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J. DAvm Zooz
Honeywell Research Center, Hopkins, Minnesotu-

(Received 6 April 1964; revised manuscript received 6 July 1964)

The theory of the scattering of electrons by acoustic modes in piezoelectric semiconductors is generalized so
as to properly take account of the anisotropic scattering probability. The Herring-Vogt approximate solution
to the Boltzmann equation is used, which is accurate if the resulting relaxation-time tensor components do
not differ by more than a factor of two or so. The other main simplifying assumption consists of treating the
frequencies and polarizations of the acoustic modes by a simple approximation. The theory is applied to three
symmetry classes of known piezoelectric semiconductors: zincblende and wurtzite symmetry (as typi6ed by
the III-V and II-VI compounds) and o-quartz symmetry (as typifMd by selenium and tellurium). The elec-
tron mobility anisotropy calculated for CdS (based on the measured electroelastic properties and cyclotron-
resonance masses) agrees quite well with the value deduced from experiment.

INTRODUCTION

'PIEZOELECTRIC scattering was first discussed by
Meijer and Polder' who estimated the magnitude

of the relaxation time for piezoelectric scattering in
crystals with zincblende symmetry. They found that
the piezoelectric mobility depends only weakly on
temperature (p, T'") which im-plies that piezoelectric
scattering should dominate deformation potential scat-
tering (p, T s~') at low enough temperatures in crystals
having the piezoelectric effect. The calculation of
Meijer and Polder was approximate in that at the onset
they took a weighted average of the piezoelectric
constants appropriate to phonons traveling in the (100),
(110), and (111) directions. Harrison' found the re-
laxation times for electrons traveling in these directions
and then performed the weighted average. More
recently, Hutson' applied the theory to crystals having
wurtzite symmetry. In his calculation he took a
spherical average of the piezoelectric constants before
calculating the relaxation time.

The purpose of this paper is to calculate the relaxation
time tensor for piezoelectric scattering in crystals with
zincblende symmetry (as typified by the III-V com-
pounds and by the cubic II-VI compounds), wurtzite
symmetry (as typified by the hexagonal II-VI com-
pounds), and n-quartz symmetry (as typified by
selenium and tellurium), assuming ellipsoidal energy
surfaces. The anisotropies of the scattering probability
and the effective mass are treated by the method which
Herring and Vogt4 used for deformation potential
scattering.

GENERAL THEORY

The present paper applies to the scattering of elec-
trons (or holes) in a simple single-valley or simple
many-valley semiconductor. We shall restrict our dis-
cussion to scattering events within a particular valley

~ Some of the results of this work were described previously;
see D. Zook, BulL Am. Phys. Soc. II 9, 274 (1964).' H. J. G. Meijer and D. Polder, Physics 19, 255 (1953).

W. A. Harrison, thesis, Physics Department, University of
Illinois, 1956 (unpublished); and Phys. Rev. 101, 903 (L) (1956).' A. R. Hutson, J. Appl. Phys. (Suppl. ) 52, 2287 (1961).' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

and shall choose our coordinate system so that the
effective mass tensor of the valley is diagonal. Thus,
the energy of an electron is given in terms of the
components of its propagation vector k, as follows:

where mj, m2, and m3 are the diagonal components of
the effective mass tensor.

We are concerned with the interaction of the electrons
with the long wavelength acoustic modes, i.e., the
normal modes of the crystal for which the atoms in
the same primitive cell move in the same direction in
phase with each other (physically, this is the same
motion undergone by the crystal during the measure-
ment of the elastic and piezoelectric properties). There
will, in general, be three such normal modes for a given
direction of propagation, corresponding to the three
degrees of freedom of the primitive cell as a whole. In
general, the normal modes will be neither purely trans-
verse nor purely longitudinal and will propagate with
different velocities. The theory of elastic wave propa-
gation in piezoelectric crystals, as discussed for example,
by Kyame' and by Hutson and White, ' is fundamental
in setting up the problem.

Let x~', x2', and x3' be an arbitrary set of Cartesian
coordinates which we shall call the "phonon coordinate
system" rotated with respect to x&, x2, and xa, the
coordinate system which diagonalizes the mass tensor,
and let us consider a long wavelength acoustic normal
mode (i.e., an elastic wave) propagating along the 3'-
axis with wave vector e, frequency oi (o), and amplitude
Ue' ~, where n= 1, 2, or 3 labels the three normal modes
having the same e. The displacement of the lattice from
its equilibrium position is then a plane wave which we

may write in the form:

U' ~= Ueg ~ cos(ops' —ce,f), j= 1, 2, 3;
where Usp are the components of Up in the phonon
coordinate system (the primed system). By the nature

' J. J. Kyame, J. Acoust. Soc. Am. 21, 159 (1949).
s A. R. Hutson and D. L. White, J. Appl. Phys. 55, 40 (1962).
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of the plane wave there are three nonzero strain com-
ponents in the phonon coordinate system:

S;se ——8U;e ~/Bxs'= —o.Up sin(o xs' —co,t), (3)

where S;s are the components of the strain tensor S.
Since piezoelectric scattering will usually be im-

portant only in high-purity crystals, we will assume
that currents can be neglected (high resistivity) and
can therefore set the electric displacement 9 equal to a
constant' (e.g. , zero). Our theory will be valid in the
low carrier concentration limit (screening effects must
be included at higher concentrations') and the electric
field E is the fundamental dependent electrical variable.
It is convenient to write the piezoelectric equations of
state in the form':

E= —AS

T= cnS

where T is the stress, ft is the piezoelectric tensor, and
c is the elastic stiBness tensor at constant displacement
(we shall hereafter omit the superscript on cn). The
electric field is, in terms of its components in the phonon
coordinate system:

=ort;, ,'Upt" sin(oxp' —to.t), (5)

where the summation convention is followed, and the
prime means the piezoelectric tensor components are
in the phonon coordinate system. It has been shown'
that the longitudinal electric field E3 is much larger
than the transverse 6elds E~ and E2, and E3 is derivable
from the potential

ksls Up cos(ops co~t) Itss'3 U; (6.)

We need to 6nd W (k,ks), the probability per unit
tiine and per unit volume of k space that an electron
with propagation vector k will be scattered by the
elastic wave to a volume d'ks centered on ks. Assuming
that the perturbation energy epp, is small (ep is the
electron charge) we can use the usual formula from
time-dependent perturbation theory:

f2~ V
W (kks)

I I(ksIepps, Ik)I'
Etr 8'

X)I 8(k) 8(ks) ~Ilco

—=w '(k k')5I s(k) —8(k') ak j (7)

where V/8srs is the number of final states per unit
volume of ks space and V is the crystal volume.

The matrix elements (ks
I
eppo, , I k) can be calculated

using plane waves for the electron wave functions. The
result is

(ks
I
e p p. .I k) = izepksss'. Up (8)

where ks must equal k+e, the usual selection rule for
phonon emission or absorption.

~ See, for example, Ref. 5.
Standards on Piezoelectric Crystals, Proc. IRK Bi, 1378

(1949).

The amplitudes Uo at any temperature To can be
obtained by setting the potential energy (—,'S T inte-
grated over the crystal) associated with the elastic wave
equal to one-half the average energy as given by the
Bose-Einstein distribution':

(V/2)o'Up, Up; c;pts™—"kpTp, (9)

where ko is Boltzmann's constant and the approximation
holds at temperatures such that k pTp))Aco (a condition
satis6ed in most nondegenerate semiconductors above
a few degrees Kelvin).

If the elastic anisotropy of the crystal is not too large,
C 3j3 will be approximately diagonal, ' and the normal
modes will lie approximately along the axes of the
phonon coordinate system (if the 1' and 2' directions
are chosen properly" ). To first order in the elastic
anisotropy we can write:

.o, a—U o,ag.
Oj 0 jap

I ly
Cia~3 =C~3ct3 via )

where n=3 denotes the mainly longitudinal mode and
a=1,2 denote the mainly transverse modes. To this
approximation we can write the squares of the matrix
elements as:

I
&k'I ep p. ,-lk) I'= ep'koT'p(ks-s')'/~'c-s-s' (»)

which also includes a factor of 2 due to adding the
matrix elements squared for both absorption and
emission of phonons. The directional dependence of
c 3 3' is much less pronounced than that of h3 3' since,
for example, some or all of the components of the
piezoelectric tensor will vanish for e along a symmetry
axis. We shall therefore use spherical averages" of
the stiffness coefficients, i.e., we shall replace c»»' by
(esses')=ct, and we shall replace both cisis' and cspss' by
—,'(cipis'+cssss')=ct, where the angular brackets denote
spherical averages. These replacements are not essential
but result in simpler expressions for the relaxation times.
In the closely related case of deformation potential
scattering, the expressions for r are not particularly
sensitive to the elastic anisotropy, and average elastic
constants can be used with little loss in accuracy. 4 "

Methods for calculating the components of a tensor
relaxation time have been given by Herring and Vogt'

p R. A. Smith, Wave 311echalecs of Crystallsme Solids (Chapman
and Hall, Ltd. , London, 1961),p. 421.' J. R. Neighbours and C. S. Smith, J. Appl. Phys. 21, 1338
(1950).

'~ Degenerate perturbation methods can be used to calculate
the frequencies and po/arization directions of the normal modes.
In this paper the two transverse modes are averaged together
(except for wnrtzite symmetry where this is not necessary) so
that in this approximation the directions of the 1' and 2' axes are
arbitrary.

~ Spherical averaging yields average elastic constants for
germanium and silicon very close (less than 2% difference) to
the averages calculated by A. G. Samoilovich and V. D. Iskra,
Fiz. Tverd. Tela 2, 2827 (1960) LEnglish transl. : Soviet Phys. —
Solid State 2, 2517 (1961)j.

~'A. G. Samoilovich, I. Ya. Korenblit, I. V. Dakhovskii, and
V. D. Iskra, Fiz. Tverd. Tela 3, 3285 (1961) LEnglish transl. :
Soviet Phys. —Solid State 3, 2385 (1962)g.



PI EZOELECTRI C SCATTERI NG I N SEMI CON DUCTORS

and by Samoilovich ef u/. ,"whose 6rst-order result for
ellipsoids of revolution agrees with Herring and Vogt.
The Herring-Vogt formula can be written in the form
(see Appendix):

1 3 (2m, msmss)'" q
Wo(k, ks)doer (12)r" 4 53 g

where q is the phonon propagation vector o in a co-
ordinate system chosen so that the energy surfaces
become spheres of unit radius and the integration is over
a sphere of radius two. The components of g in the
ellipsoid (unprimed) coordinate system are given by:

q;= ho.;/(2m; s)'~'= A(k —k )/(2m, s)'" (13)

where cr; are the components of e in the ellipsoid co-
ordinate system. Equation (12) is valid only if the
scattering is not too anisotropic, since it is based on
retaining only the leading term in an expansion of the
distribution function in spherical harmonics. '

The total transition probability W(k, ks) consists of
the sum of the probabilities for the three modes with
different polarizations. Since we use an average of the
stiffness coeS.cients for the two transverse modes, we

can combine the transverse modes and write;

hots" +hoss"1 S2.; 3 @$2', ps
d'q (14a)

epT; 87I A s g mtgP+msqs +mops'

for the transverse modes, and

1 m 3 ss

p» ep7 && 87/ A~

h333'gf,2

doer

(14b)
g mlgl +ms/2 +mops

for the longitudinal modes, where

p&oy p 2mi~2~3

A g, ) 4m.k2c], i

The two mobilities are then combined by adding
reciprocals to give the reciprocal of the mobility due to
scattering by both types of modes.

The mobilities given above depend on energy through
the factor A(s) and must be averaged over the energy
spectrum of the entire electron population. For
Maxwell-Boltzmann statistics'" we replace p(s) by
p((64/9sr)l'spTp) since p s'~s. We can then write a
convenient form for the average value of A (in rnksa
units):

pendent, so that if an energy-dependent mobility is
desired, Eq. (15) is to be used, while if mobility aver-
aged over all energies for classical statistics is desired,
Eq. (16) is to be used for A.

The integration over the magnitude of q in Eq. (14)
can be carried out immediately, giving a factor of 2.
The integration over solid angle can be simplified in
the case of energy ellipsoids of revolution (mt ——ms) and
we can express the solid angle dQ, in terms of dQ„a
more convenient variable of integration. Making the
substitution, we obtain:

aIld

3 (mt) &/s

4 kmsi

m, —ms(~s '--'&'

I

—
I

1+
0 m3 0.

X (hots"+&sss' )did~, (1&a)

h3a3 = u3suay'u3ahiy'a ) (18)

where the u,; are the components of the rotation matrix
which take vectors in the unprimed system into vectors
in the primed system, and h;, & are the piezoelectric
constants in the ellipsoid (unprimed) coordinate
system. The 3' axis is defined to be along e with the
1' and 2' axes arbitrary"; we now choose the 2' axis
to be in the (1,2) plane" so that we can write the trans-
formation matrix in the following ways:

r
u~~ u~2 u~3 cosD cos p cos8 sing —sin8

u21 u22 u23 cosy

u3$ u32 u33 sin@' cos p sin8' sin y cos8'

0'y0'3 0 20 3 0'g

00' 00'

As 3 (mt) I o.;) mt ms(—os).
1+

p, ,' 4~Emsi ~i m, l ~i
XIssss'sd0, . (17b)

Note that if m3=m~ and if h' does not depend on di-
rection (or if an average value of hs is used), then the
mobility is equal to A divided by h'.

The remaining problem is that of expressing the
piezoelectric constants h3 3 in terms of the direction
cosines of o, i.e., o.,/o. In general, the piezoelectric
constants in the phonon coordinate system will be
given by:

A~ iI
—&oTo =3274X1o'ps. i

I I

—I, (16)'

&9~
'

m*i k2'oi

where m = (mtmsms)'~' is the density-of-states mass
for a single ellipsoid and To is in degrees Kelvin. In the
equations that follow, the ratio A/p is energy inde-

02 Oy

og og
0

~4A. G. Samoilovich, I. Ya. Korenblit, I. V. Dakhovskii and
V. D. Iskra, Fiz. Tverd. Tela 3, 2939 (1961) I English transl. :
Soviet Phys. —Solid State 3, 2148 (1962)j.

"See, for example, Ref. 9, p. 324.

I' For wurtzite symmetry this choice of coordinates is such that
normal lattice modes lie nearly along the 1' and 2' axes and only
one of the transverse modes has a piezoelectric eGect associated
with it (see Eq. (30)g.
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Where at=(or'+os')'" and (e/, pr,a) are the pOlar CO-

ordinates of tr. The integration of (17) is therefore over
8 and q and is quite simple. The integration over p is
of the form.

1 I I I I + 1

sin"q cos ydq

with e and m integers, and it is not hard to show that
the integrations over 8 can always be written in terms
of the quantities:

1 mr)1/2
I„=

2 ms)

cos"8 singd8
(20a)

p {1+((mt—ms)/ms] cosset}2/2

0.8

0.6

(~2+ 1)1/2 1 zn/fz

(~
—2+22) 2/2

p2+1 1

/33 {P(P2+ 1 )/P2j 22}2/2

(20b)

(20c)

0.4

0.3

0.2

where st=0, 2, 4, 6, or 8; nz=(mr —ms)/ms, ' and
p'=(ms —m1)/m1. Equation (20b) is the convenient
form for oblate ellipsoids, while (20c) is convenient for
prolate ellipsoids. In either case the integrals can be
found in a standard table of integrals, "and in the case
of isotropic mass they reduce simply to I = 1/(st+1).

Q.l
0 lst20 I~10 it'5, '

l&3 i&2 I 2 3 5 l0 20 to
!YI3/ YYY

1

FIG. 1. The mobility and relaxation-time tensor anisotropy as
functions of the mass anisotropy for piezoelectric scattering in
crystals with zincblende symmetry and (100)-type valleys. The
subscripts refer to the directions of the principal axes of an energy
ellipsoid (the "3"direction is along the axis of revolution), while
t and l refer to scattering by the mainly longitudinal and mainly
transverse modes.APPLICATION TO CRYSTALS WITH ZINCBLENDE

SYMMETRY AND L000$ OR
L100]-TYPE VALLEYS

the tables of Hearmon. "From Hearmon's tables 3 and
4 and our rotation matrix, Eq. (19), we obtainIn the case of zincblende symm. etry (point group

43m) there is only one independent piezoelectric
constant in the cubic crystal coordinate system" with
axes along the fourfold axes. For energy minima at
points along the cube axes of reciprocal space (6 points),
the effective mass tensor is diagonal in the crystal co-
ordinate system and two of the diagonal components are
equal. At the center of the Brillouin zone (a F point)
all three effective mass tensor components are equal.
In either case the ellipsoid coordinate system is the
same as the crystal coordinate system and the piezo-
electric tensor is of the form":

0 0 0 hg4 0 0
h= 0 0 0 0 hg4 0

0 0 0 0 0 hg4

where we use the two subscript notation for piezo-
electric tensor components in the crystal coordinate
system.

Although we could express the piezoelectric tensor
components in the primed coordinate system using Eq.
(18) directly, in practice it is more convenient to use

hsss'= 6h14(a.rastrs/a'),
h 222' ——2h14La 2 (o 1'—o 2')/o. ,'j,
hs12'= 2h14/o 1a 2(2(rs 01)/01, ,

(22)

%hen the transverse modes are combined, the squares
of the piezoelectric constants are given by

hsss '= 36h14'(~1'~2'~s'/~'),

h„."+h.„"=4h„g(.;.:+.;.;+.;.;)/. j
—&333',

(23)

which exhibit the cubic s~~rnetry.
The integration of Eq. (17) can be written in terms

(21) of the differences of the I„integrals:

At/ttss sh14 {(I2—I4)—2(I4—Is)+9(Is—I,)},
At//411 = 4h14 {(Ip Is) 3(I2—I4)+11 (I4 Is)

—9(Is—Is)},
27

-4l/ttss h14 {(I4 Is) (Is Is)}i
2

12 R. F. S. Hearmon, Acts. Cryst. 10, 121 (1957).

~~ For example, H. 3. Dwight, Tables of IrItegrals aed Other 27
lj/fathentatical Data (The Macmillan Company, New York, 194/). + t/t=t' ssh14 {(Is—I4)—2 (I4—Is)+ (Is—Is)}~' W. P. Mason, Piezoelectric Crystals aed Their Applicatioe to
Ultrasonics (D. Van Nostrand Company, Inc. , New York, 1950),
p. 40.
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The reduction formulas for integrals of binomial dif-
ferentials'r (integration by parts) can be used to show
that the I„integrals obey the recurrence relation:

(25a)

= (nn') 'L —1+(nn'+n+1)I „), (25b)

which are the convenient forms for prolate and oblate
ellipsoids, respectively.

The mobility anisotropy E=err/ass and the r-tensor
anisotropy r»/r» are plotted in Fig. 1 for the longi-
tudinal and transverse modes as functions of the mass
anisotropy. In both the oblate and prolate cases the
scattering becomes anisotropic quite rapidly as the
mass anisotropy is increased. As mentioned above,
when the scattering is too anisotropic Eq. (12) can no
longer be used with conGdence, and the curves are
extended to this region only to show the qualitative
features of the scattering. The error incurred by the
use of Eq. (12) has not been investigated but could be
determined by calculating higher-order terms using
the equation of Samoilovich et al.""At any rate, the
error should not be appreciable if v~~ and r33 differ by
less than a factor of two. 4

The magnitude of the scattering is also dependent
on the mass anisotropy as shown in Fig. 2. The im-
portant point is that the average mobility

p= s (2@11+@sr)

is only weakly dependent on the mass ratio, so that the
isotropic formulas can be used to estimate the mag-
nitude of the piezoelectric mobility in a crystal if the
density-of-states mass of a single valley is known, even
if the mass anisotropy is not known. In the isotropic
case the mobilities are simply given by

A,/p, ;g'= (16/35)ht4',

A)/p; = (12/35)hr4'.

These values are also obtained if one takes a spherical
average of the piezoelectric constants at the onset
fusing Eq. (23)j, and they are quite close to the values
estimated by Harrison, ' who calculated a relaxation
time for an electron along the (100), (110), and (111)
directions using the method of Herring" and Brooks"
and to the values estimated by Meijer and Polder' who
took averages of the piezoelectric constants along the
(100), (110),and (111)directions (see discussion section
below).

The mobilities for the longitudinal and transverse
modes must be combined by adding reciprocals to give

~ C. Herring, Bell system Tech. J. 34, 237 (1955), Appendix A.
(The formula for r(k) is not written out explicitly but is described
as the basis for calculations of deformation potential scattering.
These calculations disagree with the later ones of Ref. 4.)"H. Brooks, Advan. Electron. Electron Phys. 7, 85 (1957),
Eq. 6.21.

1 1 I 1 I I

0 IAO IDIO IA I& I/2 l lO RO

Fro. 2. The average mobility p, =-,'(2p»+mrs) normalized to the
isotropic (m& ——rN3) mobility for piezoelectric scattering in crystals
with zincblende symmetry and (100)-type valleys.

the total mobility. Because the longitudinal modes are
stiffer than the transverse modes (larger sound ve-
locity), the transverse modes usually dominate the
scattering. The stiGness coeKcients in the phonon
coordinate system are given by' "

where

and

cssss —cll+2c F(o),
—', (crsts'+esses') =c44—c*r(o),

c = 2c44+crs —cry,

(27)

The spherical average of I' is —,', so that

cl cll+ sc

cg= c44—5c (28)

Except for an eGective mass factor, the numerical
value of the piezoelectric mobility can be calculated
for GaAs, ZnS, ZnTe, ZnSe, and CdTe, whose piezo-
electric constants'" " and elastic constants"" have
been recently measured. We assume an isotropic eBec-
tive mass ns*, and combine Eqs. (16), (26), and (28).
The relevant parameters derived from the measure-
ments are summarized in Table I, along with the
calculated piezoelectric mobility at 77'K. The mobility
at other temperatures can be obtained from the T—'I'
dependence. Cyclotron resonance of electrons in GaAs"
and CdTe" indicates that the energy surfaces are
spherical" with the eBective masses given in Table I.

~ H. Kaplan and J. L. Sullivan, Phys. Rev. 130, 120 (1963).
s' E. J. Charlson and G. Mott, Proc. IREE 51, 1239 (1963).I M. Zerbst and H. Boroffka, Z. Naturforsch. 18a, 642 (1963).
»D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev.

129, 1009 (1963)."T.B.Bateman, H. J. McSkimin, and J. M. Whelan, J. Appl.
Phys. 30, 544 (1959)."E. D. Palik, S. Teitler, and R. F. Wallis& J. Appl. Phys.
(Suppl. ) 32, 2132 (1961).

ss K. K. Kanazawa, Bull. Am. Phys. Soc. 8, 620 (1963).
~ For a review of other band structure data, see, for example,

D. Long, J. Appl. Phys. 33, 1682 (1962).
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TmLE I. Calculated piezoelectric mobility of certain zincblende-type semiconductors based on the
piezoelectric and elastic quantities shown.

Units

GaAs ( 300'K)

ZnS (77'K)

ZnTe (298'K)

ZnSe (298'K)

CdTe (77'K)

hg4 (Ref.)
10' V/M

=1.2 (6,22)
1.57 (23)
1.57~ (24)

2.26 (25)

0.314 (25)

0.61 (25)

0.394 (25)

cg (Ref.)
10'o N/Mo

14.03 (26)

12.89 (25)

8.41 (25)

10.34 (25)

6.97 (25)

co (Ref.)
10' N/Mo

4.86 (26)

3.60 (25}

2.48 (25}

3.29 (25}

1.55 (25)

m~—(Ref.)
1gp

0.071 (27)

0.096 (28}

p, at 77'K
M'/VS

77b

0.42

14.8

mo) o~o

5.1 —
)m')

206

a We have assumed that kp means kilogram weight in Ref. 24.
b Using h14 =1.57 )&109 V/M.

8-
I I I I I I I I I I I j

6- ZN0
(mI ~ 2m3I

APPLICATION TO CRYSTALS WITH WURTZITE
SYMMETRY AND $0001$-TYPE VALLEYS

The symmetries of second-, third-, and fourth-rank
tensors for wurtzite symmetry (point group 6mm) are
the same as the corresponding symmetries for a material
having axial symmetry. "The piezoelectric tensor is of

the form"
0 0 0 0 It15 0 '

h= 0 0 0 hgo 0 0, (29)
h31 h31 h33 0 0 0

where the 3-axis is the symmetry axis. Points on the
3-axis (6 points) of reciprocal space also have the axial
symmetry, so that for valleys centered at these points
the effective mass tensor is diagonal, m~=m1, and the
ellipsoid axes are the same as the crystal coordinate
axes. We shall consider here only such L'0001j-type
energy minima.

IO

ZsO"

0.8

0.6 3

CDSE

CDS

0.4

0.3

0.2
I

08

I I I I I I I I I I I I I

-e -20-IO -6 -4 -2 -I 0 I 2 4 6 IO 20
hx ihI5

FIG. 3. The relaxation-time tensor anisotropy as a function of
the ratio of piezoelectric constants for piezoelectric scattering by
the mainly transverse modes in wurtzite-type crystals. The ex-
perimentally observed ratios of the piezoelectric constants are
shown for those crystals in which they have been measured. The
relationship between the e6'ective masses assumed for each curve
is shown in parentheses.

OAi

0.4-

0.3-

I I . I

-20-IO 4 -4 -2 "I 0 I 2 4 6 IO 20 e
h~&h~~

1"'n. 4. Same as Fig. 3 for the mainly longitudinal modes.
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In the phonon coordinate system the relevant piezo-
electric constants are:

h 333'= cosel (h33—h, sin'tl)

I »,'-—0

hsrs = —Sill'D (hrs+h~ COS D),'

(30) lo

where we have defined the anisotropic piezoelectric
constant h =h» —h» —2h». Because of the axial sym-
metry, the integrations over p in Eq. (17) give a factor
of 2x, while the integrations over 8 can be written in
terms of the I„.The mobilities are then given by:

t h. )
=3hrs' (Is—I4)+2(I4—Is)l

P33 & hrsi
ir h. ~'

+(I —I )I
his

h. ~=-',»3' (Is 2I3+I4—)+2(I3 2I4+Is—)
pi&

)h. '
+(I4—»3+Is) I

~ his
(31)

h. ~
=3h333 I4 2(I4 Is)— —

@33 h„&
)h. '

+ (I4—2I3+Is) I

&h„

)h.
=-;h33' (I,—I,)—2(I,—2I4+I,)I

p]]

)h. '
+ (Is—3I4+3I3—Is) I

Eh„

6
Ks-+II

~33
4

0.8

0.6

0.4

0.5

0 IAO IAO l3'5 0'5 1&2 I R 3 5 lO 20
m3&rn

l

FIG. 5. The mobility tensor anisotropy E and relaxation-time
tensor anisotropy ru/r» for both longitudinal and transverse
modes as functions of the eftective mass anisotropy. The ratio of
the piezoelectric constants assumed for each curve is shown in
parentheses.

longitudinal modes we must know the average stiffness
coefBcients. In the phon on coordinate system the
relevant stiffness coefFicients are given by

O-j.4 0-34 crt'0. 3'

C3333 Cll+ C33+2 (C$3+2C44),
~4 ~4 ~4 (32)

C1313 C44+ (0'3 O 3 /O )Cg )1

In this case there are two parameters which determine
the mobility anisotropy for either the transverse or
longitudinal modes, namely, the mass anisotropy and
the ratios of the piezoelectric constants. Figures 3 and
4 show the ratios rrr/rss as functions of the ratios h./hrs
and h,/h» for several cases of mass anisotropy. It is
clear that the scattering anisotropy can be quite sensi-
tive to the ratios of the piezoelectric constants. Mea-
surements" of the piezoelectric properties of CdS and
CdSe show that the ratios h,/hts and h, /h33 are quite
close to the values obtained theoretically by comparing
the ideal wurtzite structure to the zincblende struc-
ture, ""namely, —5 and 2.5, respectively. The mo-
bility anistropy E is plotted in Fig. 5 for these values
and also for h,/hrs ———6 and h,/h33= 2 as a function of
the mass anisotropy. Again, we must caution that the
calculated values of E can be considered accurate only
if r»/r33 is not too far from unity.

To combine the scattering by the transverse and

33 See L. J. Touchard, J. Appl. Phys. 34, 2694 (1963), for a
similar comparison of the elastic constants for these two structures.

where c,= crr+c33—2crs —4C44 and c3333 is not relevant
since k323'= 0 by symmetry and thus only on transverse
mode contributes to the scattering. A spherical average
of (32) gives

c3——3 (2crr+c33) —(2/15) c»
(33)

c,=c44+(2/15)c .

As in the case of cubic symmetry, the magnitude of
the scattering is not sensitive to the mass anisotropy,
and thus the combined mobilities for transverse and
longitudinal modes can be estimated by choosing
mi ——m3. Table II lists the calculated mobilities and the
relevant elastic and piezoelectric quantities which have
been measured for CdS", CdSe', and ZnO. ' ""Cyclo-
tron resonance of electrons in CdS"'4 indicates that

+ A. R. Hutson, Phys. Rev. Letters 4, 303 (1960)."T.B. Bateman, J. Appl. Phys. 32, 3309 (1962). The author
thanks an attentive referee for calling this reference to his
attention.

"W. S. Sacr and R. N. Dexter, Bull. Am. Phys. Soc. 8, Si6
(1963).

34 K. Sawamoto, J. Phys. Soc. Japan 18, 1224 (1963).
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Tmr. z II. Calculated piezoelectric mobility tensor co mponents for certain wurtzite-type semiconductors,
based on the piezoelectric and elastic quantities shown.

hoo (Ref.) hi p (Ref.)
Units 1(f' V/Jlf 10' V/hf

h, (Ref.) cl (Ref.)
10' V/M 10")V/IrP

Pipe/Plpo,

cp (Ref.) mo/poop (Ref.) l4oo at 7/'K
10'o fV /Mo ~ ~ ~ hf /VS

$11E=—
@33

CdS 5.21 (25) —2.63 (25) 13.4 (25) 8.95 (25)
0.171

1.902 (25) 0.153'
0.20.
p 2p (40) 0.77

1.69

1.82'

Zno 15 (3) —4.3 (3)

CdSe 3.84 (25) —1.77 (25) 8.95 (25)

26 (3) 21.0 (32) 5.01, (32)

7.40 (25) 1.716 (25)
poop) +3

0.135
m*j

plop) o~o

0.036 .'m*)

1.89

2.8b

' We assume here that the effective mass without the piezoelectric polaron correction is isotropic in order to illustrate the effect of mass anisotropy on K.
b The value of K for ZnO is subject to a large uncertainty since it is quite sensitive to the ratios h&/h» and h*/h1& which are not known with accuracy

for ZnO.

the energy surfaces are oblate ellipsoids of revolution
with the effective masses indicated in Table II.

APPLICATIONS TO CRYSTALS WITH TELLURIUM
SYMMETRY AND $001J-TYPE VALLEYS

in terms of the I„integrals:

A, = hll'{ (Is 2I4+I3) ———', (I, 3I4+3Ip—Is))—
+hl4'(I4 Io))—

Ag hgj'
{(Io—3I3+3I4—Ip)

)(L yy 2

Tellurium and selenium have the same symmetry
(point group 32) as that of 43-quartz and can therefore,
in principle, be piezoelectric, although the physical
basis of piezoelectricity in elemental crystals has never
been discussed, to the author's knowledge. A large
piezoelectric effect has been measured in the case of
selenium, " the piezoelectric constant d» being thirty-
two times as large as that of e-quartz. In the crystal
coordinate system (3-axis along the trigonal axis, and
1-axis along the binary axis) the piezoelectric tensor is
of the form:

3(Io 4I3+6—I4 4I—3+I,))—
h~4'

(I,—2I4yI3),
2

=-,'hii'{Is —3I4+3Io—Is),
933

A) = 4haP{Ip —4I3+6I4—4Ip+Ip) .
Pyy

hing

—kgb 0 hg4 0 0
h= 0 0 0 0 —hg4 hg4

0 0 0 0 0 0
34

For isotropic effective mass these reduce simply to:

h333' ——h~~ sin'8 cos3q,

k333 hll sin p7 sin3 so+ h, 4 sino' cosp7,

h3]3 hJ J sin'8 cos8 cos3q

(35)

As before, for I' and 6 points the two transverse effective
masses must be equal and the mobilities can be written

3'H. Gobrecht, H. Hamisch„and A. 'Zausend, Z, Physik 148,
209 (1957),

Again, for simplicity we discuss the type of valley
for which the effective mass tensor is diagonal in the
crystal coordinate system and the ellipsoid coordinate
system is the same as the crystal coordinate system.
In the phonon coordinate system the piezoelectric
constants of interest are:

Ag 16 2
hll + h14 1

@33' 315 35

A, 8 4
hli + kl4

@gal' 63 105

A) 8
h]$ )

@33' 315

32
h11 )

@gal' 315

(37)

which shows that the scattering is quite anisotropic with
X Jll]i/@33( 1 if kl4 (hit (ln n-quartz, h»'=32hi4').

/Vote added in proof. A piezoelectric effect in tellurium
has been measured recently by G. Quentin and J. M



PiEzoELEc TRi c scATTERiNG iran sEM~coNDucToRs

Thuillier )Solid State Commun. 2, 115 (1964)] who
found that d&t'/st&e&=0. 12. Recent cyclotron-resonance
results at 68 Gc/sec LJ. H. Mendum and R. N. Dexter
(private communication)g have shown that the valence
band of tellurium is characterized by a single energy
extremum with effective masses ettt/ttte=0. 126, tie/tmo
=0.243. Using the approximate relationships: nrP/ct
=drr'/~rreP, et= rti'eo and the index of refraction
e&——4.8 measured by R. S. Caldwell and H. Y. Fan
LPhys. Rev. 114,664 (1959)j, and assurrung that /tr4'= 0
and that ct/et=1. 5 Lthe elastic constants have been
measured by J. L. Malgrange, G. Quentin, and J. M.
Thuillier, Phys. Stat. Solidi 4, 139 (1964)j we obtain
for the piezoelectric mobility:

ttrr
——3.8(77/T)'"&&10' crn'/V sec, ttss

——2.4 tttr.

The theory as developed above may not be adequate,
however, since tellurium is quite anisotropic elastically.
For example, along the l axis the stiffness coeKcients
for the two transverse modes differ by a factor of seven,
and averaging them together is not justi6ed. Also, the
cyclotron mass should be corrected for piezoelectric
polaron effects, as in the case of CdS.

1 11 1 1~
+ +

tta 3 ttll tt22 tt33~
(38)

DISCUSSION

The piezoelectric mobility of electrons (or of holes)
has been calculated for the three classes of known
piezoelectric semiconductors, assuming energy surfaces
which are ellipsoids of revolution with principal axes
along the crystal axes. For other types of valleys the
piezoelectric tensor must erst be expressed in the
ellipsoid coordinate system. Two main simplifying
approximations are used: an approximate solution to
the Boltzmann equation valid if the scattering is not
too anisotropic, and approximate formulas for the
frequencies and polarizations of the long wavelength
acoustic modes. Improvements in either of these ap-
proximations are dificult in general, but in specihc
cases numerical calculations could be used to give
improved accuracy for comparison with accurate ex-
periments. The piezoelectric mobilities in semicon-
ductors for which all the elastoelectric properties have
been measured are listed in Tables I and II. The
effective mass has been included in the tables only for
those crystals in which cyclotron resonance has been
measured.

In the case of zincblende symmetry and L000)-type
valleys the present results LEq. (26)j agree quite well
with the previous calculations' ' which invoked various
averaging techniques. It is easy to show, by examination
of Eq. (17), that in the case of an isotropic effective
mass tensor a spherical average of the piezoelectric
constants gives the average mobility p, , where

For cubic symmetry the p;; are equal to each other and
to p„ thus it is not surprising that the present calcu-
lations are in good agreement with the results of Meijer
and Polder' who took a weighted average of the piezo-
electric constants in the (100), (110), and (111) di-
rections. Harrison' used the formula for r(lr) postulated
by Herring' and Brooks" and took a weighted average
of r(lr) for lr along the (100), (110),and (111)directions.
This formula, however, is basically incorrect for calcu-
lating relaxation-time anisotropy since it is not based
on a solution of the Boltzmann equation for anisotropic
scattering, but rather on a generalization of the exact
solution which exists for isotropic scattering. The in-
correctness of this formula for calculating the anisotropy
can be judged from the fact that it predicts the wrong
direction of the relaxation time tensor anisotropy for
ionized impurity scattering. " It is not hard to show,
however, that for isotropic eBective mass a spherical
average of 1/r(k) gives the same result as Eq. (38). It
is therefore not surprising that Harrison's results also
agree well with Eq. (26).

The average mobilities p, for wurtzite synunetry and
isotropic mass agree exactly with Hutson's results, 4

since he used a spherical average of the piezoelectric
constants. (However, the present formulas include the
effect of dielectric anisotropy exactly, through the use
of /t rather than e for the piezoelectric tensor. ) The
effects of piezoelectric scattering will be larger in the
wurtzite-type crystals than in the cubic crystals,
because the piezoelectric effect itself is larger in these
crystals. "

In the case of CdS, crystals of sufBcient purity are
available such that piezoelectric scattering is important
in determining the mobility. ' " Zook and Dexter'
invoked a combination of polar optical mode scattering,
piezoelectric scattering, and impurity scattering to
explain their measurements of electron mobility in CdS
between // and 300'K. A significant result of their
experiments was the observation of a temperature
dependence of the mobility anisotropy which was con-
sistent with the hypothesis that the piezoelectric mo-

- bility was anisotropic while the mobility due to other
mechanisms was essentially isotropic. From these data
and assumptions, a piezoelectric mobility anisotropy of
E=tt»/tt» ——1.55+0.12 was deduced. In that paper an

36 The author is indebted to D. Long for pointing out that in
Ref. 20 Herring deduced a direction of the relaxation time an-
isotropy for ionized impurity scattering opposite to that deduced
in Ref. 13. The latter theory agrees with experiments /see L. J.
Neuringer and W. Little, Procee/Jugs of the International Con-
ference oa Semecondtcctors, Exeter, 1963 (The Institute of Physics
and the Physical Society, London, 1962), p. 614; J. D. Maines
and E. G. S. Paige, Proc. Phys. Soc. (London) 81, 767 (1963);
also, L. J. Neuringer and D. Long, Phys. Rev. 138, A788 (1964)g."D.Zook and R. N. Dexter, Phys. Rev. 129, 1980 (1963)."W. S. Baer, thesis, The University of Wisconsin, 1964
(unpublished).
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incorrect" theoretical estimate was given of the pi:ezo-
electric mobility anisotropy for isotropic mass, based
on the formula for r(k) discussed above. The calculated
mobility anisotropy for CdS is given in Table II, using
the recent cyclotron-resonance results" which indicate
slightly oblate (m&/ma= 1.12) ellipsoids. The measured
cyclotron-resonance masses include a piezoelectric
polaron correction which would not be observed in
experiments done at temperatures well above a few
degrees Kelvin. "Assuming the electron effective mass
without the piezoelectric polaron correction is 0.20 mo"
and isotropic, we obtain the second set of mobilities
for CdS indicated in Table II. Both calculated values
of E have associated with them probable errors of about
g%%uo due to the stated accuracy of the measurement of
the piezoelectric and dielectric constants. The agree-
ment between either of the theoretical values and the
experimental value of E is quite good in view of the
simplifying assumptions used in deducing both the
theoretical and experimental values. A more accurate
comparison of the magnitude and anisotropy of piezo-
electric scattering can be made only if the experiments
are repeated under conditions such that virtually all
the scattering is due to the piezoelectric mechanism.

which the energy surfaces are spherical. We use the
notation of Ref. 14 to write such a transformation:

$;= Ak;/(2m, s)'i2 $,s Ak, s/(2m. s

$,S (A1)

The Herring-Vogt formula (Eq. (11),Ref. 4) can then
be written

&,2dOt, (A2)

We have assumed that the scattering probability
W(k, ka) depends only on the difference k —ks.

The first step in rewriting (A2) is to synunetrize it
by interchanging g and gs, adding the result to the
original equation and dividing by 2 to obtain

where h.' is related to 8", as follows:

L(2m, m2m38)'i'/A'jw'(k k') =A'((—g ) (A3)
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APPENDIX. REWRITING THE HERRING-VOGT
FORMULA FOR s;;(8)

It is always convenient in discussing ellipsoidal
energy surfaces to change to a coordinate system in

"There are two other errata in Ref. 37. In the statement on
page 1986 to the eGect that Casella calculated appreciable longi-
tudinal magnetoresistance for toroidal energy surfaces, the word
"longitudinal" should be deleted. Casella did calculate transverse
magnetoresistance for current along the c axis and pointed out the
longitudinal magnetoresistance in this case is zero by symmetry.
On page 1987, the value of a for CdS should be 0.7 instead of 0.3.
The author is indebted to R. C. Casella and W. S. Baer, respec-
tively, for pointing out these errors, neither of which acct the
rest of the discussion in Ref. 37.

"G.D. Mahan and J. J. HopGeld, Phys. Rev. Letters 12, 214
(1964).

d01 = —,'dqdP, (A6)

where P is the azimuthal angle about the vector q. The
integrand of (A4) depends only on q so that the inte-
gration over p yields a factor of 2m, and we then obtain
Eq. (12).

since A is symmetrical with respect to interchange of (
and gs, and the denominator of (A2) is just 47r/3. The
next step is to change the integration over dQp to an
integration over dQ„holding g constant. Taking the
pole of a spherical coordinate system to be along (, we
can obtain the relationship

dQ(~= 2qdQ„O& q& 2. (AS)

Then, interchangin'g the order of integration, we hold
the direction of q Axed and can write


