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Zero-Field Susceytibijlity of Bloch Electrons*
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An expression for the zero-field magnetic susceptibility arising from electrons in a simple Bloch band is de-
rived. Uncoupled field-dependent bands developed earlier are employed in the derivation. The expression
thus obtained is amenable to very simple physical interpretation. Namely, it consists of three terms: the
Landau-Peierls term, crystalline paramagnetism, and induced diamagnetism. Reduction of this result to
parameters defined for field-free bands shows the equivalence of this result to those derived by earlier
workers.

for the electrons under consideration. The expression
must be in powers of H and good to square terms. The
susceptibility p then results from this expression by the
operation

x= lim —(1/0) (r)se/r)H') . (2)

The definition of X thus seems to presuppose that F
can be expanded in powers of II. In a strict sense this
is almost certainly not true. But expansion is usually
possible in a formal or asymptotic sense if some side
effects are neglected. The resulting expression for y is
then likely to have approximate validity.

Thus, computation of (2) looks like a fairly straight-
forward job involving second-order perturbation theory.
The reason why the problem nevertheless still retains
the attention of physicists is that this apparently
simple computation leads to an extremely long and
involved result. To complicate matters still further,
this result can be put in many apparently different,
but actually equivalent, forms.

In the following we approach this old problem with
the help of a new formalism. Wannier and Fredkin~ '
have shown that the action of the magnetic Geld upon a
band can be resolved into two effects. One effect
gradually transforms the parameters (wave functions,

*This work was supported by the U. S.Ofhce of Naval Research.' R. Peierls, Z. Physik 80, 763 {1933).
' E. N. Adams, Phys. Rev. 89, 633 (1953).' J. E. Hebborn and E. H. Sondheimer, Phys. Chem. Solids 13,

105 (1960). Hereafter referred to as HS.
4 C. P. Enz, Helv. Phys. Acta 33, 89 (1960).
s L. M. Roth, Phys. Chem. Solids 23, 433 (1962).
6 E. I. Blount, Phys. Rev. 126, 1636 (1962).
'G. H. Wannier and D. R. I'redkin, Phys. Rev. 125, 1910

(1962). In the following quoted as I. Equation (15) of that paper
is quoted as (I,15).

8 G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).
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1. INTRODUCTION

~ 'HE zero-field magnetic susceptibility arising from
electrons in Bloch bands has been computed

repeatedly in the past. ' ' There is little difhculty of
principle in its calculation. What is required is an
expression for the fermion partition function

energies, etc.) of that band. The other effect consists
in the breaking up of the band into a series of discrete
states. References 7 and 8 show that the second effect
is described fully by the formalism first postulated
by Onsager, ' provided the Grst effect is not ignored.
The bands thereby become renormalized or field-
dependent. We believe that these renormalized bands
provide a great computational advantage in many
problems, and we are recomputing the magnetic sus-
ceptibility to show up the resultant simplifications in
this particular instance.

The core of the new derivation occupies Sec. 2, and
the result at the end of that section is actually terminal
from the point of view of the new formalism. The
susceptibility arising from electrons in a band consists
of just three terms if the band is simple and the elec-
trons may be assumed spinless. The terms refer to
conceptually very simple quantities characteristic of
the band. In Sec. 3 the result is analyzed. The physical
significance and structure of the three terms is worked
out. They are given in tensorial form and in terms of
quantities defined for the field-free band. Calculations
incidental to this task are omitted; they are available
elsewhere. "

An Appendix is added which shows the equivalence
of our result with that of Hebborn and Sondheimer. '

2. DERIVATION OF THE SUSCEPTIBILITY

The starting point of the derivation is preferably
Eq. (14) Ref. 7, or Eq. (53), Ref. 8, which reads

5c~,(;9)=Z PLl'H 9 9'7 .(9—9')~.( 9') (3)
pI

K is a one-electron Hamiltonian containing a magnetic
field; A, (x;9) are Wannier functions associated with
the band q, modified by a Peierls phase factor; to, (9)
is the pth Fourier component of the energy-band
function IF,(k). Both ro, and 2, are field-dependent
over and beyond the Peierls phase factor. The reason
is that these quantities have undergone renormalization

' L. Onsager, Phil. Mag. 43, 1006 (1952).
' G. H. Wannier and U. N. Upadhyaya, Contract NONR

2771(05) Technical Report No. 3 (unpublished). Copies of the
report are available at the Physics Department, University of
Oregon, Eugene, Oregon.
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as functions of the field so as to make the Hamiltonian
free of coupling terms. Finally, there is in Eq. (3) the
exponential factor containing the field. Although the
exponent of this term is extremely small (of the order
10 '), it produces the change in the energy spectrum
from the band type to the level type. Without it, the
matrix problem (3) would be cyclic; with it, the problem
is of the Onsager type. We can see this easily by some
slight reasoning on (3). First, change the suinmation
llidex

Karman volume, and the summation over k goes over
S equidistant points in the first Brillouin zone. We
then get immediately from (3)

Tr(X) =P coeflicient of A, (x; y) on the right of (3)

=Q w, (0)=»rw, (0)

or with (5)

~A, (x; g) =P w, (p') expL —~iH g x &'7A~(x; &
—&'). Tr(X) =P W, (k). (6)

The expression in the square bracket is an operator
function of the vector operator K represented by the
round bracket. This vector obeys the commutation
rule (I,19) with reversed sign. This sign reversal simply
arises because we operate here on the wave functions
themselves, while (I,19) refers to operation on a
supposed multiplier function.

Calculation of the magnetic susceptibility is a
statistical problem which involves the computation of
traces of powers and more complicated functions of
the Hamiltonian. For this purpose, linear independence
of the functions A, (x; p) is essential. It is a not an
entirely trivial requirement. Functions like A, (x; p)
can be constructed using the states belonging to a
single energy level only; if this is done, a one-dimension-
ally infinite set results with the remainder being linear
functions of that set. To have the functions A, (x; p)
linearly independent, they must be formed from a full
band. A priori construction of such a band at finite
field is still somewhat of a problem. Fortunately, the
present task is one which must be handled in powers of
the field anyway and in this context a full band poses
no difficulties.

To evaluate our traces, we use the inversion of the
Fourier series (I,7) for W, (k), writing the integral in
the discrete notation for convenience

w, (y) = (1/1V) P W, (k) exp( —ik g) . (5)

Here X is the number of primitive cells in the Born—von

The argument of A, on the right now appears as a
shift expressible by a symbolic exponential of exponent
—y' B/By Th.is exponent commutes with the exponent
already present so that the exponentials can be simply
united. This yields

XA, (x; y)

=Ew. (e') exp i '—kHxe e' A.(x;e') (4)
p' Bg

&y p, ~, ~r
exp/i(k —k') 07Wq(k) Wq(k').

Finally, because the summation over y yields Ã8&, &,
we get

Tr(X') =P PW, (k)7'.

The first nontrivial calculation arises for the trace
of X'. Proceeding as previously, we get

Tr(K ) = p expfziH ~ (p x g +p x g +g x y)7
p~p &p

X,(p—y'), (y' —p"). ,(y"—y) .

We simplify the expression by the substitutions

9 =r+9&
p"=r"+p

This transformation makes y drop out of the equation
and yields

Tr (K') =S P exp/(-', iH r' x r")7
gl Zfr

t

Xw, (—r') w, (r' —r")w, (r") .

Complete evaluation of this expression is not needed
in this context. We want the result only to square
terms in H. Using (5) at the same time, we write the
expression in the form

Now we iterate (3) once and get

sc'A, (x; g) = P exp)-', iH. (p x ti'+ g' x p")7
p ~p

Xwa(5' —0')we(p' —9")AQ(x; 5") (7)

Again, we get the trace of 3C' by collecting coeKcients
of A, (x; g) on the right. This yields

Tr(~')= Z w (9 p)w (9 e) =»r Z w (e)w ( e)
P~P

Tr (K') =- (1/cV') P P f1+ ',iH (r,'r J" r„'r,") -H'(r„'r„"—r„'r ")'—+—O(H') 7—
Xe"" ~" "'+"'~~'—""'~W (k)W, (k')W, (k").
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Here H is taken to be along the s axis of a rectangular x, y, s coordinate system. The next step is to interpret the
multipliers r' and r" as derivatives of the exponential with respect to k and k" and to integrate by parts on those
two variables. The integrated-out parts vanish because all terms are periodic in reciprocal space. We get, therefore,

1
Tr(BCo) =—Q Q expifr' (k—k')+ r" (k' —k")]

Q2 k, k', k" r', r"

1 (&' (&' 1 (' (&4 8' g4

X 1+ iH — — ——H'~ + W, (k) Wo(k') Wo(k") .
2 Bk,Bk„" Bk„(&k,

" 8 (Bk,'(&k,"' Bk,"'(&k„' Bk.(&k„(&k,"(&k„"

Suiiunation over r' and r" is now possible and yields X'()), ), l)), &, . Thus all k vectors come out to be equal. This
result also annuls the linear term in H which contains now a cross product of a vector with itself. We are left with
the constant and quadratic term which equal

-g2W g2W ( g2W 2-

Tr(seo) =p pV, (k)]o—-'Ho g W (k) —
~

+O(Ho).
Bk,' (&k,' (Bk,(&k„

The trace of K' is typical of the general case. Employing essentially the same procedure, we find for the trace
of the m'th power

(&2W (&2W ( g2W )2

Tr(X")=P LW(k)]"——)i(ii —1)H' P (W(k)]" ' —
~ ~

+O(H').
k 24 i(&k.' 8k„' (Bk,Bk„1

(10)

Having found the trace of any power of K, we can find the trace of any function of BC by McLaurin's theorem

and thus with (10)

TrLF(~)]= P —F(")(0)Tr(~") .
n=og f

1
TrLF(Se)]= P F[W(k)]——H' P

k 24

d'FLW(k)] (&'W (&'W / (&'W
+o(H')

dW' (&k,' Bk„' ((&k,8k„

Since the calculation given here is purely orbital, we must add an extra factor 2 for spin when applying (11) to
(1). We find then

df (W ~) g2W g2W g2W 2

F= —(2/P) P ln(1+e s(~—») ——II'P +0(H')
k 12 k BV Bk ' Bky' Bk,8k~

where f(E) is the Fermi distribution function

(12)

(13)

To get the susceptibility, we must isolate the term in (12) which is quadratic in H, treating )& as constant. This
is immediately done for the second term which has an explicit factor H'. In that term we simply replace the 6eld
dependent 8"by its field-independent limit. In the first term, on the other hand, we must insert

W(k) = W(o) (k)+IIW('& (k)+H'W('& (k)

and expand in powers of B. We find

F= —(2/P) P In/1+exp —)'(W(') (k) —)&)]+2H Q W(" (k) f(W('& —
)&)

(14)

df(W(o) )&) 1 (&oW(o) Bo-W(o) (&oW(o)~o- df(W(o)
+2H Q W('&(k) f(W(» —)&)+—'LW(»(k)]o

~
(15)

R dW'» 24 (&k,' (&ky' Bk,Bk„/ dW('&

Finally, Eq. (2) yields for the susceptibility

df 1 g'2W(0) $2W(o) g2W(0) 2 df
W"'(k)f+l (W"')'

0 ~ de&» 24 at„~ au„2 a~.,aI„
(16a)
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or, in the form of an integral over the first Brillouin zone, and with dimensions restored,

df(s'"' rl)
—I e' 8 s'~@ 8's'~'~ 8's'~o')' df(s '"' —

n)
dk W("(k)f(W('& —)&)+-', (W('&(k))'

de(o' 24 52c2 Bk,2 Bk„2 Bk,&k„

Formula (16) has already been published as Eq. (101)
of Ref. 5. The derivation given there is, however, very
much more involved than the one presented here.

modification will make little or no diIIference in the
first two terms of Eq. (16).

The second term in (16) is always positive and
associated with the square of W"&(k). It is seen from
(14) that W"& enters into the energy like a magnetic
moment. The term in (16) which it gives rise to is the
paramagnetic susceptibility due to that moment;
indeed it has the usual paramagnetic form 1V)u'/kT. It
may at first sight seem strange that the present calcu-
lation gives rise to any paramagnetism at all since we
assumed neither orbital nor spin degeneracy. However,
closer examination shows that there is another cause
for paramagnetism, which is often overlooked, namely
a crystalline medium with an intrinsic "handedness. "
The paramagnetic term in (16) arises from this handed-
ness. We shall show this by proving that 5'") vanishes
in a crystal having inversion symmetry. We shall also
mal~e it plausible that this "crystalline paramagnetism"
is a physically identifiable phenomenon by proving
that W "&(k) is real and odd in k, as one would expect
from its interpretation as a magnetic moment. These
features are not entirely trivial; for W('&(k) is after
all, not directly a physical entity, but only an inter-
mediary in operational calculations.

In terms of quantities defined for the field-free
band, 8'&" turns out to be"

3. MSCUSSION

8W ("i W', ('&i
s'. "'(k)=l(vl(p + l~ —).+ I&le&.

Bk, 1 c&k„)
(19)

8's'"8's" ( 8'w'
)' df(w' g)—

dk
c&k,' c&k„' (c)k.&k„dW'

to|2

7r' fi2C2
XLP

It is our belief that the three terms in Eq. (16) repre-
sent physically distinguishable contributions to the
susceptibility. This belief is supported by the fact,
proved in Ref. 10, that all three terms are separately
gauge invariant. A proof is also found there that the
third term and the sum of the first tw'o terms are
independent of the phase employed for the unperturbed
j8loch functions. This seems to speak against the idea
that the first two terms have separate physical meaning.
However, we feel that a result need not be phase
independent to be physically meaningful. The work of
Gibson" and Kohn" has shown that there is a eatnru$
phase for Koch functions. In this phase, the correspond-
ing Wannier function is exponentially convergent in
space, and the lattice vector operator" is most closely
related to true position. We shall work with this natural
phase in later parts of this paper.

Among the three terms the third is the most easily
understood. It represents the so-called Landau-Peierls
diamagnetism. The Landau-Peierls susceptibility reads,
with the dimensions restored,

or, in tensor form,

g2

XLP
"J'=

~6~' 52c2

c&sW' c&'IF' df(Ws —)1)

DV'
(18)

dk ey~pe)L~g
Bk Bk, Bkp8k,

n J. B. Gibson, Bull. Am. Phys. Soc. 3, 146 (1958).
"W. Kohn, Phys. Rev. 115, 809 (1959).
is G. H. Wannier, Phys. Rev. 117, 432 (1960).

where e„p is the totally antisymmetric unit tensor.
The Landau-Peierls susceptibility is a gauge- and
phase-invariant contribution. It is the only term present
if the electrons are free. Our computation clearly
separates it from all other terms in the susceptibility
as arising from the breakup of the band continuum
into discrete states. We must therefore anticipate that
the De Haas —van Alphen effect will primarily arise
because the derivation of Sec. 2 has to be modified
for finite magnetic field. It is quite likely that such a

Here, q is the band index, X and I" the Adams oper-
tors.""Their definition is given in Eq. (29) below.
Equation (14) shows W, "' to be the co-factor of IX in
an invariant. It is therefore an axial vector and can be
expressed in tensor form. Its components 5'" are

m c&W,'~" e((('I p + I&(&l((')—
2mc ri c&k. )

(20)

Similarly, the contribution of the crystalline para-
magnetism to the susceptibility can be written in
tensorial form. We find

g2
VP-

CP
x' m2C2

ns BW,'
~)"-~"~.(v l (o.+— x) l ~)

Bka

m c&W,s df(W,' rl)—
&(vl(P.+— )x, lv& (»)

"E.N. Adams, J. Chem. Phys. 21, 2013 (1953).
'5 J. N. Luttinger, Phys. Rev. 95, 1154 (1954).



ZERO —FIELD SUSCEPTI B ILITY OF BLOCH ELECTRONS A 807

Further analysis of 5', & ~ brings in the point dis-
cussed earlier, namely, that there exists a "natural"
phase for Bloch functions. Ke are discussing here a
simple band with a spinless electron. In such a band,
the states k and —k are linked by time reversal, and
have among other things equal energy 8",(". This
symmetry can be obscured artificially by the introduc-
tion of a k-dependent phase factor for the wave func-
tion. Physically incomprehensible results for H/", o)

could thereby be obtained. In the following we do not
allow such phase factors. The wave functions of k and
—k are then linked by the identity

b os(x; k) b o(x (22)

If we apply this to the definition (29) of the Adams
operators, we get

(s, —klXlg, —k&=&q,klXls, k&, (23a)

which implies, in particular, that

ing of 5', o~ results if we realize that

W, &'& =0 in a crystal with inversion symmetry . (28)

This is again most easily checked with the help of
Eq. (25). If a crystal has inversion symmetry, the wave
function (22) can be realized in still a third way,
namely, by taking the wave function of negative
argument. Since the square of this operation is the
identity we must have

b,'(—x; k) = &b,o(x; —k) . (22a)

The sign of this relation cannot be generally determined;
it depends on whether the totally periodic function
b,o(x,0) is even or odd with respect to the inversion
center. From continuity reasons it follows then that
the sign is characteristic for the entire band of band
index s. Now let us investigate first the behavior of the
diagonal elements X, under inversion. By definition
we have

where we set
X,(—k) =X,(k), (23b)

&vlxlv&=x' (23c)

8u, (x; k)
X,=i u,*(x; k) dr.

Bk,
(29)

Reduction of (19) to inatrix elements of the Adams
operator is possible by reduction of the operator p.
The appropriate relation is obtained by differentiating
the Schrodinger equation just once with respect to k.
It yields

(R—W o)Xb,o= —iLI&—(BW,'/Bk) jb,' (24a)

and hence

If we apply inversion to the variables of integration
in this expression, then by (29) and (22) each function
is replaced by the conjugate complex times +1. It
follows that the factor for the integral as a whole
is +1:

o&u '(x k)
X,=i u(x k) dr,

Bk~

or, with an integration by parts
&s I y —(o&W,o/o&k)

I g) = i(W,'—W,') (s
I
X

I g) . (24b)

Application of (24) to (19) yields

W &'& (k) = (aW '/ak )V —(BW '/ak )X
-'Z. (w:-w:)(«lxl )( II I~)

(25)

which means that

,=0.

Bu, (x; k)
X,= —i u, '(x; k) dr,

Bk

(30a)

It is now relatively easy to reason on H/('). First, we
have

W "'(k)= W &'&(k)*=real. (26)

This is true because all three terms in (25) are real;
for the third, it follows from the fact that the curly
bracket is purely imaginary. Second, we see from (25)
that

W, &'&(—k) = —W, &'&(k) . (27)

Again it is true because it applies to each of the three
terms in (25). In the first two terms the expectation
values of the Adams operators are even by (23b), and
the derivatives of the energy are odd. In the third
term the energies are even, and the curly bracket, by
(23a), is odd.

It is not, in general, the purpose of this paper to
examine the susceptibility in crystals of various types
of symmetry. However, a very much better understand-

If the same reasoning is applied to off-diagonal elements
of the Adams operator we get

&s I XI v&= ~&el Xls), (30b)

with the sign typical of the index pair q, s. From this it
follows that

&vlXls&&slI'lv& —
&el I'ls)&slXlv&=0 (30c)

The identities (30) render the expression (25) equal to
zero.

The first term in (16) deals with the induced moment
for the electron system, that is, diamagnetism in the
sense of classical physics. The term contains the Fermi
distribution function rather than its derivative; in
other words, all electrons, not only those at the surface
of the Fermi sea, acquire an induced moment. %e
know from the case of atoms that this moment is
opposed to the field. %hen we pass to the case of a
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band we And this contribution lost in a number of other terms whose sign cannot generally be predicted.
8'&" can be given a variety of equivalent forms when expressed in terms of parameters of the held-free band.

The shortest form reads

BLVD' ' 1 8 BlV,' 8
(~ I p.I'— x

I q&
—

&q I xp.l'+ I'p.x
I q)+

s~q p', o—p'qo 2 laky Bky Bky

1 82K,' 1 848',' 8X, 18K,' 8
+ l(q I"

I q)+-, &ql x'I q&+-, ,+w."' +- &ql»+»
I q)

2 Bky2 8 Bk~ Bky laky 4 13k~ sky

188',' 8
(qlxl+»Iq&. (31)

4 t9ky &9k~

This form is most directly related to the Landau gauge, but can also be derived from the symmetric gauge, if
desired. "The shortest form which is obviously real and symmetric in x and y reads

Wo gWo o 1 8 ( BWoo)
w, "'=—lZ, , &~l p*+ I'—p;+ xlq) +- &qlxl p.+.~e O', '—O', ' Bk Bky 4 Bk„k Bk„l

BR',' 1 BP',' AWE'+- (~l I'(P.+ )~
I ~)— (~ I x(o.+ )

I'+ ~((.+ )x I v)

1 8 88',' BW,o 1 O'W ' 1 O'W o)
(q I' p"+ x+X p+ I'lq&+ 1 &qlI"lq&+

8 Bk, Bky Bk„ 8 Bk,' 8 Bk„' )
1 82lV, ' t'Bx, BPo+- &ql XI'+»

I q&+o Wo"'I — (32)
8 Bk.8k„ (Bk„ Bk,

The atomic diamagnetism in the I"and X' terms is clearly lost in a welter of other contributions whose nature is
not clearly understood. It is possible to show, however, that the expression (32) is even in k."This suggests,
together with the earlier results that, generally,

lV, (—k, —H) = W, (k,H) = real, (33)

in agreement with the principle of time reversal. This result is not proved at the present time. Equation (32) is
also easily put in tensor form. The contribution of induced diamagnetism to the susceptibility comes out to be,
with dimensions restored,

X;o"("= dk f(Wo' n)o„~po„„—
2%3

m BW,o) m BWoo

(qfxol p-+ Il~&&~l p-+—— x
I q&

4m'c' S~o W,'—Woo 5 5 8k„I A i9kp

2e

e ns 88',' ns BB'q' e2 m 828','
(q I

Xs p,+— X,+X, p,+— X~ I q&
— 8, —— (ql Xsx,

I q)
8~njic2 8k A Bk fi Bk 8mc2 ji2 Bk 8k

27r2
dk f(Woo n) IF"o—u- (q I

X.
I q& (34)—

2Ac Bk,

The calculations which lead to (19), (31), and (32) are quite lengthy and have been suppressed in this publi-
cation. The work is available in the form of a report as stated in Ref. 10.

APPENDIX

We now show the equivalence of our result with that of Hebborn and Sondheimer (HS). This is most easily
carried out by deriving our result from their expression. Although the expression for x is gauge-independent, the
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form for x in Landau gauge is most convenient for the present purpose. The term X~ of HS can be recognized in
our expression as consisting of Landau-Peierls terms and the contribution to y from the term involving the fourth
derivative of the energy with respect to components of the wave vector appearing in the expression (31) for
8',&". The latter, after integration by parts once with respect to x and y components of k, yields the terms in-

volving the third derivative of the energy occurring in X~. The expression for 8","~ in Landau gauge can be
written as"

8$'q' i 828','
Xlq)—

Bky 2 t9k~8ky

In terms of notation used by HS for 8'„ this is given as

W, &') = W, (BW,'/—Bk„)X„

Now combining the terms L
—iX«i'(BW, '/Bk„)'+2X«W, BW,O/Bk„) from X2 and the term (W,)' from X4 of HS,

we obtain the term representing crystalline paramagnetism in our expression (16). Next we consider the terms
involving off-diagonal matrix elements in X3 of HS,

2 X m 88'0 BW'
&„+(qi I'p, —Xp„i s) f(W,' g)d—k

2m'mc2 ~» O', '—O', ' O2 Bk Bky
(c)

To proceed further, we need a second-order sum rule which is obtained with the help of the Hermitian adjoint
of Eq. (31a) of Ref. 10 by taking matrix elements with respect to b, , where sAq, thus obtaining

BW,') BW,'
(~.'—~ ")(vali v l~) ~(cl ~(p=— I+X p

Bk, J Bk„
(d)

X,q m 08',' 88','
2(qi I'p. is)+— X,.+i(qi$—

g —is)(W, '—W,') f(W,' g)dk. —
2x'tnc2 ~&~ lV,'—TV,' fi2 Oker t9ky

(e)

Here P, rj+ are the operators @&i(B/Bk,), y+f(B/Bk„), with the sign according to the direction of operation. "
Utilizing Eq. (d), expression (c) can be written as

The summation over s can be easily carried out for the third term in the above expression by adding and sub-

tracting the term with s= q and utilizing the fact that the b, s form a complete set. Thus, we obtain

8 Xq~ —2(ql 1'P.ls)+ X" +—~(q ~n (+iq) l~X„I-+— f(W,' ~)dk.
2x'esc' e&~ O', '—S'q' 5' Oker k Bk, Bk„ Bk„

Combining the terms in the curly bracket in the above expression with the terms involving off diagonal matrix
elements in X4 of HS yields

g2 m 8$','
dk f(W,' ~) 2 (sl p.l'

27) 3yg2C s~q g,o—g qo (g)

This term is readily seen to be present in our expression for x as the contribution involving off-diagonal terms
from 8,& ~.

Finally, all the remaining terms of HS can be written as

g2

4m'@ac'

BW,' Bf(W,' g)—nz 8$ qO

dk — (q i
x'

i q) —(q i xp.v+ vp.x i q)
A' Oker 8ky

BXq,— (ql I"lq)+2W, f(W,' n) . (h)—
ky

m t'BI'„BXq, BV„BXqq m BW,'—X.al
— — +Xa. +— »(ql0 n Vi—q) f(We' ~)

~ Bk, Bky Bk. Bky k' Bk))
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Here 5', occurs as defined by HS. The terms in the first curly bracket in the above expression can be combined
with the other terms by integrating by parts with respect to kv. Thus (h) reduces to the following form:

e' 88",' 8

e2 e' 825' ' e 8X

25$c 252c2 Bky' kc Bky

This is exactly the same expression as the contributions to 7f from the remaining terms in (31), thus proving the
equivalence of our result to that of HS.
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The Si:P and Si:8 systems have been studied using the methods of pulse and cw nuclear magnetic reso-
nance. The purpose of this study is to investigate the transition of an impurity system in a solid from an array
of isolated paramagnetic atoms or clusters of atoms to a superlattice of impurity atoms having strong wave-
function overlap and metallic character. Knight shifts, line shapes, and nuclear spin relaxation times were
measured for Si"and B"in p-type silicon and Si" and P" in e-type silicon. Phosphorus concentrations vary
from 10"to 10"impurities/cm' and the temperature range investigated extends from 1.4 to 300'K. Onset of
metallic behavior in m-type silicon at 4)&10"phosphorus impurities/cm' is indicated by the Si" T1 becoming
proportional to T ' between 1.4 and 4.2'K and by the existence of a Knight shift for Si".Above a phosphorus
concentration of approximately 3X10' cm ', Si" T&'sand Knight shifts obey the Korringa relation. Broaden-
ing of the Si" resonance line by 5 times the dipolar width and of the P" resonance line by 100 times the di-
polar width at concentrations of 1.4&10"cm is shown to be caused by fluctuations of the local Knight shift
about the average Knight shift value. Such fluctuations are explained by a model of a Poisson distribution
for the local P" impurity density with a threshold local density of 3)&10"cm ' for transition to metallic
properties. This model agrees with the observed P" resonance line shape and explains the transition to
metallic behavior in e-type silicon. In p-type silicon, B and Si" Knight shifts are measured for boron con-
centrations greater than 1X10"cm '. The B"T1's and Knight shifts agreewith the Korringa relation within
a 15% experimental error. However, both the Bu Ti and Knight shift are independent of concentration for
boron concentrations between 2X10' cm and8. 5&10' cm '. Suchconcentrationindependencemaybeex-
plained by postulating a clustering of boron atoms at an average local density in a cluster greater than
8.5)&10"cm '. Wave function probability densities are calculated from Knight shifts with a free carrier
density of states assumed valid. To facilitate comparison, wave-function densities are normalized per unit
volume of the crystal and are 2600 cm ' at P" and 100 cm ' at Si" in n-type silicon and 80 cm 3 at Si" in
p-type silicon.

INTRODUCTION

l
'HIS paper reports the experimental nuclear

magnetic resonance (NMR) behavior ot Si", P",
and 8"nuclei in the silicon crystal lattice with increas-
ing donor- or acceptor-impurity concentration. We are
interested in those concentrations of impurities in which
low-temperature electric resistivity and Hall-coefficient
measurements indicate a transition from a nonmetal to
a metal. ' Graphs of the electrical resistivity as a function
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the Advanced Research Projects Agency. The latter part of the
work was also supported by the National Science Foundation.

f Present address: Washington University, St. Louis, Missouri.
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of temperature in n and p-type -silicon' ' and ger-
manium' ' show three qualitatively different classes of
behavior as the impurity concentration is varied. In
e-type silicon at donor-impurity concentrations less
than about 4&& 10"cm ', the resistivity measurements' '
indicate that most of the electrons are bound to the
impurity system at temperatures less than 20'K. We
shall call this concentration range the semicoedlcting
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