron
distribution and the sound 6eld. In the case of normal
metals and compressional waves in superconductors
the reaction of the collision drag mechanism on the
lattice, through the strong coupling. of the scattering
centers to the lattice, is found to be a negligible e8ect
in calculating the attenuation. In this case the at-
tenuation e is just the ratio of the dissipated power,
srRe(j,* 8) to the product of the energy density of
the sound Geld and the sound velocity. The normal
metal, electronic attenuation for a compressional wave
Is

Esss2 ' (ql)' tan '(ql)

c,ipr 3 (q/) —tan —'(q/)

.400—
2

LATED Tc )

l, l87oK
and a sheai wave ls

.200—

1.200 l.500
(Tj ( K)

}.400

FIG. 5. A plot of critical Geld versus the square of the
transition temperature for L110, 100j.

where

Nsss2
—' 1—g(ql)

Ay' =
c.spr g(ql)

g(qf) = (L(q&)'+1](ql) ' t» '(ql) —'&
2 (ql)'

(6)

"F. London, Super Jluufs (Dover Publications, Inc. , New York,
1961), Vol. I.

~' G. Chanin and S. Caplan, Bull. Am. Phys. Soc. 9, 30 (1964}.
'7 J. F. Cochran and D. E. Mapother, Phys. Rev. 111, 132

(1958).

/ is the electron mean free path, Em is the electron
mass density, p is the lattice mass density, c,~ and c,2

are the respective sound velocities, and 7. is the relaxa-

"J.Bardeen, Phys. Rev. 52, 688 (1937).
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tion time. These results are in agreement with the
one-electron calculation of Pippard. "
ATTENUATION IN THE SUPERCONDUCTING STATE

The first observations of the superconducting state
showed that it is unique in its electrical and magnetic
properties. It was found that the dc resist. ance" within
a superconductor is zero and that the magnetic Qux"
is zero. In order to account for the electromagnetic
properties London et al."proposed a phenonienological
theory in which it was postulated that the super-
conductor contained two types of electrons. There
would be a density of superconducting electrons which
would satisfy

f,=A(dj, /dt)

with A—:m/1Ve', to account for zero resistance, and

curlAj, = —(1/c) H

to account for the exclusion of the magnetic field. The
normal electrons were assumed to have a Fermi energy
distribution and obey the Maxwell equations as in the
normal metal. In order to explain penetration phe-
nomena, Pippard" proposed a nonlocal modification
to the London equations in which the fields are effective
over a coherence distance. There is a limiting case of
the BCS theory in which the London equations are
valid; however, in general the energy-gap formulation
leads to a Pippard type coherence.

If the electron mean free path is sufficiently long
(ql))1), then the compressional wave attenuation can
be found by considering electron-phonon collisions. The
result is that given in Eq. (1).To calculate the attenua-
tion in an ideal metal for both compressional and sheal
waves with arbitrary mean free path, it is necessary to
go to a density-matrix formulation. Bardeen and
Mattis" used such a procedure to calculate the complex
conductivity of a transverse electromagnetic field in a
superconductor with scattering centers present. Tsuneto'
calculated the conductivities for both longitudinal and
transverse fields taking into account the fact that the
scattering centers move with the lattice and the elec-
trons are dragged along. For the longit. udinal case with
ha&«o(T), but l arbitrary, Tsuneto found that when
the scattering is impurity limited, the ratio of super-
conducting to normal attenuation for arbitrary mean
free path is 2f (o) just as in the limit of q/&)1.

Exact expressions for the transverse attenuation were
found by Tsuneto in two limiting cases: A&u&2oo(T)
&&'&gVo,' and hqVo«oo(T) with l= oo. In both instances
the attenuation is predicted to fall rapidly to zero near

' A. B. Pippard, Phil. Mag. 46, 1104 (1955).' H. K. Onnes, Comm. Phys. Lab. Univ. Leiden, Nos. 119,
120, 122 (unpublished).

"W. Meissner and R. Ochenfeld, Naturwiss. 21, 787 (1933}.
"H. London and F, London, Proc. Roy. Soc. (London) A149,

'?1 (1935).
"A. B. Pippard, Proc. Roy. Soc. (London) A216, 54'? (1953).
'4 J. Bardeen and C. D. Mattis, Phys. Rev. 111, 412 (1958).

the transition temperature. It should be emphasized
that Tsuneto speci6cally notes that his expressions for
the attenuation are derived by neglecting any dissi-
pation arising from the collision-drag effect. In other
words, the fact that there is a momentum change in
the impurity system when the electrons are scattered
preferentially has been neglected. In a later section
it will be shown that the inclusion of collision drag is
essential for the treatment of a shear wave in a super-
conductor, although it is of no importance for longi-
tudinal waves.

THEORY OP SHEAR-WAVE ATTENUATION NEAR T,

Even though we have seen that an approach using
the Boltzmann transport equation is not fruitful for an
exact solution of the attenuation in a superconductor,
let us now consider what approximations to this treat-
ment might be useful in a temperature range close to
T,. The importance of this region is suggested by the
experimental fact that the rapid-fall region for trans-
verse waves occurs within a relative temperature change
AT/T, of about 0.005. Since the ratio of the energy
gap to kT, is, to first order in hT//T„

oo(0) AT 'I'
=3.06

we see that the energy gap is only about (0.2)kT when
the rapid-fall portion of the attenuation is taken out.

For electromagnetic radiation on a superconductor
the London region corresponds to approximately the
same temperature range. For transverse sound waves
in a superconductor a reasonable assumption for the
criterion for the validity of the London equation would
be go&(g ', where (o is the coherence length. This
condition is approximately realized for the frequencies
considered here. It is interesting to note the results
obtained using the Boltzmann transport equation and
assuming the London two-Quid model suitably modified
by the BCS theory.

Consequently, we shall follow the procedure of
Holstein' in the London region, i.e. :

(1) Derive expressions for the longitudinal and
transverse normal currents.

(2) Use the London equations to derive the super-
currents.

(3) Set up the dissipative force in terms not only of
the irreversible scattering of the electrons, but also of
the reaction of the scattering centers to electron-
impurity collisions.

(4) Find that one is led to the prediction n,/n.„
=g(2f(o)j at temperatures for which the fields are
electively screened by the superconducting currents,
where g= g(q/) is the function defined in Eq. (6).

The following is a list of the specific assumptions
to be made initially: Rather than use the density
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matrix formulation, we shall follow an approach similar
to the Boltzmann transport equation. Instead of using
the excitation distribution function, we shall assume
a Fermi distribution for normal electrons to be centered
about the local lattice velocity. Rather than use the
temperature and energy dependent relaxation time
for excitations,

(6 2+ 622)1/2

T =T

we shall assume the constant impurity scattering
relaxation time for normal electrons v-. Finally, rather
than use the complete BCS equation for the super-
conducting currents, we shall assume that we are
dealing with the London region.

The differential equation which will be used for the
distribution function is simply that which was solved
above for normal metals with the single modification
that the density of electrons is now' E„, the density of
normal electrons. The normal current is again obtained
from Eq. (4).

In order to motivate our treatment of the attenuation
in the superconducting state, let us consider the forces
acting on the lattice. The sum of the real parts of these
forces constitutes the dissipative force which gives rise
to the attenuation. The contribution of the local
electric 6eld to the force density is equal to the force,
e8, acting on each ion multiplied by the ion density,
E; i.e.,

F,=Res.

F1 is the reaction on the lattice system to the time rate
of change of electromagnetic momentum. Obviously,
this is just the Lorentz force on the normal electrons.
It follows that the real part of X„e8 is the dissipative
force on the lattice arising from the irreversible scatter-
ing of the electrons as they are dragged along with the
local lattice current. It is obvious that the attenuation
derived from this force alone is identical to that found
by considering the energy dissipation term (j* 8)
mentioned previously. There is, however, an additional
force on the lattice which must be included in the
interest of self-consistency. The collision-drag assump-
tion required that the electrons be scattered into a
Fermi distribution centered about the local lattice
velocity. Considering for the moment only impurity
scattering, we see that as the electrons are given a
change in mechanical momentum (d/d/)(1V m21) the
impurities suffer an equal but opposite change. Now
due to the strong coupling between the lattice and
impurity systems, this change in momentum should be
included in the enumeration of forces on the lattice.
If the electrons followed the lattice exactly their
momentum at any time t would be E @su. Actually
they are scattered from the rnornentum

—(m/e)Lj (~)3

F2———(m/er) Lj„+X„euj. (13)

The total force includes the electrical force and is

F~——F1+F2——Xe8+ (m/er) ( j„——X„eu) . (14)

At this point it is convenient to show how one obtains
the attenuation from the dissipative force. Below we
show that

Re(Fd)= —u LK(me 2r, (u,c,) j,
where K is a function of the basic parameters of the
problem, i.e., the electronic parameters, and the
frequency and velocity of the sound wave. The equation
for an acoustic wave in a medium with a dissipative
force is

85)
„2 +

~V
(16)

where S~ is the amplitude of the acoustic wave, and the|is the direction of the displacement. From the plane-
wave approximation

—~2$r —— c,rSr —(k/p) —( 2')Sr, —

therefore, k'= k22 ik2E/c, p, —where k2 ——+/c, . The
amplitude attenuation is given by the imaginary part
of k. By the very nature of the problem, the dispersive
term is small in magnitude compared to ko. Thus to
first order in 1(k2E/c, p), the energy attenuation, which
is twice the amplitude attenuation, is

n= E/c, p.

We now can write the attenuation given the reactive
force on the lattice.

In view of the assulnptions stated earlier, the total
current J at any point in the crystal will be given by
the sum of the lattice current Ãeu, the normal electron
currents +j„and the superconducting current +j,.
Using the knowledge of j„and j„along with Maxwell's
equations, we shall show that it is possible to arrive
at two equations in the variables 8~ and j,~ for both
compressional and shear displacements. Thus, our
procedure will be to solve for g~ in terms of the basic
parameters and then determine e,.

We shall now specify the indices "i"and separate the
two modes of vibration. Consider again a wave propa-
gated along the x axis such that the time and space
variation is e'&~ "'), and take the y direction to be the
direction of the transverse vibrations of the ions. We
have exactly the same reduced Maxwell's equations

toward Smu with the relaxation time r. (Note that
u and j„are both either longitudinal or transverse
simultaneously. ) Thus the average change in momentum
per unit time evaluated at time t is

r 'I E„mu+ (m/e)j„$.

As a result the reaction experienced by the lattice is
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that we found in the section on Attenuation in the
Normal State. From the London equations

I.000

E,e'By
j8'II

.800

S,e'8
jss (2o)

.600

Let us consider the attenuation of a transverse wave,
where u= N„ij. In this case

I I I I I I I I I j I I I I I I I I I t I I I I I I I I I I I I I I I I I

0 l.00 2,00 3.00

4+i c, '
8„= — Neu„Neg (—u„e8„r/—m)—

E,e'By

iGOm

(21)
Fi lly

FIG. 6. The function g(ql) versus q/

j„„=)V„eg u„—
e8„r)

(22)

Let us drop the y subscripts for the moment. Then
solving for lV„e8 we find and

(N„) N, 1 sV„
x I lg

—— +(1—g)
N (iver) E

(2&)

E„eh=—
lVn N

gE

Num (1—g)
Re(Fs) =—— 1 j N„s)N„

11——
g I g

(1—g)k lV EN

The term

LV, I c ' o)ns

x —
g
—— —— . (23)S 3T i(uy c, 4me'r3Ti

(
c Mf8

c, 4vre'r3'i

Consequently we find that the relative attenuation is
given by

has been estimated in the discussions of the shear
wave attenuation in a normal metal. ' We now see that
the condition of quasineutrality for transverse vibrations
of the ions remains valid in the superconducting state
with the same limits on frequency, i.e., f&10' sec '
and so the same approximation can be made. Thus we
get:

N„mu t'N„
N„e8= — 1—

I

- — g
r kN

-tN. )N, q 1 --'
xl g—

I

—'I
—EN ENJiur

X g — g, 29

where we have used the fact that

Nm (1—g)
(30)

For the temperature variation of the density of
normal electrons close to the transition temperature
we shall consider first that predicted by the BCS theory
for the "London region, " i.e.,

""

The force Ii 2 can be written

m-
t 8ry

Fs———Ngl u —e—
I

—N u
mi

and so

N. ~ Num-N„N. —

g I+ — g—
N i

&V, ~2
sV lV

(31)

(2~) The function g(q/) is a monotonic decreasing function
of ql over the domain (0,+ co) with range (+1)g) 0)
as shown in Fig. 6. Therefore, 0&glV„/N&1. The term

~ (26) "L. M. Khalatnikov and A. A. Abrikosov, Advances in
Plzysz'cs (Taylor R Francis, Ltd. , London, 1959), Vol. 8, p. 45.
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L(Ã,/N)(ei7) ')' will dominate the denominator when
JV,/1V becomes somewhat larger than e&r. The angular
frequency ei is about 10' rad/sec for the experimental
case, and 7- is expected to be on the order of 10 "sec;
thus eir 10 s. If E,/1V~10 s, the first term of n, /n„ is
greatly reduced. This would occur for 2(T,—T)/T,
~10 ' or T/T, =0.9950. A plot of the reduced attenua-
tion versus temperature (Fig. 7) shows that in a very
small increment in T/T, the first term becomes in-
signi6cant compared to g(X„/JV). We notice now that
this quite simple approach with the inclusion of the
collision-drag term has qualitatively reproduced the
essential feature of our experimental data. Just below
the transition temperature there is a region in which
the attenuation drops quite rapidly down to some
fraction of the normal-state value. Further decreasing
of the temperature causes a much more gradual decrease
in attenuation. We see also that the residual attenua-
tion, or that fraction remaining after the rapid decrease,
has a frequency dependence which is predominantly
determined by the factor g(q/). This behavior is
consistent with the experimental work where it was
noticed that increasing the frequency tended to decrease
the residual attenuation.

As pointed out earlier, the correct expression for the
attenuation of a longitudinal wave in a BCS super-
conductor is u,/n„=2f(es) no matter what ql. Com-
paring this fact with the result from the approximate
treatment given above, it seems that 2f(e) represents
the temperature variation of the "normal" electron
density of a superconductor insofar as ultrasonic
attenuation is concerned. The experimental evidence
cited for shear-wave attenuation in superconducting
tin and the present work in aluminum both seem to
indicate that the residual attenuation is proportional
to the function 2f(e). If a plot is made of ln(n, /n„)
versus T,/T a limiting value of es(T=O) can be deter-
mined. If, in addition, a plot of 1nf2f(e)) is made using
the BCS prediction for the temperature variation of
e(T), it can be seen that the curve for the shear-wave
attenuation lies below that for the BCS function by a
constant amount, except for the region very close to
the transition. According to our theory this constant
should be lng. On the basis of the experimental obser-
vations and the equivalence of the terms iV„/X and

2 f(e) for longitudinal attenuation, we are led to make a
plausible modihcation to the theory by substituting

2 f(e) for JV „/JV in Eq. (29). This leads to the result

I.OO
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l t
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FIG. 'l. A plot of functions associated with
the approximate theory.

simple Fermi function and because the electromagnetic
interaction is modified in the superconductor. In the
London region of a BCS superconductor the form of the
superconducting currents should not have to be modi6ed
from the London equations provided that the BCS
prediction of 1V,/X is used Li.e., in Eq. (32) we do not
substitute 1—2f(e) for X,/cV). In general the tempera-
ture range in which the London equations are valid
varies from metal to metal. However, the range is
limited on the higher temperature side by Ae&«es(T)
and on the lower temperature side by es(T)«kT."
Thus, for a metal in which this range coincides with
the lower part of the rapid-fall region, Eq. (32) might
be expected to be a good representation of the actual
situation, and the width of the rapid-fall region should
give a measure cur.

Recently Levy" has given a calculation of the shear-
wave attenuation in a superconductor for the limit
q/(&1 or g~1. He found that the collision-drag eGect
leads to an attenuation n, =a L2f(e)j. Combining this
result with the above calculation leads to a completely
theoretical justification for the form of Eq. (32).

We shall now proceed to a more detailed comparison
of Eq. (32) with the experimental results for aluminum.

(1—g) '(1—2f(e)f)'(2f(e))'f
+2'(e) .

L2f(e)gZ+(1/g)L(& /&) (1/~ ))'
(32)

COMPARISON OF DATA WITH THEORY

The principal results of the last section which we
shall use in an analysis of the experimental data are
as follows:

The preceding modification has been chosen em-
pirically and by analogy with the longitudinal wave.
Theoretically, we expect some modi6cation of the
normal electron density from the simple two-Quid
model because the distribution of excitations is not a

(1) The width of the rapidly falling portion of the
shear-wave attenuation is determined by the parameter

s' M. I.evy, Phys. Rev. 131, 1497 (1963l.
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Fro. 8. A family of theoretical (n, /n„) versus (T/T, ) plots for
fixed v. and v0 but diferent frequencies.

(2) The residual attenuation has a q/ dependence
given by g(q/).

(3) lt has been inferred from data in other metals
that after the initial rapid fall the temperature variation
is the same as the BCS prediction, so well shall assume
that the residual attenuation is given by gg2 f(e)j.
The 6rst two points will be used to determine whether
or not the results are mutually consistent, and the third
point will be checked insofar as possible.

In interpreting the data one needs to have some
knowledge of the relationship between 7 and /. In the
ease of thermal scattering, for want of a better assump-
tion, an isotropic 7 often is assumed. Since

Before a detailed analysis of the data let us review
exactly the theoretical predictions for the behavior
of rs,/rr„as a function of frequency and the electron-
lattice parameters. Figure 8 summarized these for
certain cases which reasonably could be expected to
occur. The quantities q/ and err are 6xed by any
combination of three parameters such as cp, 1/c„and r,
or &o, 1/c„and 1/ep, or, perhaps, co, (vp/c, ), and r. The
last combination was used in stipulating the conditions
for each calculation. Fixing c, at 3&& 10' cm/sec, vp was
allowed to assume the values 0.5&&10' cm/sec, 3&&10'
cm/sec and 7)&10s cm/sec; r was varied through the
three orders of magnitude 3&&10 " sec, 3&(10 " sec,
and 3&(10 " sec. The frequency was varied from 15
to 150 Mc/sec in steps of 15 Mc/sec. All of the results
shown in Fig. 8 are for ep(0) =1.76kT„ the standard
BCS value. Different energy gaps give results which
diGer only in that the curves will lie uniformly above
or below those for the standard gap.

The results can be summarized as follows: The effect
of increasing the frequency is simply to decrease the
residual attenuation. The e6ects of increasing r are
twofold: The width of the rapidly falling region is
increased; and because of the fact that q/ can be
written as (vp/c. )ppr, g decreases with increasing r
and with it the residual attenuation. The effect of
increasing ep is to decrease the residual attenuation
because it gives a larger qE.

Let us now compare the calculations with experiment.
The Grst step is to select a particular direction of
propagation and polarization and. Gt one frequency
curve, obtaining g and ppr Using the .fact that q/=co/c„
we should then be able to predict what g should be for
each of the other frequencies in that particular family
of curves. Note that at temperatures sufficiently far

l.ooo

v=kp ', (33)

r '= $(2/m*)Er—]&l
—'(r) (34)

the assumption gives l the directional dependence of the
Fermi velocity. In the case at hand, however, we are
dealing with impurity limited scattering in a single
crystal. For such a situation Wilson" has derived an
expression for 7- as a limiting case of the relaxation time
in an alloy. The result is

.900—

.800—

.700—

.600—
a[e

q~ [loo]
s-+tloo]

+—
I

+/
/+

/

/r
as++

I l. 5 Mc/Sac

which can be written in exactly the same form as
Eq. (33). Here 7 is not necessarily isotropic since l(r)
and ep(r) do not necessarily have the same directional
dependence. Admittedly there will be no difference in
the 6tting of the experimental curves as to which of the
above attitudes is adopted since Eqs. (33) and (34)
are formally identical. However, it does simplify the
discussion for us to make our arialysis using the second
viewpoint.

'7 A. H. Wilson, The Theory of Metals E,'Cambridge University
Press, Cambridge, England, 1953), 2nd ed.
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FIG. 9. A 6t of the experimental data for (a,/n„) versus (T/I', )
in the $100, 100$ orientation. g and 2 /(s) were selected for f=26.5
Mc/sec and the other g's were predicted.
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FIG. 10. A Gt of the experimental data for (n./o„) versus
(7'/7;) in the (110, 100j direction.

below the transition temperature the attenuation is
just gL2f(e)). Thus the lower part of the curves can
be matched by finding the combination of g and
L2f(e)) which will correctly fit the other curves in the
family at a given temperature. It might seem at erst
glance that two adjustable functions such as g and
[2f(e)] would allow many combinations to give
reasonable agreement with the data. However, we shall
see that there is a unique L2f(e)) and only one (ee/c, )
which will fit each family of curves. Furthermore, we
shall see that the results for diferent orientations are
quite consistent.

Consider the case L100, 110), where the notation
implies that the propagation is in the $100) direction
and the polarization is in the $110)direction. We shall
take the 25 Mc/sec curve and assume that T/T,
=0.9750 is suKciently low so that oI,/rr =gtt2f(e)).
Let us first take $2f(e)) to be that for which the energy
gap e(0) = 1.2k Z', is that obtained from the total
superconducting fall-off data. In this case 2f(e) =0.850
for Z'/T, = 0.9750. Using this value we f'md g(25) = 0.529.
This would predict that g(15)= 0.'/70 and g(35)= 0.410,
The notation g (15),n(15), etc. , means that the quantity
applies to the frequency (in Mc/sec) shown in the
parentheses. These curves along with the experimental
points are plotted in Fig. 9. It can be seen that the
agreement is quite good. In view of the uncertainty of
c(0) from our measurements we will consider this
selection for L2f(e)) to be partly good luck.

Having now made a determination of the parameter

g only from the residual attenuation viewpoint, one
could argue reasonably that there are many functions
of ql which would give approximately the same results
in this range. Recall, however, that g also occurs in the
total attenuation. Consequently, it would be reassuring
if we could show that the g values derived above are

where E is independent of the frequency. This means
that if we solve for E in terms of n(15) and g(15), we
can predict rr(25) and n(35) Th.e results compare with
the observed values as follows:

0. predicted

n(25) 17.6 dB/cm
n(35) 28.3 dB/cm

cx observed

17.8 dB/cm
28.0 dB/cm

Error

—1.1%
+1.1%

This agreement seems to indicate that the g values are
quite precisely determined.

Since all the empirical Gttings of g seemed to be
consistent for both the residual attenuation and the
total fall-off, we were led to derive a relation which
makes finding g from the data a great deal easier and
which makes no assumptions about L2f(e)) except that
it is frequency independent. For two frequencies in the
same family we can write

~i=&(1—gi)/gi; ~s=&(1—gs)/gs (36)

Let a= ni/ns and g&
——

)hagi. Since at any suKciently low

temperature L (n, /n„) i)/L (n,/n )s)= (g,/gs),

it follows that

As Any
x=

As An 9

(37)

Using Eq. (49) we see that there is a unique gap such
that 2f(e) fits the experimental family of curves.
Curves predicted from Eq. (38) for $110, 100) are com-
pared with data in Fig. 10 as indicated by the solid
curves. The L2f(e)) value was found from the 25
Mc/sec curve.

Thus far we have been concerned with a family of
curves for a single orientation at a time. If we could fit
one member of a family and then predict not only the

TABLE I. Electronic and ultrasonic parameters
estimated from data.

T V0

CO X10+3 X10+» X10-8
g s (Mc/sec) g g (cm) (sec) (cm/sec)

L110] L010] 16.5 1.03 0.850 3.88 2.8 1.38
27.5 1.71 0.712
35.9 2.23 0.610
46.5 2.89 0.540

t 1007 (010$ 11.5 1.38 0.770 6.50
25.0 3.00 0.529
36.0 4.32 0.410

tiioj f110) 15.0 0.71 0.917 2.56
25.5 1.18 0.818
35.0 1.70 0.715

7.0

2.0

0.93

1,28

precisely those which give the correct frequency
dependence of the total attenuation. We can write

(35)
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other members of that particular family but also the

g values for the other orientations, it would greatly
strengthen the belief that g(g/) gives the correct g/

dependence. There is one possibility for carrying out
such a calculation. Steinberg's attenuation variation
depends on the cyclotron frequency for an electron
orbit in the plane defined by the propagation and
polarization directions. The product of the cyclotron
frequency and the relaxation time is

Let

eB) / e/

cu,r=
~

—=— 8'.
m*c) vs (m*vs) c

el

(39)

/ 1// 2 /1//2 ~ (40)

The actual Fermi surface in aluminum has been
worked out in great detail by Heine" and Harrison"
using a free electron model and then suitably modifying
it to fit the results of the de Haas —van Alphen effect,
cyclotron resonance and the anomalous skin effect.
Roberts" has studied the surface further using the
magnetoacoustic technique mentioned in the introduc-
tion. The results seem to indicate that the first zone is
filled, the second zone has pockets of holes, and the
third and fourth zones contain pockets of electrons.
The shapes of these Fermi surface sheets are fairly
well known.

However, at the present time it is not known exactly
what group of electrons participates in the shear
interaction, and so no exact statement can be made
regarding the m*vs in Eq. (39). However, for small
enough q one would expect that variations in m*eo

will represent an average over the surface. If this is the
case, then we should be able to calculate ql in any
direction once all b's are determined and ql is known
for one orientation. It is realized that these assumptions
must be highly doubtful, but it is interesting to note
the results given below.

Taking the value of the mean free path for the
orientation L100, 110$ (/= 6.5&& 10 ' cm), the mean free
path for $110, 100) was calculated from Eq. (51)
(/=4. 0&&10 ' cm) and the resulting values of g(q/) for
the frequencies of the rapid-fall data were determined.

2s V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).
~ W. A. Harrison, G. E. Research Laboratory, Schenectady,

New York (unpublished)."B.W. Roberts, Phys. Rev. 119, 1889 (1960).

-SZ Spc

If the mean free path were a function of direction in
the crystal rather than just energy, the collision-drag
mechanism suggests that the relevant mean free path
would be the one in the direction of polarization. Hence,
if the m vp s of the electrons participating in the shear
interaction for two orientations were precisely known,
then the ratio of the mean free paths in the two different
directions could be found from the ratio of b's. In fact,
for a spherical Fermi distribution

The ensuing theoretical curves for the superconducting
attenuation are plotted in Fig. 10. It can be seen that
the results are within a few percent of the values found
by fitting the t 110, 100) data.

The energy gap which would lead to a particular
2f(e) at a given temperature can be found easily in
the range close to T,. Assuming e(T)«kT and using
the e(T) approximation for first order in /1T/T„we
can show that

(41)

For example, if (T/T, )=0.9750 and 2f(e) = 0.850, then
e(0) =1.25kT.. That this is correct can be verified by
substitution into the exact equation for 2f(e).

Thus far we have had nothing to say concerning the
parameter car in the region of rapid fall. We have used
the London equations in order to determine the density
of electrons or pairs which act to form the super-
conducting currents. For most metals the London
region should occur in the temperature range which
would coincide with the lower end of the region of
rapid fall, and, hence, the London density as estimated
from the BCS theory should give a rough estimate of
the actual cur. As we have discussed in the last section,
when (/t/, //t/))tdr the electric fields are reduced to a
negligible value and the first term of Eq. (32) becomes
negligible. In actual practice the data in the region of
rapid fall are not suN. ciently accurate to allow more
than a rough estimate for ~r. Bearing this fact in mind,
attempts were made to determine r. For example, using
the 45 Mc/sec data of the L110, 100j orientation it was
found that err=cur=6. 4X10 ', giving a r of 2X10 ",
which is not an unreasonable value (see Table I for a
summary of evaluated parameters). The estimation of vs

from ql and cur can be accomplished as:

/les
&o= =1.38X|0' cm sec '

(dr

where we have used the measured value of c, for this
orientation (c,=3.92X10' cm/sec). David e/ a/. "have
recently made shear wave attenuation measurements
in aluminum at somewhat larger values of ql. They
found a systematic deviation from the predicted
residual attenuation according to the simplified theory.
In fact the difference between the measured and pre-
dicted residual attenuation was found to be a mono-
tonically increasing function of ql. One possible source
of this deviation is the shear-wave deformation potential
suggested by Pippard on the basis of the actual compli-
cated electronic structure in real metals. Such a
deformation potential would be expected to lead to a
contribution to the residual attenuation which increases
monotonically as a function of ql.

3'R. David, H. R. Van Der Laan, and N. J. Poulis, Physica
29, 357 (1963).
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One suggestion which is obvious from this considera-
tion is to attempt a measurement of the shear-wave
deformation by taking the difference between the
experimental and predicted residual attenuation at
large q/ values.

CONCLUSION

This article reports and interprets experiments which
were conducted to determine the temperature depend-
ence of shear-wave attenuation in superconducting
aluminum. Some of the main results are:

(1) In contrast to the longitudinal-wave attenuation,
the experiments showed a strong frequency dependence
of the reduced attenuation (tr,/tr„) as a function of
temperature.

(2) The temperature variation of (n, /n„) could be
separated into two parts:

(a) a very sharp decrease with temperature very
close to the transition temperature and

(b) a residual attenuation having a temperature
dependence similar to that for longitudinal waves.

(3) A theoretical formulation was made which used
approximations expected to be valid near the transition
temperature. This theory employed a self-consistent
treatment of the electron-impurity collisions and quali-
tatively reproduced the features of the experimental
data.

(4) It was found that the specific details of the data
could be predicted by this theory when the function
2f(e) was used for the normal electron density.

(5) In particular the residual attenuation was shown
to be gL2f(e)), and the width of the region of rapid-
falling attenuation was shown to be determined by co7..
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Surface Integral Form for Three-Body Collision in the Boltzmann Equation
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A new form is given for the triple-collision term in the generalized Boltzmann equation which is more
similar to the well-known binary-collision expression than those given heretofore. The form involved is a sur-
face integral over a five-collision parameter space which is the generalization of the two-dimensional collision
parameter space for binary collisions. For "soft" repulsive interactions, the expression involves both the
asymptotic properties of three-body collisions before and after the collision, and the dynamics of binary col-
lisions during the collision process. For hard spheres, the expression involves only the asymptotic properties
of ternary and binary collisions.

I.' INTRODUCTION
' 'N recent years, several authors' "have written on

- the structure of the asymptotic three-body collision
term in a modified Boltzmann equation appropriate to

dense gases. At the present time, it appears that all
methods of derivation lead to the same result, albeit
in different mathematical forms. ' "7 In a form derived
by the author, ' this operator may be written

'N. N. Bogolyubov, "Problems of a Dynamical Theory in
Statistical Physics, " translation by E. K. Gora from Studies in
Statistical Mechanics, edited by J. deBoer and G. E. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1962), VoL I.' M. S. Green, J. Chem. Phys. 25, 836 (1956).' M. S. Green, unpublished letter to G. E. Uhlenbeck.
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