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Effect of Boundary Surfaces on Localized Mode Frequencies of a Crystal
Containing a Mass Defect
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The vibrational frequencies of the localized modes due to a mass defect in a simple cubic lattice with
boundary surfaces have been studied. The perfect crystal is treated in the harmonic approximation with
nearest- and next-nearest-neighbor central-force interactions between atoms. The most general problem is
solved formally, and a detailed treatment is presented for the case of a very small mass of the defect atom
compared to that of the host atom. The detailed calculations are performed in the case where a condition is
imposed on the force constants of the crystal which leads to elastic isotropy in the long-wavelength limit. A
pair of boundary surfaces is created mathematically be setting to zero all interatomic forces which cross a
given plane. It is found that two of the three localized modes caused by the defect are degenerate. The non-
degenerate mode corresponds to motion of the impurity atom normal to the surface, and the degenerate ones
correspond to motions in two perpendicular directions parallel to the surface. For a light defect in the crystal
surface and a ratio of its mass to the host atom's mass of —,', the frequency of the nonedegenerate mode is 71 jo
of the bulk value, i.e., the frequency of a localized mode corresponding to the same defect in the absence of a
free surface; the frequency of the degenerate modes is 91%of the bulk value. The localized-mode vibrational
frequency when the defect atom is in the erst layer below the surface divers from the bulk value by less than
0.02% of the latter value.

INTRODUCTION

'~'N a real crystal the presence of a boundary surface
~ - influences the physical properties of the atoms of the
crystal, especially those in the vicinity of the surface.
Many examples of surface effects have been studied.
Since we will deal with a problem in lattice dynamics,
we cite a few examples in this latter area. At low tem-
peratures the lattice specihc heat has a contribution
proportional to T', where T is the absolute temperature,
which can be interpreted as due to the vibrations of the
surface atoms. ' From the diffraction of low-energy elec-
trons by the surface of nickel crystals, MacRae and
Germer' concluded that the surface atoms have a
larger vibrational amplitude in a direction normal to
the surface than the amplitude of the atoms in the
interior of the crystal. Various authors' have studied the
Mossbauer effect for a crystal with a surface and have
found a strong dependence of the mean-square ampli-
tude and second-order Doppler shift on the position of
the resonant nucleus relative to the surface.

This paper presents a calculation of the vibrational
frequencies of the localized modes that result when a
light mass defect is in the surface of a simple cubic
Bravais crystal. The perfect crystal is treated in the
harmonic approximation. Explicit calculations of the
local mode frequencies are performed for the model
with nearest and next-nearest-neighbor central-force
interaction between atoms. The force constants of the
crystal have been chosen in such a way that it elasti-
cally isotropic in the 1.ong-wavelength limit. These

'M. Dupuis, R. Mazo, and L. Onsager, J. Chem. Phys. 33,
1452 (1960).' A. U. MacRae and L. H. Germer, Phys. Rev. Letters 8, 489
(1962).

e R. F. Wallis and D. C. Gasis, Phys. Rev. 128, 106 (1962);
M. Rich, Phys. Letters 4, 153 (1963);A. Corciovei and A. Berinde,
J. Phys. Radium 24, 89 (1963);A. A. Maradudin and J.Melngailis,
Phys. Rev. 133, A1168 (1964).

explicit calculations are valid only for light defect
atoms with a mass ratio iV'/M(& '„where M-' and. M are
the masses of the defect and host atoms, respectively.
This restriction is due to the method of calculation
which involves an expansion in inverse powers of the
ratio of the eigenfrequency to the maximum frequency
of the perfect bulk crystal. The over-all treatment is,
however, more general, and a formal solution of the
most general problem is given.

A quantitative understanding of the differences be-
tween the localized mode frequencies when the defect
atom is in the surface of the crystal and when the defect
is in the interior of a crystal can be gained by recog-
»izing how the environment of the defect atom differs
in the two cases. There are two main features.

An atom in the surface has fewer neighbors than one
in the bulk of the crystal, and therefore the total inter-
action of a surface atom with its neighbors is weaker
than the total interaction of a bulk atom with its
neighbors. As a consequence of one of Rayleigh's
theorems, 4' the localized mode frequencies due to a
surface defect are smaller than those due to a bulk
defect. The second difference is the degree of degeneracy
of the modes. For a simple cubic Bravais crystal, in the
absence of a free surface, the localized modes which
arise when a light mass defect is present are triply de-
generate. ' This degeneracy is partially removed when
the defect atom is in the surface of a simple cubic
Bravais crystal. The presence of the surface lowers the
basic crystal symmetry from cubic to tetragonal about
an axis normal to the surface; the triply degenerate
modes are replaced by two degenerate modes and one

4 Lord Rayleigh, Theory of Sottnd (Dover Publications, Inc.,
New York, 1945), Vol. I.' A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic APProximation (Academic
Press Inc., New York, 1963).
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nondegenerate mode. The results for the models treated with the expansion coeKcient C,p(l/') given, in terms of
show these qualitative features. the coefficient for the unperturbed crystal, by

FORMULATION

We follow Lifschitz in viewing a boundary surface
of a crystal as an extended defect in an infinite crystal.
A pair of boundary surfaces is thus created by remov-
ing the set of interactions which cross some given plane
of the in6nite crystal.

An eigenvalue equation for the frequency of the lo-
calized modes that occur when a mass defect is present
in a crystal with a pair of boundary surfaces is obtained
by taking the perfect crystal with boundary surfaces
as the unperturbed crystal and considering the mass
defect as a perturbation. The potential energy in the
harmonic approximation of the perfect crystal without
a surface can be written

C=-'; Q C p&P&(//')u. (/)up(/'),
ZZIap

where l= (/t, /p, /p) is a set of integers which label the
position of an atom relative to some origin, u (l) is the
e-Cartesian component of the displacement of the Eth

atom from equilibrium, and the energy of the static
crystal is omitted. This expression for the potential
energy holds also for a crystal with a defect when a
change in force constants is neglected. The effects of
force constant changes wiH not be considered. The
force on the atom at the /th site of the in6nite crystal is

C p(/l') =C.p&P&(//')+5C. p(//') (for /4/'),

C.p(//) = Z—C-p(//'),
ZI Z/+Z

where

N p(/l') = —(54,p54, t+54, t5$ p)C p"'(ll')

(for /N/'),
N p(ll)= —Q 5C p(/l').

Zl Z /WZ

The potential energy of a crystal with a mass defect
when force-constant changes are neglected is the same
as when the defect is not present, but the kinetic energy
is changed by the presence of the defect. If a single
defect atom of mass M' is substituted for a host atom
of mass M at the Loth site, the kinetic energy of the
crystal becomes

K.E.=-', Q Mu '(l') —(1 M'/M) '—M Q u '-(lp) .
Z/a

Since we choose the mass defect as the perturbation,
the time-independent equations of motion for the sys-
tem of a mass defect at l=/0 and a pair of free surfaces
at 33=0 and 1 in an harmonic crystal will be written

Q L p (ll'; &p')up (/') =P 5L p (ll'; oP)up (/'), (8)
F.(l) =ac/Bu. (l) = —Q C.p&P& (ll')up(l') .

ZIP

tI p

or in a matrix form

ZI p

A pair of surfaces whose atoms lie in one of the planes
la=i, =0, and 1, is created by removing the forces that
cross the space between these two planes. The case of
nearest- and next-nearest-neighbor force interactions
between atoms will be treated. When these forces are
subtracted from the original force on an atom of the
unbounded crystal, the force on an atom of the crystal
with a pair of surfaces becomes

v here

L(&pp) u= 6Lu,

L p(ll'; M') =&p'M5& p5~, p
—C~p(//')

= (&p Ml %)&~ p.

and the perturbation &iL is

5I. p(ll', oP) =(u'Me5«p5p&p5 p.

(10)

(10')

P.(l) = —P C..p&P& (ll')up(l')
In these expressions C p(ll') is given by Eq. (5) and
e= 1—(M'/M).

We obtain an eigenvalue equation for the vibra-
tional frequencies of the localized modes with the help
of G p(ll', &p'), the Green's function for. the crystal with
a surface, deAned by the equation

Z/P

+54, p Q 54, tC.p&P&(/l')up(l')
Z/P

+5E, t P 5&, pC.p&P~(l/')pu(l'),
Z/P

L p (ll")Gp p(l"l', )=&p5.p5«. —

L6=1. (13)

where b, z,
= 1, if a=6, and is zero otherwise. The sum

over /' in Eq. (3) and similar sums in the equations to
follow include nearest and next-nearest neighbors only.

Z/I Pl

The expression for the potential energy of a crystal
with the kind of surface created, which follows from or ln a matrix f0101

Eq. (3), can be written

O'= P C.p(/l')u. (l)up(l'),
ZZ/eP

(4) With the use of G, we can rewrite Eq. (8) as

Q t5„p5«.—Q G~, (//"; a&')5L„p(/"/')7up(/') =0, (14)
L ' I. M. T.ifshitz, Nuovo Cimento Suppl. 3, 716 (1956). Z', P Z",y
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D (l,+') is defined by the serieswhich leads to the eigenvalue equation

det[1—G(~ )aL(~') j=O
D„(l,oP) =g a„(a,l)(o-'" (22)

(23)

&2(&l)=— 2 [K«p[Djiip- (24)

«3(«,1)= Z [Dj« -p[Dji i"pv[Dji i.- (25)

The remaining expansion coeKcients in Eq. (22) are
defined in an analogous way; for a„(n,l), as in Eqs.
(24) and (25), no summation variable can equal l or n.
For the eigenvalue problem, only G (ll'; co') with l= l'
is required.

When the form for G (ll; &u') given by Eq. (21) is
used. in Eq. (16), we find

1= eM(u'G„(ll; o)'),
1=eM(u'G„(ll cu'),

(16)

where l now labels the defect site.

BASIC APPROXIMATIOKS

For a fixed value of l, labeling the defect atom 1—GdL n=l

is a 3X3 matrix in the Cartesian indices x, y, and s.
n the present representation, for a simple cubic w ere e rs ree coe csen s are

Bravais lattice, the 3X3 matrix 1—GSL is diagonal; e, («,l) = [D&ii...the xx and yy elements are equal to each other, but, in
general, they are not equal to the ss element. These
properties follow from the invariance of the crystal
when its atoms are rejected in the xs and ys planes,
and the tetragonal symmetry about the s axis of the
crystal with a pair of boundary surfaces normal to the
s axis. The determinantal equation, Eq. (15), can thus P.P &~

be replaced by the pair of equations

In a bulk crystal (crystal with no surface) the
presence of a defect with mass lighter than that of the
host atom gives rise to a localized mode with a fre-
quency greater than the maximum frequency of the
perfect crystal. The presence of a surface depresses the
localized mode frequencies, at least when the defect
atom is in the vicinity of the surface. However, for
small enough mass ratio the depressed frequencies will
be much greater than ~&. It is this case we now study.

The Green's function G p(ll', oP), as the inverse of
L defined by Eq. (10), can be written

G p(ll', co')

= {[oPMl—%] )ii p

= (1/&v'){M 'I'[1 ~'M "'+M—'"j 'M "')«
(17)

or, since all masses are the same in the unperturbed
crystal as it has been defined, Kq. (17) can be rewritten

Mco'G p(ll'co') =- {[1—a& 'D$ ') ip~p,

M'/M==X=D (l,(o'), (26)

where e= & and s, and l labels the site of the defect
atom. D (l,oP) is defined in Eq. (22) by a power series
in inverse power of oP. Substitution of this series in
Eq. (26) and the solution of the resulting equation for
~' gives the following expression for the localized mode
frequencies:

L ( l)j'=
ai(ee, l) a2(n, l) Xa3(n, l)+ + +O(M) (27)(,l) I (,l)7

In Eq. (27), co(ee,l) denotes the vibrational frequency of
the localized mode in which the i~purity nucleus is at
the lth site and vibrates in the direction of the e axis
of the Cartesian coordinate system. The square of the
eigenfrequencies is obtained to order P, which is
sufficient to distinguish a defect atom one layer away
from the surface atoms from one in the bulk of the
material.

where

LD5« -p= (1/M)C'-p(«') (19)

DETAILS OF CALCULATION

The atomic force constants for central forces are

The dynamical matrix D is proportional to the coz,', the
square of the Inaximum frequency of the perfect
crystal, and since we are considering the case where
m'))col. ', M~'G will be evaluated by expanding it in
powers of co '. The expansion of the diagonal part of
[I—(o

—'Dg —'

{[1—co
—'D)—')ii..=1++ [D"jii..M

—'"
n~l

can be partially resumed to give

{Ll—~ 'W ')«-=L1 —D (l~')3 '.

4 p&" (ll') = [X (l P)Xp(l —l')/I X(l—l') I'O- —
X'"(I X(l—l') I). (28)

X(l—l') is the distance between the atoms at the lth
and l'th site and is defined by

X(l l ) (l], ll )GQZJ+ (4—l2')cod~+ (la 13')aof3, —(29)

where ao is the lattice parameter, and fl, z2, z3 the unit
vectors of the Cartesian coordinate system coincide in
their directions with the primitive lattice vectors of the
simple cubic lattice. @ is the potential function de-
scribing the interaction between pairs of atoms and is a
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function only of the magnitude of their separation. @" where
denotes the second derivative of this function. If the
force constants of the crystal satisfy the condit'ion

then the crystal is elastically isotropic in the long-
wavelength limit. This condition will be imposed for
simplicity. For the crystal model considered, the
maximum frequency col, of the perfect crystal is

jv= Q
F =g
II =Q
J.=)

Q-=2

4 p
(o) (ll') 4 p, (o) (l'l")4, (o) (l"l),

()4 (ll')()4, (l'l")()4, (l"l),
4 p(') (»')SCp, (l'l")bC, (1"1),

4 p(') (»') (4)p, (l'l")4,.""(l"l),
4 p(o)(»')Cp, «)(l'1")54,.(l"1),

z)4 p(»')Cp, (o)(l'l")1)4, (l"l).

(43)

&.=~z„o+~z,, i, (33)

which equals one, if the defect atom is in the surface
and is zero otherwise. If we let

,=[12',"(a,)/M] .

For (zz(zs, l), using Eqs. (5), (6), and the equations
of the present section, we find

(6—8,)(ois/12 for n= x and yage, l =
(6—3(),)(or,'/12 for n = s

where

The summations in Eqs. (43) are the same as those in
Eq. (25). We lind that

The various terms of Eq. (42) are obtained in a straight-
forward manner and we record only the details for a
part of J, the only term of a3 which explicitly depends
on /, = —1 or 2, the labels of the atoms one layer away
from the surface.

This part of J, which we denote as J ', is

W= P C.p«)(»')Cp. «)(l'1), (34)

where
J.'(l)=R (l)+T (l), (45)

then

a.= P SC.p(11')SCp. (l'1),

C.= 2 ~C.p(»')~p-"(ll'),

(zs((s, l) =A+8 +2C . (37)

R-(l) = —e"(«)2'4-p(o)(1')4 p-(o)(1')
z'P

X[1+2I)p,.]1)z, z ., o,

l'P

X [1+28p,,]z)z, z.„z. (46)

YVe find easily that

2= (1/M') g' l lplpl [y"(«ili)]'
l,P,P ga

= 2 ((oi,'/12)'
(38)

Since 4 p(')(l') vanishes unless l,'=0, or +1, R (l)
likewise vanishes unless 1,= 0, or +1.For /, = —1,

R*(l = —1)=[4"(a)]'E(l)'L(l )'+3(l )']

and that

8 = —C =5 2 L&plpL[+" («[lf)/M]'
L,P,P Ho(

= (s)[0"(«)]',
R (l = —1)=[4 (a)]'Z(l.)'[(l,)'+(&.)']

(47)

= [@"(«)]'. (48)—,'z), (&oz,'/12)' for n= x and y

1),((oi,'/12)' for (s =s.

The prime on the summation symbol in Eq. (38) de-

notes that the term with /'=0 is to be excluded. The
quantities t

1
~

and l are defined by ai (x,l) = (6—1l),) ((or,'/12),
zsz (s,l) = (6—31),) ((ors/12),

(zs (x,l) = (2——,'(),) ((or,'/12)s

a2(s l) (2 1() ) ((oi, /12)

as(x, l,=0, 1) =7((oI.'/12)s,

as(s, l, =0, 1) =6(o)r,s/12)s,

as(~, l, = —1, 2)= (21/2)(o) '/12)',
8 (s l = 1 2) = 11 (&o s/12)s,

(1) = (l 'jl '+l ')zzs

i.=l.//l f.

(40)

(41)

In Eq. (39) and the equations to follow, l, l', etc. ,
denote the set of five triplets: (0, 0, —1), (1/v2)
(&1,0, —1), and (1/V2) (0, &1, —1).

We write (zs((s,l) in the following way:

(zs(n, l)= (1/Ms)(E+F +2H +J j2I' +Q ), (42)

(»)
In a similar way, we find that T (l) vanishes unless

l,=0, 1, or 2 and that T (l,= 2) =R„(l,= —1).
The results of these calculations are:
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for l, /0, +1, 2;

as(x.,l) =as(s, l) =12(o31,2/12)'.

RESULTS AND DISCUSSION

(49)

2X 36 36
(50)

(2) For l, =0, and 1 (defect atom in the surface),

1 2i X
(51)

123, 40 25 36

o2(x,0)-2 o2(x, l)-' 5

-o2(s 1)-' ~(s 1)-' 1 1 2),
+ +

col. a) L, 4X 36 36

(3) For 1,= —1 and 2 (defect atom one layer in from
the surface),

r— — , 21, 36 (3)(36)
(53)

r — r21 36 (12)(36),(54)

Equations (65) and (67) are supplemented by

o (y, l) =o2(x,l), (55)

since the Inodes corresponding to motions in two per-
pendicular directions parallel to the surface are de-
generate. The results contained in Eqs. (50) through
(54) are valid when Lo2(n, l)/o222]2))1, which is satisfied
when X=3f'/M((

For the present model, the effect of the surface is

When the expressions for a„(n,l) given by Eqs. (49)
are substituted in Eq. (27), we obtain the following
values of the e~genfrequencies of the localized modes
which are correct to first order in the ratio of the mass
of the defect atom M' to the mass of the host atom M
(X=3I'/M):

(1) For l,/0, &1, 2 (defect atom in the bulk of the
crystal),

o2(x, l-) 'o-2(y, t)-' o2(s, l)-'

TABLE I. The square of the vibrational frequencies of the
localized modes for the different defect site locations indicated
and for the mass ratio X=3II'/3E=-6. 6d22 is the vibrational fre-
quency when the defect is in the bulk of the crystal.

1, of defect site

Oand 1—1and2
t, go, a1, 2

P( (X,l)/622252

0.8341
0.9997
1.0000

$62(s, l)/6222 js

0.5088
0.9998
1.0000

most pronounced when the defect atom is at the surface
(l,=0, 1), in which case

L~(s,0)/~23js —,
' and Lo2(*,0)/o223js s

%e thus see that for this situation the presence of a
surface reduces the value of the vibrational frequency
of the localized mode corresponding to motion normal
to the surface to roughly 0.7 the value of the frequency
when the defect is in the bulk of the crystal. Table I
lists values of Lo2(6r, l)/o2ii]' for ),= s. This appreciable
frequency change may possibly be detected by optical
absorption experiments. The use of polarized light may
allow one to distinguish modes corresponding to mo-
tions parallel to the surface from the mode corresponding
to motions normal to the surface. A possible candidate
for these experiments is the system of Al substituted in
Au which has a mass ratio )~0.14.

The results of the present model show that the
localized mode frequencies are only slightly influenced
by the surface when the defect atom is even one layer
in from the surface. This rapid approach of the value
Of Lo2(rr, l)/o3i3]2 tO that Of the bulk When the defeCt haS
diffused away from the surface is shown in Table I for
X= 5, This result is due to the short-range nature of the
forces considered. If the range of the forces was in-
creased, then the properties of atoms located off the
surface would, of course, be inQuenced to a greater
extent by the presence of a crystal boundary surface.

In applying the present considerations to a physical
situation, besides the obvious change from simple cubic
to the correct bulk-crystal structure, account would
have to be taken, along with other things, of the fol-
lowing: force constant changes, anharmonic forces, and
distortion of the ideal plane surface, or, what amounts
to the same thing, a change from the basic periodic
structure of the bulk to the periodic structure present
at the surface.
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