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A method for examining the convergence of expansions of wave functions for nearly free electrons is pre-
sented. It is shown that Bardeen-type expansions of alkali-metal conduction-electron wave functions con-
verge suKciently slowly so that it is necessary, when calculating the value of a physical quantity to any given
power of k, to include all terms of all orders in n(k, r) which contribute to that power. Consequently, wave-
function expansions to third order in k which include the effects of spin-orbit interaction to 6rst order are de-
rived, in the spherical approximation, for these metals. Using these wave functions in Yafet's equation, the
g shift, to second order in

~
k ~, is expressed in terms of radial wave functions. The radial functions are evaluated

numerically using the quantum defect nethod under four ditf erent approximations: (i) With and without the
so-called "polarization correction" and (ii) with and without a term in the potential corresponding to an app-
roximate self-consistent Hartree 6eld due to the presence of other conduction electrons within the Wigner-
Seitz sphere. The best agreement with experiment is obtained when the "polarization correction" is neglected
and the Hartree term included. In this approximation the effective mass ratio, m/m, is considerably closer
to unity in the heavier alkali metals than was predicted by earlier calculations. The "polarization correction"
is examined in detail in an unsuccessful eGort to determine why it leads to a considerable decrease in the
agreement with experiment.

I. INTRODUCTION

~ 'HE quantum defect method (QDM)' ' has been
used, with considerable success, to develop wave

functions for the alkali-metal conduction electrons near
the surface of the Wigner-Seitz polyhedron or sphere.
The wave functions have been used to calculate a
number of measurable properties of the metals. In most
cases the agreement with experiment has been quite
satisfactory, within the somewhat wide limits of un-
certainty in the theory. These properties are the cohesive
energy, ' ' the compressibility, ' and the Knight shift'
as a function of temperature. A common characteristic
of the properties is that they depend mainly on the "s"
portion of the wave functions. In addition, calculations
of the effective mass'~ and the shape of the Fermi
surface' have been made. Both quantities depend on
higher-order terms in the spherical harmonic expansion
of the wave function and are a partial check on these
terms. Measurements' which depend on the shape of
the Fermi surface indicate that the calculations have
overestimated the distortion from sphericity of this
surface. It is suggested in the present work and con-
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firmed by other calculations" that these results are
due to the approximations used in earlier versions of the
QDM of replacing the true crystal potential by that
of the bare ion cores, neglecting screening by the charge
of the valence electrons. Direct measurements" of the
effective mass at the Fermi surface yield values which
are about 30% high in comparison with the present cal-
culations. The interpretation of this discrepancy is com-
plicated by many-body and phonon interactions which
still cannot be predicted accurately from erst principles.

The shift of the alkali metal conduction electron g
from the free-electron value depends directly on spin-
orbit interaction. For this reason, the calculation de-
pends primarily on the quality of the l) 0 terms in the
expansion of the wave function. The 1=0 terms in-
huence the calculation primarily through normalization.

Three other numerical calculations of the g shift are
reported in the literature. Two, by Brooks" and by
Yafet, ' were based on an incomplete theory of Yafet'
and yielded values which were approximately one-half
the observed values. The third, by Bienenstock and
Brooks, "used the more complete theory of Yafet,"but
a wave function which had been expanded to only
second order in the Bloch vector. The shifts obtained
were consistently and significantly larger in magnitude
than the observed values.

In the work reported here, it is shown that it is
possible to obtain improved agreement with experi-
rnent. Such agreement, however, depends sensitively
on the choice of approximations made in deriving the
wave functions. In particular, it was necessary to (i) use
the expansion of the wave function to third order in the

"V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).' C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).
"H. Brooks, Phys. Rev. 94, 1411(A) (1954); Y. Yafet, ibid.

85, 478 (1952).' A. Bienenstock and H. Brooks, Bull. Am. Phys. Soc. 5, 253
(1960)."Y.Yafet, Phys. Rev. 106, 679 (1957).
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wave vector; (ii) include, in the potential, a Hartree
term, due to the presence of the other conduction elec-
trons in the Wigner-Seitz cell; and (iii) neglect the
"so-called polarization correction. '" Since (i) was not
in keeping with earlier analyses of the convergence
properties of the Bardeen expansion, these properties
have been re-examined. In addition, some of the pa-
rameters which enter into the expansion of the energy
in powers of the magnitude of the Bloch vector, around
the bottom of the band, have been recalculated. It is
found that, in all cases, the deviation from free-electron
values is smaller than those values previously obtained
using the bare ion core potential rather than an ap-
proximately self-consistent one.

4'(r)+ V(r r )k(r )dr =+~(r )
2m

(2.1)

where V(r, r') is a nonlocal potential which includes the
eRects of exchange and, to some extent, valence-core
correlation. Using the Bardeen method, the periodic
part of the wave function at a point k may be expanded
in terms of the complete set of functions associated
with the points k=0. The analyses of convergence pre-
sented previously have been based on the assumption
that the eRective one-electron potential is weak and
local. We now proceed to show that even in this case
the convergence of the k p expansion is slow when ill
is not a small parameter forcing convergence.

With V(r,r') = V(r)h(r —r') the Bardeen expansion

is, to second order,

uo (k,r) =
l
0)+2i P'—

(go «)

(jv, «) {+, P„)
lt)&ilk v lo)&olk vlo)

(~0—«)'

2 (&o—«)'
(2.2)

II. CONVERGENCE OF THE WAVE PUNCTIONS

The formulation of Yafet'4 for the g shift yields an
expression which is valid to second order in the wave
vector. This expression requires a knowledge of the
expansion of the wave functions to third order. In the
initial calculation of Bienenstock and Brooks, " it was
assumed that the expansion of the periodic part, u(k, r),
of the wave functions is rapidly convergent, so that the
third-order terms could be neglected. We have since
found that this is not the case. In this section, the rate
of convergence is discussed in terms of the k p expan-
sion. For simplicity, spin-orbit interaction is at first
neglected.

We are concerned with 6nding alkali-metal conduc-
tion-band solutions of the Schrodinger equation

&x[k pl0) &ylk plo) &slk yl0)
=P~, (2 3)

where P is a small parameter, as it is zero for free

electrons. Thus we find, as has been demonstrated by a
number of authors, that the terms of order higher than
zero in uo(k, r) are very small compared to uo(O, r), at
least outside the atomic cores. This is a necessary con-

sequence of the free-electron nature, as, for free elec-

trons, u{k,r) =u(0,r) = 1.
The analysis becomes more interesting when we con-

sider terms of higher order. k y mixes I'i5 with I'i, Fi2,
F~5', and F25'. Of these, the representations of Fy, Fyg,

Here
l
l) denotes ui(0, r) with l=0 indicating the con-

duction band.
For metals in which the electrons are nearly free

there are three types of matrix elements which enter
into Eq. (2.2). The simplest are those which are zero

from symmetry considerations. These may be found

using group theory. The second class of matrix elements

are those which are not zero from symmetry considera-

tions, but are zero for free electrons. These will be con-

sidered as small parameters. The third class includes

all other matrix elements. For the purpose of discussing

convergence of wave functions, we shall consider the
deviations of these matrix elements from their free-

electron values as small parameters compared to the
matrix elements themselves. Thus, to determine their
values we may use as basis functions at k=O the
eigenfunctions of the irreducible representations of the

symmetry group of the crystal constructed from plane
waves whose wave vectors are the reciprocal lattice
vectors —the so-called "symmetrized combinations of

plane waves" (SCPW).
The second class of matrix elements contains then

those which are nonzero by symmetry considerations,

but involve bands constructed from different sets of
degenerate reciprocal lattice points, while the third

class contains those taken between different states con-

structed from the same set of degenerate reciprocal
lattice points.

In the alkali metals the bottom of the conduction

band corresponds to the reciprocal lattice point K=O.
This point is non. degenerate (ignoring spin degeneracy)
and the wave functions have the symmetry F&. It is

easily shown that the k p perturbation mixes only

F~ and F~5. The 6rst set of reciprocal lattice points

(using the body-centered rather than the primitive
cell to define the reciprocal lattice indices) are of the
form (110) and there is a twelvefoM degeneracy. From
the plane waves of the form expin(x+y), where n= 2~/a,
and u is the lattice constant, we can construct SCOW
which transform according to the irreducible represen-

tations F~, F~5, F~~, F 5, and F~5'. The term of erst
order in k mixes in the three eigenfunctions of I'i5,

which we denote as lx), ly&, and ls). The matrix

elements are
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and I'ss' are contained in the (110) combinations and
may lead to appreciable matrix elements. Those matrix
elements of the second class, involving points other than
(110) may be neglected as they lead to terms which are
of second order in small parameters. To determine the
significant matrix elements we need an explicit form
for the basis functions. Examples are shown below.
They are constructed in the manner discussed by
Jones" and normalized so that their quadratic integral
over the full cubic unit cell is unity.

I 1)= (2/3as)'t'(cosnx cosny+ cosny cosns

+cosns cosnx)

of all reciprocal lattice points to the convergence is to
obtain first-order weak-binding solutions to the Schro-
dinger equation and expand these as a power series in
the wave vector. The solutions under consideration are
for the wave function outside the core, which are con-
sidered equivalent to the orthogonalized wave func-
tions in a weak, nonlocal pseudopotential. "

Following Mott and Jones, "we write

lt (k,r) =px„A (K„) exp[i(k —K„) rj. (2.6)

The nonlocal pseudopotential can be expressed as

V(r, r') =+K„V(K„—kc, r) exp( iK—„r)

I 25

I x)= (2/a' )' t' sinnx(cosny+ cosns)

I A) = (2/a')'t'[cosns (cosnx+cosny)
—2 cosnx cosnyg

I 8)= (2/a' )' t' cosns(cosnx —cosny)

I xy) = (4/a')'" sinnx sinny.

(2.4)

Y,exp[ ir.—(r' —r)]dr. (2.7)

since V(r+R, r'+ R) = V(r, r') when R is a repeat vector
of the lattice.

In keeping with the previous analysis, the V(K —tc,~)
are assumed to be sufFiciently small so that terms which

are quadratic or higher in them may be neglected.
Substitution of Eq. (2.6) and (2.7) into (2.1) yields

g K„A (K„)[()'t'k'/2nt) (k—K )'—Ej
Using these functions in Eq. (2.2) we find that, to

second order in k and first order in small parameters,

Np(k, r) =
I 0) iP/n(k—, I x)+k„Iy)+k, I s))
—p(2u '—u '—u ')

I
A)/v3n&

—p(k, '—ie ')
I
8)/4n'

+P(&AIxy)+le ~-Iys)+k k*lsx))/v2 '
—P(2)'t k'I1)/12n'+terms from

other reciprocal lattice sets. (2.5)

Equation (2.5) reveals the most important lesson to
be gained from this analysis. That is, in all orders of
perturbation it is possible to construct terms which
are linear in the small parameter P. Thus, there is no
reason to expect tto(k, r) to converge as quickly, in
general, as the ratio of the first- to zero-order terms.
Indeed, the contribution from this set of reciprocal
lattice points indicates that the convergence factors
are of the order of -', ()'s/n), which is equal to 0.31 at the
Fermi surface (spherical approximation).

This method of analysis has been chosen because the
free electron functions show the symmetry of the actual
wave functions. It is predicated, however, on the as-
sumption that all sets in reciprocal space contribute
terms to the expansion which converge at approxi-
mately the same rate. This is not the case. In order to
examine the contribution of all sets it has been found
necessary to consider functions which do not display
the symmetry.

The easiest manner of determining the contribution

&(exp[i(k —K„) rj+ gx. , K.

—2m)r(K„—k, k)
A(K„)=

)'t' K„'—k K„
(2.9)

To first order in the potential

2nt V(K„—k, k)
P(k r)=e"'A(0) 1—

its x.~o E„'—k K

'y& exp (iK r) . (2.10)

{V(K„—rc, R)A (K ') exp[i(k —K ' —x) r'j

&&exp[i(v.—K„) rjidhdr'=0. (2.8)

The integrals over r' and x can be performed, yielding

g x„A (K )[(ft'/2m) (k—K„)'—Ej exp[i(k —K„).r]
+Px„x„.V(K„—K„'—k,k)A (K„')

Xexp[i(k —K„—K„') rj=0.
Since all the V(K ) are considered small, those terms

involving A (K„'), in which K„'&0, may be neglected.
In addition, to 6rst order in the V(K„), E= Pt')'t'/2nt).

Thus,

Ptr„{A(K )[(k—K„)'—k']
+ (2nt/t't')A (0)V(K„—k,k)) exp(iK„r) =0

or

"H. Jones, The Theory of Briltonin Zones and Electronic States "J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
in Crystals (North-Holland Publishing Company, Amsterdam, D N. F. Mott and H. Jones, The Theory of the Properties of
1960), Sec, 30, 3&tats and Alloys (Dover Publications, Inc. , New York, 1958).
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To obtain correspondence with the k p expansion
each term in the sum is expanded as a power series in
k to yield

This expression, unfortunately, does not lend itself
to a simple qualitative analysis. Some idea of the con-
vergence properties may be obtained by considering
the local potential V(r) 5 (r—r'). In this case V (K„—k, k)
= V(K„) for ail k. All the gradients with respect to k'
vanish in (2.11) yielding

2m
l((k,r)=e'"'A(0) 1— Q Q V(K )

$2 y X~NO

k K.
)

exp(~K. r)
X

~
~

K.' K„'
(2.12)

"L.Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).

The contributions of the mth reciprocal lattice point
to the pth-order term goes as (1/K„') (k K„/K„')&.
This factor produces a convergence which is increasingly
rapid with increasing

~
K„~ . Thus, the argument based

on the (110) set of reciprocal lattice points under-
estimates the rate of convergence if points of large

~
K„~

contribute an appreciable portion of the first-order
term. Since the number of points with fixed

~
K„~ goes as

~

K„', the contribution to the first-order term of regions
of K space with fixed ~K„~ goes asV(K„)(k K„)/~K„~'.

Thus, if the potential is restricted to a small portion of
the unit cell near the nucleus, so that V(K) is a slowly
varying function of

~
K„~, the convergence will be con-

siderably more rapid than that indicated by the (110)
analysis, but will probably be less rapid than that in-
dicated by the ratio of first- to zero-order terms. On
the other hand, if the potential is slowly varying, so
that terms with large ~K„~ make little contribution
to the first order term, the (110) analysis is more
nearly correct.

Xo calculations of pseudopotentials have been made
for the alkali metals. Some idea of the form of the
V(K„) for local pseudopotentials can, however, be
obtained from the work of Phillips and Kleinman" on
silicon. In this case, the repulsive terms associated with
orthogonalization effectively cancel all but the first
shell components of the potential. Thus, the k y ex-
pansions of the alkali-metal wave functions outside the
core probably converge as slowly as is indicated in the
(110) analysis. It thus becomes necessary, when cal-
culating the value of a physical quantity to any given

power of k, to include all terms of u(k, r) which con-
tribute to that power. This is the reason why the wave
function is carried to third order in the following sec-
tion. A complete analysis of the convergence is not
possible as the nonlocal nature of the potential has
not been investigated in sufficient detail to allow a
complete analysis of Eq. (2.11). Finally, it should be
pointed out that this argument does not necessarily
apply to the convergence of a calculation of any
physical quantity in a power series in k. Each such
quantity must be examined individually. This model
may often be used, however.

We may now ask how the spin-orbit terms will
converge. When we include this interaction in the
k p scheme, we get an additional term of the form
co&VXjp 8, where co is a small parameter. This interac-
tion differs essentially from the k p interaction in that
it mixes nondegenerate free electron states. ~ is the small
parameter which gives us the rapid first-order con-
vergence. The terms in the k y expansion which will
dominate are those in which the mixing of nonde-
generate reciprocal lattice states is done with the spin-
orbit term. All other terms will be quadratic in small
parameters. Hence, the rate of convergence is close to
the rate of convergence of the k y terms.

III. DERIVATION OF THE WAVE FUNCTIONS

The wave functions desired are solutions of the
Schrodinger equation which correspond to electrons
in the conduction band of the alkali metals, and which
include the effects of spin-orbit interaction. We simplify
the problem immediately by demanding solutions
within a spherical atomic cell. In this case, it is assumed
that the Schrodinger equation can be written in the form

—-,'ns W(r, r')L' S'l((r')dr'=0. (3.1)

The wave function, iP(r), is a two-component spinor,
and the integrals include spin summations. Terms of
higher order in (1/mc') which come from a further
decoupling of the Dirac equation have been neglected.
s is minus the energy in rydberg units, (—me'/25'). The
first Bohr radius, (5'/me'), is the unit of length, and ct

is the fine structure constant, (es/Pic 1/137). The non--

local V(r, r ) should include spin-independent relativistic
terms to this order. W(r, r') is an attempt to simulate
these, and spin-other orbit interactions, in the spin-
orbit term. This form remains as an unproved assump-
tion, but seems consistent with the work of Blume and
Watson. "It is sufficient in this analysis, to have a non-
local interaction such that J', L', and mJ (the magni-

"M. &lume and R. E. Watson, Proc. Roy. Soc. (London) 270,
127 (1962).
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P„(k r)=e'"'I (k r) (3.2)

This is a consequence of the periodicities

V(r+R, r'+R) = V(r, r')

tudes of the total angular momentum and the orbital
angular momentum, and the third component of the
total angular momentum) are good quantum numbers,
and which falls off sufiiciently quickly so that W(r, r')
is negligible when r or I' is in the region outside the
ionic cores.

The wave function may be written in the Bloch form

and
W(r+R, r'+R) = W(r, r'), (3.3)

where R is any repeat vector of the lattice.
In the spherical approximation, it is assumed that

within the spherical cell V(r, r') and W(r, r') are in-
variant under simultaneous rotations or reQections of
both coordinates.

For each value of the energy parameter e there
exists a set of solutions of this partial differential
equation which correspond to eigenfunctions of the
operators

~ J~, ~L~, and mq. These functions are corn-
plete for describing an arbitrary solution of Eq. (3.1)
with fixed energy e. They are of the form

Fg+„c,(r) ((L+m+1)'~'Vz, ~(r) )
F~,~(r)I~~L~m~)=,

I . l~ J=L+p
(2L+1)'~' k (L m)'~'VJ. ~—, (r) I

( (L m)'~'Yr, (—r)
=Fi--„c(r)I J=I—

2
k (X+m+1)'~'Vr, ,~ (r'i)

(3 4.)

where m=mJ —~, with respect to an arbitrary axis
usually determined by an external magnetic field.

The spherical harmonics are normalized on a unit
sphere, and their arguments are the orientation angles
of the vector r. The Il 's obey the differential equation

the functions of Eq. (3.4), we may write, to third order,

3 oo L+-',

P Io'A, g, i, ,(k)Fg, r, (e,r)
@=0 L=P J=L,—', ~J

X iLJ,L,mz). (3.8)

—(V,'+e)Fg, z, (r) Vc, (r,r')F—g, l. (r')dr'
This is not yet a true expansion in k, as e is also a

function of k. To third order,

—(~'/4) P (1+1)—L(L+1)—3/43
60—E2k (3.9)

where

Fz, r. (e,&) =& s, r. (eo,&) Ep&'BFs, s, (e—o,r)/Be. (3.10)
X Wl. (r,r')F~, l.(r')dr'=0, (3.5)

Then

B' 2 B L(Lj1)
+———

Br r Br
(

O'= E Z ' A, ~,1„(k)Fg,l, (ep, r)
~
J,L,mg)

q=o L,J,m J
BFg, r, (ep,r)

A —&, &, I,:(k)Eo
'

I~,L,m~) (3»)
(96

Henceforth, the label ep is droppeg. from the notation.
For simplicity, the Ii J I,'s are normalized in the follow-
ing manner:

F~ o(e,r,) =F~ &(e,r,) =Fq o(e,r,) =1,
r,BFg,o(e,r,)/Br= 1, (3.12)

for all e. In addition, we write

The Vi, (r,r') and Wr, (r,r') are defined in the Appendix.
The procedure used for the determination of the

form of the wave function is an analog of that described
by Brooks. P is expanded in a power series in k, with
terms retained to third order. Corresponding to the
alkali metal conduction electrons, P is required to be
s like at the bottom of the band (4=0), where 5, is a
good quantum number, and to obey the Wigner-Seitz
boundary conditions

exp( —ik r,)P(k, r,) = exp(ik. r,)P(k, —r,),
exp (—ik. r,)BP(k,r,)/Br

= —exp(ik r,)B$(k—,r,)/Br, (3.7)

Fi, (e r) FJ+&,L(e,r)+ FL &, L(er)—
2L+1 2L+1 (3.13)

where r, is an arbitrarily oriented vector to the surface
of the Wigner-Seitz sphere. Using the completeness of

aFi, (e,r) = Pl+; I, (e,r) F~; 1,(c,r) . —

The functions Fi, (e,r) are good approximations to
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the radial functions which are obtained when spin-orbit
interaction is neglected. They differ by terms which are
second order in the spin-orbit parameter. The AFI.(e,r)
are 6rst order in the spin-orbit parameter.

The wave function of Eq. (3.11) is capable of satis-
fying the boundary equations (3.7) to third order in k.
As discussed by Brooks, ' for each value of q, one of
these equations forces L to be even or odd as q is even
or odd. The other equation, since r, is arbitrarily
oriented, must be obeyed by the coeKcient of each
V~ . This fixes all but two of the coefficients in Eq.
(3.11). One result is that the value of 1. within a "q"
term cannot exceed q itself. This result follows, as
well, from the k.p analysis of the last section. The re-
maining two coefficients are fixed by the requirement
that the wave functions be normalized in the Wigner-
Seitz sphere. That is

Finally, the following abbreviations are introduced:

r,BFr,(r,)/Br=yI„L=O, 1, 3

1/F2(r, ) =&2,

r,BAFr, (r,)/dr = hyz, .

(3.15)

pl'. .-*(k)1'.,-(')~
I

=P (k ~)l
~

(3 16)
2I+1" k 0 i 0

Derivatives of the &1, and Apr, with respect to e are
denoted by primes.

Two types of angular variation appear in the wave
function. The first, that which is present in wave func-
tion expansions which neglect spin-orbit interaction,
has terms proportional to

dr= 1.

To evaluate Eq. (3.14), Eq. (A1.1) is used.

(3.14)
To first order in spin-orbit interaction, the coefficients
of these factors are equal to the coefficients in Brooks's
expansion. The spin-orbit interaction introduces angu-
lar variations of the form

4m (nz Vr, *(k)Vr, „(r) (1 (iq
i= (L ir)Pr, (k. r)/ = ( i/ k—)i(r xk. ir)Pr(k i)/ i, (3.17)

21.+1 ~ ((I+m+1) (1.—m))'12Yr„*(k)1'r„~i(r)i EO &Oi
'

where

(3.18)

The coeKcients of these terms are proportional, to first order in spin-orbit, interaction, to the bFr, (r,) or some

derivative of them. These terms indicate the admixture of a small negative spin component into a primarily positive

spin wave function.
The wave function which includes the effects of spin-orbit interaction to first order in that interaction and which

satisfies the Wigner-Seitz boundary conditions to third order in the 81och vector is

P(k,r) (kr,)')y, '!' B
— pi~'' — ]1 — 1 4y,

Fo(&) I —; —,I
Fo(r) Po(k i')I +~k~. Fi(~) 1+(kr.)'—

sV 3 ky, ' B~ y, 'i (0 5 15',

(kr )') P 'I' B - y, y'~' — 1 ikr, — )1 4p,

, i
Fi(~) Pi(k ~) + ~Fr(~) 1+(k~)'I ——

3 (go' Be - Qp' i 0 3 (5 15/2

6$,AF2(r, ) (kp )2 Qi il2 B
—
( Qi 1/2 1

+ (kr, )'Fi(r) — —
~

AFi(r) (L e)Pi(k i)
5g& 25 3 Qp' Be ($0' 0

1—
I 2(kr, )'/37)iF2(r)P2(k r) —[2(kr,)'/15][)iAF2(r)+(5/6)6)iF2(r)](L a)P2(k r)

0 0

4i 1 „1l — 4il 1—i(kr, )'(2/5) ——— F3(r)Pg(k r)
~

i(kr, )'(2/3—5) —
~

—— AF3(r)+$7dLyiF3(r)/(9/2)]
3 Oi y, i 3

(1)
+$14AF2(r, )F3(r)/157 (L e)PS(k r)(

Eoi
(3.19)
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The normalizing factor is

E= (4rrr, yo') '~s. (3.20)

When the E's and M's are obtained from the solu-
tions of the Schrodinger equation (A1.11) with nonlocal
J- and I.-dependent potentials, the wave equation
(3.19) is formally equivalent to a third-order k y ex-
pansion of the wave function which includes the effects
of the nonlocal potential and which is 6rst order in
spin-orbit interaction.

In the calculations which are described below, all
terms which are proportional to Ms(r), hF o(r) or their
derivatives have been neglected. These terms are sig-
nificantly smaller than terms proportional to hF~. This
is because the radial functions for 1.&1 are smaller
than Fi(r) in the vicinity of the nucleus, where the
spin-orbit interaction is significant, owing to the centri-
fugal potential in the radial wave equation. The neglect
of these terms has been justified by numerical
calculations.

X„= Bu (kr)
u„*(k,r)i dr. (4.2)

unit cell

The s axis is the direction of the applied dc magnetic
field.

This expression was obtained under the approxima-
tion that the one-electron potential is local. The effects
of a nonlocal potential are now being studied.

To second order in the Bloch vector, this expression
may be rewritten as

+ (1/mc') P*fxr) V/r)x+yBV/r)y jfdr

u*(r x Vs),r)u/r)v+2ik. ue(r & V &),u

BN 8 BN 8—(xu*)— —(yu*) dS
Bky Bv Bkg Bv

k„r)g* ci 8$ k 8$* ri r)f—Im — — dS, (4.3)
k~ Bkg Bv Bk~ ky Bkg 8'p Bky-

"J.M. Lnttinger and W. Kohn, Phys. Rev. 97, 869 (1955)."T.Kjeldaas, Jr. , and W. Kohn, Phys. Rev. 105, 806 (1957)."Y.Yafet, Solid State Phys. 14, 1 (1963).

IV. EVALUATION OF THE g SHIFT

Using the techniques of t.uttinger and Kohn, '0 as
extended by Kjeldaas and Kohn, "Yafet" 22 has shown
that the g shift is given by the average over the Fermi
surface of

2L(Xor„—Vor.). +X „(m„).„—Y„.(oo.)...j, (4.1)

where the subscripts ee indicate that these are expecta-
tion values for conduction band states. ~ is the velocity
operator, y+(1/2cs)S &VV, and the matrix elements
of X are defined by

where the integrals are over the atomic polyhedron,
and v indicates the direction of the normal to the
surface of this polyhedron. In the spherical approxima-
tion, v is the parameter r. V is the local potential used
in the k y analysis.

The 6rst term is twice the expectation value of the
s component of the orbital angular momentum, which
was first calculated by Brooks."It is recalculated here
to take advantage of further refinements of the QDM.
The additional terms have been discussed by Yafet. 22

Substituting the wave function of Eq. (3.19), with
neglect of terms proportional to AFs(r) and AFo(r) and
terms which are quadratic in hest, using Eq. (A1.1), per-
forming the required surface integral, and averaging
over all directions of k, the following expression is
obtained for the g shift:

The authors have been unable to convert the last
term into an expression in terms of the values of the
radial functions at the surface of the atomic polyhedron.
This prevents use of the QDM for its evaluation. This
term yields a nonvanishing addition to the g shift in
the absence of spin-orbit components in the wave
function. Since the term is multiplied by the small
parameter 1/mc', the dominant portion of the integral
can be obtained by writing u(k, r) =u(0, r). In this case
the integral reduces to

8m.o.' BV
~lf (O,r) ~'r' dr,

Br
(4.5)

where cr(= 1/137) is the fine structure constant.
For Li and Na, local, k-independent potentials have

been constructed, and can be used to evaluate this ex-
pression numerically. For I.i, the corrected potential of
Seitz" and the wave functions of Silverman" have been
used at r, =3.2, eo ——0.683. The value obtained was
2.3&(10 ', as compared to a contribution of —2 to
—5X10 ' from all other terms. For Na, using the
PI okof jew potential with the Wigner-Seitz wave
functions, a contribution of 1.2&10 ' is obtained, as
compared to 5—10&&10 4 from all other terms. For
reasons which are discussed below, little confidence can
be placed in numerical results which depend on values
of derivatives of Prokof jew-like potentials sampled

' F. Seitz, Phys. Rev. 47, 400 (1935).
~R. A. Silverman, Ph. D. thesis, Harvard University, j.951

(unpublished).
"W. Prokofjew, Z. Physik 58, 255 (1929)."E.Wigner and F. Seitz, Phys. Rev. 46, 509 (1934).

2r s 2k'r, 4 —
4&i c)

Dg= —hQr + 2—
94o' 274o'- A f)e Po'

6(kr, )'- r sy;
+i1$1 2+

814o' 4o'—

1. BV BV
f* x +y lf dr. (4.4)

saic 8$



near the origin. The orders of magnitude, however, are
reliable. We expect this term to diminish in importance
with increasing atomic number. The spin-orbit interac-
tion goes as (1/r)d V/dr. For a spread-out d V/dr, as in
lithium, the r weighting factor enhances the effect of
this teim, relative to the others. When dV/dr is only
appreciable near the nucleus, the r weighting factor
reduces the eRect. Knowing that this term is insignifi-
cant for sodium, we can safely neglect it for potassium,
rubidium, and cesium.

It is of some value to examine expression (4.4) for
free electrons. The vanishing of Ag comes directly from
the vanishing of hei and hP& . In addition, it can easily
be shown, using the values of the pr, and their deriva-
tives given by Brooks, ' that the term proportional to
hei reduces to

These difficulties are demonstrated explicitly in the
analysis of the sphericalized nonlocal potential. That is,
the eRective potentials in the wave equations deter-
mining the radial functions are J and L dependent. In
studies of the spin-orbit interactions, another weakness
of the Prokofjew method becomes apparent. It is least
likely to be an accurate representation of the potential
in the region of small r. This inaccuracy leads to an even
greater uncertainty in the value of its derivative near
the origin whence comes the greatest contribution to the
spin-orbit splitting. Thus, its use in a g-shift calculation
is unlikely to give good agreement with experiment.

To see the increase in error of the Prokofjew potential
with decreasing r, it is necessary to examine the manner
in which this potential is obtained. Prokofjew" used
the expression

(4.6)

Taking the Fermi surface value of k in the spherical
approximation, (kr,)'=3.68. The second factor is ap-
proximately 0.185. The individual terms which enter
into this factor are of the order of 1 or 2. Thus we
expect, if the p and d functions are correct and close
to free-electron-like, to have an approximate cancella-
tion in the second factor. The contribution of this term,
however, is extremely sensitive to the quality of the
wave functions because it involves the cancellation of
large terms.

With the neglect of the last integral in Eq. (4.4), the

g shift is determined entirely by the values of the radial
functions and their derivatives at the surface of the
Wigner-Seitz sphere. The methods of obtaining these
values are discussed below.

V. THE RADIAL FUNCTIONS

The radial functions are solutions of Eq. (3.7) which
are regular at the origin. The difficulty of constructing
such solutions comes primarily from the lack of knowl-
edge of the Vl. (r,r'). The Vr, (r,r') are one-electron
potentials which include not only the Coulomb interac-
tion with the nucleus and core electrons, but cer-
tain many-body effects such as exchange and core
polarization.

In the usual Wigner-Seitz type calculation it is
assumed that the potential, within the sphere, is the
same as that seen by an atomic valence electron. Before
considering the validity of this procedure, we examine
its implication with respect to a calculation of the
parameters her, and their derivatives. The obvious
procedure, which has been used in many calculations of
the properties of lithium and sodium, is to construct
Prokof jew-like potentials which match the atomic
spectra. The shortcomings and difFiculties in using such
a procedure to calculate other properties of the alkali
metals heavier than sodium have been discussed in
detail in earlier papers on the QDM. ' '

Xf~r'+ (&+2)'j) '-I'dr/r, (5.1)

where I= a 'I2 and Q(r) =r'V(r) to derive V(r). The
limits of the integral bound the region in which the
integrand is real. It is assumed, for sodium, that
the potential is Coulombic, i.e., Q(r) =2r, for r) 6.74.
For r&6.74 it is assumed that in given regions Q(r)
=nr'+Pr+8. Examination of the integrand shows that
as e and L vary, the limits of integration vary. Here,
starting with Q(r) =2r for r) 6 74, the.choices of atomic
eigenvalue e's and L's can be such that regions of de-
creasing r are brought into the integration. For each
new region of r a new set of n, P and y are defined.
Three equations determine these parameters. Two of
these are chosen to match Q(r) and its first derivative
at the boundary of the region. The third is chosen so
that Eq. (5.1) is satisfied. Because the functional form
used is probably not that of the "best" eRective po-
tential, errors are introduced. It is clear that these
errors will tend to pile up for small r. The Prokofjew
potential tends to give good results when it is integrated
over a large region with a smoothly varying function,
such as the absolute square of a wave function. The
values of the potential in the region near the nucleus
are less reliable. Finally, the derivative of the potential
near the origin can be seriously in error.

In addition to this source of error, there is another
problem associated with using the Prokofjew potential
to calculate the spin-orbit splittings. The work of Blume
and Watson" shows that, due to the different manner
in which exchange enters into the two terms, the po-
tential appearing in the spin orbit term is not the same
as the eRective potential which is derived from the
atomic spectra.

These shortcomings of the Prokofjew potential in
treating spin-orbit interaction are shown numerically
below. They demonstrate the potential virtues of the
QDM, which avoids the explicit construction of a
potential in the region close to the nucleus, and auto-
rnatically gives a correct treatment of the spin-orbit
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term. It is this method which has been used to calculate
the radial functions. Since the method has been de-
scribed in detail by Brooks and Ham, ' ' it will be dis-

cussed in only the degree of detail necessary to justify
the adaptation used in this paper.

In its simplest form, the method assumes that the
potential seen by an atomic alkali metal valence elec-
tron is Coulombic in the region outside the ion core.
In this case, the radial solution for a state with

6xed total orbital angular momentum and energy
E= —e= —1/e' can be written as (1/r) U~(e,r), where

U~(e, r) satisfies the diiferential equation

dsUi 2 L(L+1)—+ e+——— U~=O.
dr

(5.2)

This equation has two linearly independent solutions.
Brooks and Ham have chosen to work with the pair

'U'"(y) = (s/2) Jsr+i" (s)

'U'"( ) = (s/2)»-+ "(s), (5.3)

u (e) I'(e+L+1)

P (e) e' +'I'(e —L) tanvr8
(5.5)

where 8 is the quantum defect, in terms of which the

eigenvalue is expressed as

e=(ei—5 )-'. (5.6)

Here m is an integer that increases by unity between

successive terms of a given series.
If it is assumed that the potential seen by an alkali

metal conduction electron, when it is within the ionic

core, is the same as that seen by the atomic valence

electron, and that the potential in the region outside

the core and enclosed by the Wigner-Seitz sphere is

pure Coulombic, then the radial wave function outside

the core can be obtained quite simply In this case, the
solutions will again be linear combinations of Coulomb

solutions of the form of Eq. (5.4), with e corresponding

to the solid-state energies. The problem is to find the
correct ratio n(e)/p(e). Brooks and Ham have shown

»T. S. Kuhn, Quart. Appl. Matli; 9, 1 (1951), and F. Ham,
s~. 15, 31 (19&7).

'8 M. Blume, N. Briggs, and H. Brooks, Technical Report No.
260, Cruft Laboratory, Cambridge, Massachusetts, 1959
(unpublished).

where s= (Sr)'i'. These functions have been discussed

in detail by Kuhn and Ham, '7 and tabulated by Blurne,

Briggs, and Brooks."As c goes to zero they approach
the Bessel and Neumann functions, respectively. Then

U'( r) = (e) 'U'"(r)+P(e) 'U'"(r) (5 4)

For an atomic eigenstate, the ratio n(e)/p(e) is fixed

entirely by the condition that U~(r) vanish as r goes to
inanity.

This ratio is

that if the quantity q is defined by the expression

tanvrtl= —es~+'I'(e —L) tan7r8 /I'(e+L+1) (5.7)

at the atomic eigenvalues, the ratio of n(e) to p(e) is
given by

p (e)/u (e) = —tanvrtl (e) (5.8)

at the solid-state energies. Here, il(e) is the value ob-
tained by extrapolation of the function tl(e) obtained
from the atomic eigenvalues down to the solid-state
energies. With a knowledge of q it is possible to obtain
the radial functions. Before doing this, however, we
list the two major assumptions which must be made.

(1) The atomic potential is Coulombic beyond the
core.

(2) The potential in the solid is the same, within the
core, as the atomic potential, and is Coulombic from
the core surface to the signer-Seitz sphere radius.

Corrections will have to be made for deviations from
these assumptions. Before dealing with these correc-
tions, we proceed to evaluate the alkali-metal parameters
that are needed.

It is evident that the g function is, like the quantum
defect, an indication of the deviation of the core
potential from pure local Coulombic. It follows from
the analysis of Appendix I that there must exist a
diQerent q function for each J and I value, correspond-
ing to the different Ur, (r,r')'s and Wr, (r,r')'s as well as
the diferent coeKcients associated with the spin-orbit
interaction.

For each J, L function with ~= ~0, we can write for
ro &r &r„where ro is the ion core radius,

Fg r. (r) PU~ "(r)—tanvrilg r, (e) 'U~ (r)g/r

Since m always corresponds to the energy at the
bottom of the band, this index is dropped, henceforth.
The condition that Fg 1,(r,) = 1, L=0, 1, 3, implies that

y.p U'(r) —taniril, ,sU~ (r)j
~~,~(y) = '

. (5.9)
rL'U (r,)—tang rlq r, 'U~(r, )j

In analogy with Eq. (3.15) we write

«= L(L+1)ril+'. , I,+LriI. ;,I7/(2L+ 1)
(5.10)i—g~~ x, .

represents the e8ects of spin-orbit interaction and
is a small parameter for all the alkali metals. Expanding
tanmqq, z, about tanager, we get

r,LaU (r) —tan7r«'U~(r)]
~.( )=, , +OL(~ti.)'j (5.»)

rLOU~(r, )—tang«'U~(r )j
AI'1(r) =ar,Atoll. sec'a«L'U (r,)—tanaiii, 'Ur'(y )$=~

X f'U (y)L'U (r.) —tanmrlr, 'U~(r, )$
—'U (y.)L'U (r) —tanmtlr, sU~(r) $) . (5 12)
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From the usual Wronskian relation, Brooks and Ham'
have shown that

TABLE I. Extrapolation formulas for the p and Ap. '

r)'U~ (r) O'U~ (r) 2
'U (r) —'U (r) (5.13)

Differentiating Eq. (5.12) with respect to r, evaluating
it at r =r„and using Eq. (5.13) we get

Ayr, 2r,hri——r, sec'm-r)r,

&& L U~(r, ) —tann. r)r, U~(r, )$ ' (5.14)

Similar relations are obtained for the L=2 functions,
which are normalized differently.

In Table I, the extrapolation formulas used to
calculate the ql. and Apl. are listed. For L=O, these are
identical to those obtained by Brooks and Ham' for all
the metals but cesium. It was noticed that the atomic
spectra of cesium used by those authors, as obtained
from Bacher and Goudsmit, " are different from the
more recently observed values which are listed in
Moore. ' Extrapolation formulas for the gg ~ were de-
veloped using the three lowest conduction-free atom
eigenstates, plus the ionization potential for the singly-
ionized atom, as discussed by Ham. ' These were then
used to calculate g& and Ag&. Aq2 was calculated in the
same manner as Ag~, while the "best" extrapolation
formulas of Brooks and Harn' were used for q2. The
reasons for this are discussed below.

Thus far, it has been assumed that the two condi-
tions, mentioned above, for the validity of the QDM
are satisfied. Unfortunately, this is not the case. In the
following subsections, the effects of various deviations
from these assumptions are discussed.

Lithium
17p

/pe
Ql

nip

Q2

Sodium
Qp

Qpp

gl
'ply

'92

Potassium
Qp

Qpy

$1
$1@

212

Rubidium
gp
7)pp

Ql
'9 la

r/2

Cesium
'gp

spy
$1

[aqua
7I2

0.399501
0.399106
0.047368
0.046997
0.000004
0.00086
0.000004

1.34797
1.34673
0.855176
0.853052
0.000858
0.01041—0.000023

2.180059
2.176388
1.711980
1.706392
0.003031
0.2672—0.000158

3.13119
3.12560
2.646294
2.637512
0.013216
1.3371
0.001646

4.04967
4.04161
3.56983
3.55598
0.03256
2.4642
0.0091

0.029405
0.027458
0.020899
0.013018—0.000097
0.00032
0.000086

0.06197
0.05606—0.01876—0.04462—0.00036—0.0072
0.00019

0.13915
0.12243
0.07427
0.01709—0.00170—0.2969—0.00269

0.18164
0.16017
0.16186
0.08976—0.01333
0.0385—0.01659

0.23156
0.19545
0.30396
0.20848—0.04274
0.1687—0.04884

0.00238
0.00238
0.02888
0.02888
0,00055

~ ~ ~

0.000298

0.01071
0.01071
0.05212
0.05212
0.00167

~ ~ 0

—0.00085

0.0502
0.0502
0.0988
0.0988
0.0019
0.2289
0.0100

0.0879
0.0879
0.08573
0.08573
0.01787—0.5256
0.0284

0.27776
0.27776
0.02483
0.02483
0.05396
0.9023
0.04470

~ ~

—0.01977—0.01977—0.00040

~ ~ ~

—0.0574—0.0574—0.0002

~ ~ ~

—0.07367—0.07367—0.00404

—0.033852—0.033852—0.07774—0.07774—0.01338

A. The Polarization Correction —Brooks and Ham

Due to the fact that the valence electron tends to
polarize the ionic core, the potential seen by the valence
electron is never pure Coulombic. Treating the ion core
as a dipole, Brooks and Ham have found correction
terms for the g extrapolation formulas. The g-shift cal-
culations have been performed with and without the
corrections applied for L=O and 1. For the L= 2 states,
as discussed by Brooks, ' it is impossible to obtain con-
sistent extrapolation formulas for Rb and Cs without
the polarization correction. Thus, these have been
used throughout.

B. Spin-Orbit Interaction Outside the Core

In principle, the spin-orbit interaction outside the
core could inRuence the Apl. values. For most of the
alkali-metal atoms, however, the major portion of the

"R. F. Sacher and S. Goudsmit, A torgic Energy States
(McGraw-Hili Book Company, Inc. , New York, 1932)."C. E. Moore, Natl Bur. Std. (U. S.) Circ. 467, cols. I, II,
and III (1949, 1952, 1958).

The extrapolation formulas are of the form 17 =a+bc+ce2+de~.

interaction takes place near the nucleus; it can easily
be shown, using first-order perturbation theory, that a
small deviation of potential 6V from Coulombic in the
region outside the core, will lead to a change in the q
calculated from an atomic eigenvalue given by

L U~ (r)]'5Vdr/sec'my (5.15)

Then, to lowest order in Ag, the contribution to Ag from
spin-orbit interaction outside the core is given by

—(2L+1)o,'

4 sec ~/I rp

(5.16)

where ro is the cutoff radius used by Brooks and Ham
in the polarization correction.

To obtain the order of magnitude of this integral, the
asymptotic expansion of the Whittaker function has
been used. Brooks and Ham show that for an atomic
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eigenstate of W„ L+,*(2r/n),
sec[m (n—I.—1))

PL, n (r)
—nI +1 W,L+;(2r/n) . (5.17) ~a, L+~(2r/n) = 2e ~~~r~(2/n) ~ (5»)

I'(n+I.+1)
in Eqs. (5.17) and (5.16) and performing the required

Using the first term of the asymptotic expansion integration, one finds

—(21.+1)rr'nsL cos'xqF .(2n 2—)(1 1—[2rs/n(2n 2—)'~', 2n 3—))
SAN=

cos'[rr (n —I,—1))P (n+I.+1)
(5.19)

where I is the incomplete gamma function,

.8 (@+I)1/2

For the lithium 2p state the integral

I(x,p) =— e *xrCh. (5.20)
10.0

[U' (r) )'dr/r'

TA&LE II. SATE for p states of the alkali-metal atoms.

State

I 1-2p
3p
4p

Na —3p
4p
5p

K-4P
5p
6p

Rb-5p
6p
7p

Cs-6p
7p
8p

—&&gX10'

0.0376
0.126
0.207
0.0299
0.129
0.222
0.0208
0.116
0.189
0.0173
0.110
0.196
0.0165
0.100
0.204

~gX 104

0.1567
0
0
8.564
8.438
8.424

27.64
29.42
29.43

112.9
121.5
125.6
265.1
292.5
305.0

The values obtained for the SAN's are listed in Table II.
The numerical values of Aq at these values of e, com-

puted from the extrapolation formulas of Table I, are
also listed. Only for lithium is SAN an appreciable frac-
tion of hri. For the Li 2P state, the Ahri is approximately
24'P~ of Dri. For the 3P and 4P states the observed value

of Ag is zero, while a finite and measurable value is

calculated for SATE. This is due to the inadequacy of the
calculation. Since the potential is monotonically de-

creasing for all r, the contribution to the diagonal
elements of the spin-orbit interaction must always have

the same sign. The contribution from the surface of the
core outward cannot exceed the total contribution.
The error probably comes from the use of only the first

term of the asymptotic expansion of the Whittaker
function. Most of the contribution to the integral comes
from the region near the surface of the core, because
of the fast drop off of both the radial function and 1/r'.
In this region the first term approximation is least valid,
and becomes less valid with increasing e. In view of this

error it is reasonable to ignore this calculation for the
lithium 3p and 4p states and to do a more accurate
calculation for the lithium 2p state.

The calculation does place an upper bound on SATE.

Thus, the She's for the remaining elements can be
treated as negligible.

was carried out using quantum defect wave functions
(i.e., using the tabulated Coulomb radial functions with
a ratio determined from the quantum defects). The
value of the integral was 0.1076. A calculation of the
remainder of the integral, from 10.0 to in6nity, using
the first term of the asymptotic expansion, yielded the
negligible value of 1.955&10 4. The corresponding SATE

is —0.417)&10 '. The resulting extrapolation formula
is listed in Table I.

For sodium a more complete discussion of atomic
spin-orbit splitting is possible, because of the existence
of the effective one-electron potential of Prokofjew"
and the radial functions, (1/r)Ps(r), of Biermann and
Leubeck. " These wave functions are solutions of the
Hartree radial equation with core polarization included
in the potential.

A numerical integration of ([Ps(r))s(1/r) (dP/dr)dr)'
yields the result that over half the total value of the
integral comes from the region ~&0.20, while almost
the total value of the integral is reached before Ps(r)
has its first maximum at r =0.45. This localization of the
interaction becomes much greater with increasing
atomic number.

This calculation shows two things. First, spin-orbit
interaction outside the core is negligible for all the
alkali metal atoms but lithium. Second, the interaction
is confined to that region in which the Prokofjew
potential is least accurate.

The total value of the integral yields a splitting,
DE=1.942&10 ', while the observed value is 1.567
)&10 '. The discrepancy cannot be reduced by second-
order perturbation. The error is either due to an error
in the radial functions (which would have to be over
10'~/o) or the failure of the derivative of the Prokofjew
potential to represent the spin-orbit interaction. For the
reasons presented at the beginning of this section, it is
felt that the latter is the more likely cause.

"L.Bierrnann and K. Lubeck, Z. Astrophys. 2S, 325 (1948).
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C. In6uence of the Interaction Between Conduction
Electrons on the One-Electron Potential

The assumption that within the Wigner-Seitz sphere
the potential is Coulombic outside the core is based on
the Wigner-Seitz approximate treatment of the interac-
tion between conduction electrons. They assume that
both exchange and correlation tend to keep all other
conduction electrons out of the sphere under considera-
tion. The other conduction electrons contribute no
electric field in the sphere and may be ignored in the one-
electron potential.

Phillips" has derived an effective one-electron Hamil-
tonian which includes conduction electron interactions
within the random phase approximation. This Hamil-
tonian includes, in addition to the Wigner-Seitz po-
tential, a Hartree term due to the k-space average of
the conduction electron density, a screened exchange
term, and a term due to part of the second-order
screened Coulomb interactions. In a subsequent paper,
Phillips and Kleinman" showed that the Slater'4 gen-
eralization of the free-electron exchange potential is a
good approximation to these exchange and correlation
terms in silicon. The Slater potential should be a still
better approximation in the region outside the alkali
metal cores, as the electron density is a considerably
more slowly varying function of positi. on than it is for
silicon.

The Slater potential, however, depends only on the
electron density. Throughout most of the region outside
the alkali metal cores the electron density is essentially
constant. The Slater exchange potential is just a
constant which changes absolute energy values, but
not the wave functions. For this region an approxi-
mately self-consistent Hartree term has been added to
the potential outside the core. A method of obtaining
such a potential which is consistent with the QDM is
described below.

The restriction on the form of potentials in the solid
can be relaxed in the following manner. The potential
within the core must be the same as the atomic potential.
Let the potential outside the core reduce to the atomic
potential for r&r;, where ro&r, &r,. Solutions of the
resulting differential equation can be adjusted so that
they reduce to the solutions of the radial equation at
r=r;. In'that case, their ratio at r=r, , and, hence, for
r&r, , is determined by Eq. (5.8). Thus, the QDM can
be extended to treat any potential which reduces to
Coulombic at and below some acceptable r,. We choose,
therefore, for the construction of the appropriate Har-
tree potential, a spherical shell of constant electron
density extending from the core surface to the surface
of the Wigner-Seitz sphere. The electron density in this
shell is equal to the density at the surface of the sphere,
If(r,) I'. The contributions of all but the k=0 part of

"J.C. Phillips, Phys. Rev. 123, 420 (1961).
33 J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962).
P4 J. C. Sister, Phys. Rev. 81, 385 (1951).

XL(r'—rp')12rp'(r '—rp ')] U=O. (5.23)

Here e' is an energy parameter equal to e plus a term
resulting from the choice of boundary conditions. This
will be treated in more detail by one of us (H.B.) in a
discussion of the cohesive energy. It is of no interest in
the determination of the radial functions.

In order to take advantage of previously tabulated
functions, equation (5.23) has been simplified further.
Blume, Briggs, and Brooks" have obtained numerical
values for the solutions of

d'U 2 L(I.+1)
+ .'+— +P(rs 4) U—=o (5.24)

dr2 r r2

with p and p' in the desired range. This corresponds to
neglect of the rps/r term, and fixing of rp equal to 2.
Since, in terms of the electric field intensity, the rp /r
term tends to provide a partial cancellation of the r'
term, this approximation probably leads to an over-
estimation of the effects of the Hartree term. As will be
shown, however, the results obtained are not without
interest.

Self-consistent solutions of Eq. (5.24) have been
found iteratively. It was required that solutions of
Eq. (5.24) simultaneously satisfy the conditions

~o.( o') =o

p-= (3'~o')-'

(5.25)

(5.26)

pp,
' is the calculated value of $p' Equation (5.27)

comes frolll the Wigner-Seitz boundary conditions. p„
is the value of P used in the differential equation for the
solution gp'.

VI. NUMERICAL RESULTS

In Table III the results obtained in four different
calculations of the g shift, minus the contribution of
the term of expression (4.5), are listed. The different
calculations are the combinations of inclusion and ex-
clusion of the polarization corrections (E and NP,
respectively) and the Hartree term (H and 1VH, re-

"M. Blutne, N. Briggs, and H. Brooks (unpublished work).

the u(k, r,) are neglected. The other terms are small
but may not be negligible.

Then
If(r.) I'= (4~.4p') ' (5 21)

The resulting potential, whose constant part is chosen
so that U(rp)=0, is

U(r) = —(3r,gp') 'L(r' —rps)+2r;s(r ' —rp ')j. (5.22)

The resulting radial differential equation is

d'U 2 I.(I.+1)
+ e+ +(3"~o')-'

dr' r r'



A. BIENENSTOCK AND H. BROOKS

Tmx. K III. Alkali-metal energy parameters and g shifts.

Li—2.8

NP —NH
P—EH

NP—H
P—FI

GpoI 6p
1

0.7002 0.6123
0.6975 0.6124
0.7798 0.6240
0.7768 0.6237

0.0204
0.0180
0.0020
0.0101

1.645X10 '
1.234
5.512
5.667

'I1 $

NP —B
P—H

K-5.2

6p or Ep
I

0.6097
0.6051

1.0682
1.1440

0.2581
0.5880

2.766
1.186

Ll—3.2
NP —NH

P—NFI
EP—H

P—FI

Li—3.6
EP—NH

P—EEI
EP—H

P—H

0.6878
0.6860
0.7844
0.7826

0.6568
0.6557
0.7560
0.7549

0.7318
0.7320
0.7473
0.7467

0.8035
0.8037
0.8152
0.8153

0.0316
0.0293
0.1232
0.1190

0.0298
0.0273
0.0348
0.0320

2.502
2.299
4.401
4.236

2.403
2.298
4.521
4.429

NP —EH
P—EH

EP—H
P—II

Rb—4.8
NP —EII

P-MX
NP —H

P—H

Rb—5.2

0.4731
0.4686
0.5754
0.5721

0.4846
0.4764
0.6121
0.6059

1.0825
1.1333
1.0565
1.1134

1.1999
1.3518
1.1432
1.3131

0.2888
0.4707
0.2007
0.3526

0.5645
1.3678
0.2564
0.7375

2.004
0.891
2.326
1.625

0.853X10 '
—2.562

1.554—0.781

Na —3.6
NP —EH

P—EH
EP—H

P—H

0.6369
0.6330
0.7467
0.7429

1.0192
1.0443
1.0091
1.0361

0.0115
0.0544
0.0327
0.0681

7.425X10 4

4.442
8.729
5.938

NP —NH
P—NH

EP—H
P—H

Rb—5.6

0.4648 1.1631
0.4584 1.2731
0.5764 1.1174
0.5718 1.2420

0.4941
1.0538
0.2411
0.6301

0.788—0.980
1.202—0.064

Na-4. 0

EP—NH
P—NH

EP—II
P—H

0.6056
0.6028
0.7099
0.7074

1.0159
1.0334
1.0082
1.0273

0.0088
0.0036
0.0107
0.0135

5.980
4.596
7.024
5.852

NP —NH
P—EH

NP —H
P—IX

Cs—5.4

0.4455
0.4402
0.5410
0.5377

1.1372
1.2194
1.0909
1,1859

0.4789
0.8767
0.1991
0.5263

0.659—0.333
0.992
0.263

Na —4.4

EP—NH
P—NH

EP—H
P—FI

0.5739 1.0137
0.5717 1.0264
0.6699 1.0087
0.6681 1.0226

0.0331
0.0492
0.0400
0.0230

4.626
3.918
5.520
4.994

EP—EH
P—NH

EP—II
P—H

Cs—5.8

0.4350
0.4252
0.5472
0.5401

1.1895
1.4110
1.0828
1.3345

0.9228 0.742 X10 '
2.7528 —13.975
0.4022 2.878
1.6452 —9.904

K—4.4
EP—NH

P—NH
EP—H

P—H

0.5139
0.5064
0.6442
0.6375

1.1230
1.2178
1.0843
1.1892

0.4353
0.8226
0.4385
0.7804

2 611X10 '
—1.614

3.080—3.098

EP—NII
P—NH

EP—H
P—II

Cs—6.2

0.4189
0.4110
0.5148
0.5098

1.1644
1.3304
1.0641
1.2586

0.7277
2.0014
0.3858
1.4025

1.153—6.623
2.587—4.545

NP —NH
P—NH

0.4939
0.4882

1.0987
1.1669

0.3445
0.6069

2.389
0.317

EP—NH
P—EII

EP—IX
P—Ijr

0.4033
0.3966
0.4607
0.4620

1.1449
1.2711
0.7036
1.0361

0.7385 1.083
1.6536 —3.382—0.9616 8.734—0.5865 3.926

spectively). In addition, the results of calculations of
ep, E2 and E4 are tabulated. These energy parameters
are determined by the equations'

yp(pp) =0, (6.1)

and
E,= (m/m*) = $r sPr/(3yp') —j, (6.2)

2r,'gr 2$r 5&r' 5&p"Pr
~4= 1— — +

15yp' 3$s 6$p' 12(yp')'-
(6.3)

We now proceed to examine the results for each of the
alkali metals.

Lithic. The results for lithium are particularly un-
certain because of the large spin-orbit interaction out-
side the core and the magnitude of expression (4.5).
The numerical calculation of expression (4.5) using
Silverman's wave functions corresponds to a i7II—gE

calculation. If the results, at ~,=3.26, are added to the
results of the XII—EI calculation, the g shift obtained
is —2&10, compared to the experimental value of
(—2~2) X 10 ' obtained by Pressley and Berk."It is
clear that no significance can be attached to the
calculated number, as it is the result of the subtraction
of two numbers that are not accurate to the order of
magnitude of the result.

Sodium. The results for sodium are particularly in-
teresting. In this case, there are experimental determina-
tions of the g shift by Feher and Kip'' as well as King,
Miller, Carlson, and McMillan. " The two measure-
rnents yield dg=( —8~2)X10 4 and (—6~2)X10 4,

6 R. J. Pressley and H. L. Berk, Bull. Am. Phys. Soc. 8, 345
(1963)."G.Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).

"G.J. King, B. S. Miller, F. F. Carlson, and R. C. McMillan,
J. Chem. Phys. 32, 940 (1960).

'
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3.6
I
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FxG. 1. Calculated values of the sodium g shift, including (E)
and not including (SP) the polarization correction, and including
(H) and not including (NH) the approximate Hartree term in the
potential.

39 R. C. McMillan, Phys. Chem. Solids 25, 773 (1964)."R.A. Levy, Phys. Rev. 102, 31 (1956).

respectively. The shape of the Fermi surface is very
close to spherical, and the wave functions outside the
core are very close to free-electron wave functions. All
the approximations made in the theory, as well as the
analysis of convergence, should be valid.

The primary result of the calculation is the good
agreement with the experimental values. As shown in
Fig. 1, the result of the XP—H calculation at s,=3.92
is —7X10 '. The SP—XH also lies within the region
of agreement of the two measurements. Those calcula-
tions which include the polarization correction lie
somewhat outside the area of overlap of the two
measurements.

Potassilnz. The following four results were obtained
for potassium at r, =485: NP SH, —2 2X10—';
P—gH, —0.6X10 '; XP—H, —2.5X10 '; P—H, —1.4
X10 '. The value measured by McMillan" was

(—4.1+0.5)X10 '. None of the calculations are in
good agreement with the experimental results.

There is a clear separation between the results of
calculations in which the polarization correction is in-
cluded, and those in which it is neglected. The latter
are in signihcantly better agreement with experiment.

ENbidilm. No measurements of the g shift of rubid-
ium have been reported. We note that of the four
calculations, those in which the polarization correction
is included have extremely small negative or positive

g values at physically realizable values of r, .
Cesilm. The values calculated for Ag are shown in

Fig. 2, along with the result of the measurement of
Levy. ' This 6gure shows quite clearly the trends
associated with increasing atomic number, from Na on.
First, IkgI„t, becomes too small for all types of
calculations.

+ FXPERIMENT
& NO- POLARIZATION

x POLARIZATION—
NO HARTREE—-HARTREE

2

o
5I4

x -2—
a
I

I

5.8

7'

's

-8—

10—)r

Fxo. 2. Calculated values of the cesium g shift.

The best agreement is obtained when the polarization
correction is neglected, and the Hartree term is in-
cluded. The neglect of the Hartree leads to poorer
agreement with experiment, while the inclusion of the
polarization correction considerably decreases the
agreement.

The relative contributions of the Hartree term to
sodium and cesium are as expected. Whereas, for
sodium the SH—SP and H—XP results are quite similar,
the SH—SP calculated cesium g shift is only approxi-
rnately one third that predicted by the II—EP calcula-
tion. It has been shown, ' using a perturbation theory
argument, that the eBect of the Hartree term increases
with increasing deviation from free-electron character.
The relative importance of the Hartree term in the
sodium and cesium calculations illustrates this quite
clearly.

A detailed analysis of various terms in the H—1VP
calculated cesium shift shows that the value fails to
agree with experiment because of an unexpectedly
large positive value for the terms proportional to dpr.
This term causes all the polarization corrected values to
be too positive. It was shown, in the discussion of (4.6),
that these terms are expected, for nearly free electrons,
to yield a small positive contribution due to cancella-
tions. Since cesium wave functions show considerable
deviation from free-electron functions, less cancellation
was expected. It can be shown, however, that if ex-
pression (4.6) is used to calculate this term, there is
some, but insufhcient, improvement in the agreement
with experiment. The failure to obtain agreement with
experiment is due to the large value of Ap, . Equation
(5.14) was used to calculate this parameter. It has been
shown, in addition, that no reasonable extrapolation
of Aq~ will yieM a calculated shift in cesium which is
in agreement with experiment. Finally, it has been
shown that g~ is suKciently close to a half-integer at
the energies involved so that small errors can make a
considerable difference in the factor sec'~rirPU'(r, )
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—tan~rii'U '(r,)) '. In fact, it is these differences in

q~, both in the factor just quoted and in the partial
cancellations, which account for almost all the difference
in the I' and XI' calculations.

Since the t|-series expansion of the energies converges
rather slowly, it is not unreasonable to question the
validity of using only the first two terms of the expan-
sion of the g shift. It turns out that the contribution of
the second-order term is approximately one-quarter
of that of the zero-order terms in the SI'—H calculations
for r, equal 5.4 and 5.8. It is probable that the fourth-
order term is no larger than the second. Since it would

be necessary to double the calculated shift to obtain
agreement with experiment, it is highly unlikely that
poor convergence is the major cause of the discrepancy.

Thus, it appears as if agreement with experiment can
be obtained for sodium using wave functions which
include a Hartree term, but which neglect the polariza-
tions correction to po and p&, while including them ln 'Q2.

The same procedure leads to the "best" calculations
for the remainder of the alkali metals. For these, the
inclusion of the L=O and 1 polarization corrections
lead to physically unreasonable results, while the in-

clusion of the Hartree term makes the results more
reasonable.

VII. THE POLARIZATION CORRECTION

The consistent failure of the polarization corrected
results, which becomes more drastic with increasing Z,
casts considerable doubt on the validity of the correc-
tion. In this section, we present a detailed study of the
correction, in an effort to understand its failure.

A. The Polarization Perturbation

In making the polarization correction, a by~ has been
subtracted from the uncorrected gL,. This S'IL, is com-

puted, as discussed in Secs. VA and VB, using first-order
perturbation theory to 6nd the expectation value of
the polarization potential. 2n'/r4, from a radius ra,
outside the core and inside r„outward. ro is chosen to
be approximately equal to the sum of the core and con-
duction electron screening radii. This choice was made
for the following reason. Within the solid, when the
electron is within the screening radius from the core,
the interaction between it and the core tends to ap-
proximate that interaction in the free atom. When the
electron is beyond the screening radius, the interaction
tends to be screened. Three possible sources of error in
this approach may be mentioned.

It is assumed that the core (nucleus plus electron
core) distorts as a dipole, i.e. , that the effect of the con-
duction electron on the core can be treated as if the
electron core acts as a rigid body. Thus, a dipole is
created at the nucleus. In reality, of course, the conduc-
tion electron distorts the electron cloud near the surface
of the core. This surface distortion partially shields the

inner electrons from the Coulomb field of the conduction
electron. However, since the electron-electron interac-
tion, when the conduction electron is outside the core,
is Coulombic, the effective interaction can be treated
as a sum of multipoles at the nucleus. The dominance
of the dipole interaction is shown by a simple calcula-
tion. The expectation value of finding the "f"electrons
of the lighter alkali-metal free atoms within the core is
exceedingly small. Their quantum defects, and the
corresponding g's should be due, almost entirely, to the
polarization interaction. We have calculated 8g for
these electrons, using the Brooks and Ham dipole cor-
rection. ' In all cases calculated, the results are in
sufhcient agreement with the g calculated from the
observed quantum defects to justify the dipole
approximation.

It should be noted that in choosing the Brooks and
Harn polarization correction the Pauling" free-ion
polarizabilities are used, rather than those of Tessman,
Kohn, and Shockley" (TI&S).This choice was originally'
dictated by the fact that the latter give quantum
defects for 1.=3 which are larger than those observed
experimentally. It has since become apparent, due to
the work of Dick and Overhauser, 43 that the (TKS)
polarizabilities, which are derived from alkali-halide
dielectric constants, are not to be equated with free-ion
polarizabilities. This is because the relative displace-
ments of alkali halide ions lead to distortions of the ion
cores. These distortions contribute to the dielectric
constant. Since, however, an appreciable portion of the
forces causing the displacement are not electrostatic
in nature, they should not be included in the free-ion
polarizabilities. The reader is referred to the paper of
Dick and Overhauser for an extremely lucid discussion
of the details.

Another approximation is made in the derivation of
Eq. (5.15). It is assumed that sec'n. ride/da is small
compared to (2/m) dk/dc. Here dr)/dc is the derivative of
the g extrapolation formula at the atomic eigenvalue,
while dk/de is the change of the k of Eq. (5.5) with a
change in the atomic eigenvalue. This approximation
was checked for the 5p state of cesium, for which the
polarization correction is large, and was found to be
valid.

Thus, it seems highly unlikely that an approximation
in the perturbation calculation of Sg~z, for the free atom
is responsible for the poor results obtained.

B. Po1arization Effects in the So1id

The conduction"Ielectron in the solid also polarizes
the core. This fact is only partially taken into account
in the simple QDM. For r(ro it is assumed that the

~' L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927).
~ J. Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890

(1953).
4'B. G. Dick, Jr., and A. W. Overhauser, Phys. Rev. 112, 90

(1958).
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polarization potential energy is the same as that in the
free atom. For r&ro the core polarization potential
energy is not included. As discussed in an earlier paper, '
there are two basic problems in the solid which do not
appear in the free atom. The 6rst is that in the solid
there are other conduction electrons which tend to
shield the interaction between the core alod the electron
under consideration. The second is that the electron
considered may polarize several cores. AVe now consider
both effects, starting with the shieMing.

In Ref. 1 the polarization interaction is worked out
under the assumption that it can be treated as follows.
The conduction electron creates a dipole at the origin.
The 6eld creating the dipole is a screened Coulomb
field, with a screening radius, k, =1.3r,'~', determined
by Pines. '4 The potential, due to the dipole, acting on
the electron, is also screened with the same screening
radius. The resulting potential energy is given by

Sn' —r
exp ~dr.

rs 0 65r t.is)
(7.1)

The magnitude of this potential energy, relative to the
free-atom polarization, is readily seen when an ex-
pression of the form V(r) = 2n'(A/r, 4 5/r4) is rn—ade to
agree with Eq. (7.1) at the cutoff and Wigner-Seitz
sphere radii. For cesium, r, =5.4, the result is

V(r) =2n'(0. 0138r, '—0.0285r—') . (7.2)

Both the potential and the Geld magnitude —d V/dr are
significantly smaller than the corresponding free-atom
values. If this model is correct, the interaction between
the electron and cores in neighboring atomic polyhedra
is negligible. In this context, it is probably more valid
to use the Thomas-Fermi screening radius. Such a pro-
cedure yields even smaller values for the potential and
its derivative, so that we have not felt it necessary to
perform the numerical calculation.

This model, however, has a serious shortcoming. The
success of the Dick-Overhauser4' shell model of the core
indicates that an appreciable portion of the free-ion
polarizability is due to distortion of the outer portion
of the core. This is particularly true for those heavy
alkali atoms in which the polarizability is appreciable.
In the atom the distortion can be treated as a dipole
at the origin because the interaction between the con-
duction and core electrons is strictly Coulombic.

The applicability of this model to the solid becomes
questionable when it is considered that the screening
radius is comparable with the radius of the core. Thus,
in the solid, as opposed to the free atom, the valence
electron sees the nearer side of the core with much
greater effectiveness than the further side and, in con-
sequence, the dipole model may considerably under-
estimate the core polarization effects in the solid.

There is another way of looking at this problem which

~ D. Pines, Solid State Phys. 1, 367 (1955).

0, y, (y. (7.3)

This expression probably overestimates the field for
y fpe

The effects of this potential on the parameters used
in calculating the g shift have been calculated. In all
cases, the resulting changes were insignificant. This is
not unexpected, as the potential is small.

It should be noted that the argument given above,
resulting in Eq. (7.3), leads to another disturbing con-
clusion. The polarization correction was calculated on
the assumption that the potential within the core in
the metal is the same as that in the free atom. This
leads to the discontinuity in potential. The use of Eq.

tends to con6rm this argument. Let us suppose that,
for all values of r, the interaction between the conduc-
tion electron and the core can be treated by an effective
electric held. The 6eld in the solid is different from that
for the free electron. Within the core, however, they
should be quite similar. In the free atom this field is
continuous and should approach —(Sn'/rs+2/r') as r
approaches the cutoff radius from within. Since, in the
QDM, the field within the cutoff radius is assumed to
be identical to the free atom 6eld, there is an incon-
sistency. That is, if the shielded interaction is used
outside the cutoff radius, there is a discontinuity in the
field at this radius.

Note that all the polarization-corrected QDM results
presented here and elsewhere in the literature have this
discontinuity built into them, since the solid-state
polarization correction is neglected. To use the QDM
then, it appears as if a term which yields a 6eld of
—Sn'/r' at the cutoff radius is approached from without
should be included in the solid-state potential.

This argument leads directly to the second question;
when the electron is within one signer-Seitz sphere,
does it experience an appreciable polarization interac-
tion with the other spheres' A partial answer to this
question can be obtained by considering the shielded
interaction potential of Eq. (7.1). Cores in neighboring
polyhedra will be shielded in approximately the manner
described. by this equation and this interaction should
be negligible.

It is important to note that since the valence electron
frequencies are smaller than plasma frequencies,
valence electron screening wil1 be significant. In fact,
the 6eld of the valence electron will be screened by the
static dielectric constant, as discussed, e.g. , by Pines. 44

The opposite is the case for the van der Waals interac-
tions between cores, since the frequencies involved are
greater than the plasma frequency.

%e are led to demand, then, a potential which gives
the —8n'/r' field at the core surface, and a vanishing
field at and beyond r, . A reasonable approximation to
this was proposed previously':
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(7.3) outside the core in the metal corrects the discon-
tinuity in the field, but not in the potential.

To remove this discontinuity it is necessary to sub-
tract, from the free-atom eigenergies, an additional
term equal to the expectation value of 2—n'/r04 within
the core. Then it will be necessary to add, to the solid-
state potential, a perturbation term which is constant
within the core, zero outside the core, and which makes
V(r) continuous at the core surface. This term is

V„(r)=2n'(r, ' ro
—
4)—. — (7.4)

We may add this correction throughout the cell, where
it only changes the definition of ~0 or ~0'. Then it must
be subtracted outside the core. This perturbation also
has a negligible effect on the parameters of importance.

The effect of the term 2n'/ro' —can be calculated
using Eq. (5.15) and the relation'

rp O'U~ BU~ BU~
fUz(r)$'dr = Uz — . (7.5)

0 ~& —r=r0

The resulting change in rl for the cesium 6p and 7p
states are 0.0183 and 0.1099, respectively. This leads
to an extrapolation equation correction

C. The Polarization Correction Extrayolation

It will now be shown that there is good reason to
believe that the Sq extrapolations are incorrect, but it
will also be shown that this error is insufhcient to
account for the poor results obtained.

A cubic g extrapolation formula which has not been
corrected for polarization is determined by the condi-
tion that it yields the observed g's of three atomic con-
duction electron states and one core state. The Brooks-
Ham linear polarization correction formula describes
the correction to the conduction electron states quite
accurately. The probability of finding the core electrons
outside the core is negligible. Thus, we can approximate
the core state corrections by zero. The same is true of
any state with energy close to the core energies. Thus,
it is expected that the polarization correction, and its
derivative with respect to energy, will vanish at core
energies. Examination of the extrapolation formula
shows that Bg and d5ri/dc are relatively large at these
energies, indicating that the extrapolation formula is
in error. This difhculty can be overcome by requiring
that the extrapolation formula give the correct values
for the two lowest valence electron states and have the
desired properties at the core state energy. Such a
formula, for cesium, is

8g, (c)=0.0209—0.0142e. (7.6)
bg„=0.0113+0.1381c—0.1707c'+0.0504c'. (7.8)

For a core radius of 4.961 the original polarization
correction is

5g (c)=0.0138+0.095e. (7.7)

At solid-state energies the two corrections tend to add.
This additional correction makes the polarization cor-
rected values even worse.

In view of this it is justifiable to ask what would
happen if the analysis of shielding in the solid is com-
pletely wrong. The extreme case would occur if the
polarization interaction were completely unscreened.
The conduction electron would interact with all the
cores in the solid. Some idea of the order of magnitude
of the changes can be obtained by calculating the effect
on gq, and Ag~, due to a completely unscreened inter-
action with the central core. For cesium, r, =5.4, the
largest parameter change is of the order of 2% of the
parameter itself. It seems likely that the contribution
from other cells can be neglected.

We are then led to a striking paradox. The total
polarization interaction leads to small changes in the
free-atom eigenenergies. The corresponding change in
g, at the atomic eigenenergies, is very small. When the
most extreme polarization interaction in the solid is
used it changes the solid-state parameters by only a few
percent. Pet the Brooks-Ham correction can change
@q by 20% and can double APq. These results suggest
that the g and/or polarization bg extrapolations are
in error.

The formula for 8g, must also give correct results at
core energies. In this case, since the electron is almost
entirely within the core, 5c='2n'/r04. However, at core
energies, the changes of a calculated value of g with a
change in c is small. The resulting 5q, is negligible so
that we demand that 5g, vanish at the core energy. The
resulting extrapolation formula is

Srl.=0.0209—0.0146c+0.0014c'.

At co=0.54, corresponding to cesium, r, =5.4, the
(8 B) polarizatio—n correction is 0.0651, lri~=0. 0440,
5g, =0.0134, and 5q„+8ri,=0.0574. Thus, there is a
reduction in Srl, but only by about 12%. This change is
not even suf6cient, taken alone, to reduce the d,g~ of
the polarization correction value to a point where the
calculated g shift is negative.

Thus we find that although the situation is improved
by a more careful extrapolation of 8q, most of the im-
provement is canceled by the additional correction.

D. The g Extrayolation

There is still another possible cause of the diS.culty
encountered with the polarization correction. It may
be that the extrapolation of the g functions, in the
absence of the polarization corrections, are in error.
If this is the case, the additional error contributions to
the g's must be of the same sign as the polarization
corrections.

This sort of error would consistently explain a large
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number of QDM calculations. There is one calculation
which tends to decrease our belief in its significance.
Ham" has calculated E(k) relations for the alkali metals
using the QDM, but expanding in the region of the
Fermi surface. Here the determination of the g's in-
volves an interpolation, rather than extrapolation, from
free-atom energies. Brooks ' has compared the parame-
ters eo and E2 of the XII—I' calculation with the equiva-
lent parameters obtained by extrapolating Ham's E(k)
results to the bottom of the band. In all cases, the
agreement is good.

It is highly likely that the parameters obtained by
extrapolating q are much more sensitive to extrapolation
errors than are the extrapolations of the energy pa-
rameters themselves. Thus, the agreement between
the two methods indicates that it is not too probable
that the g extrapolation is the cause of the errors.

VIII. CONCLUSIONS

The results obtained in this paper may be summa-
rized as follows:

(1) Using wave functions which involve the third-
order k y expansion of their periodic part, which in-

clude a Hartree term in the potential, and which
ignore the polarization corrections to the observed
quantum defects, it is possible to calculate g shifts
which agree with experimental values for sodium.

(2) In the expansion of a physical quantity to a
given power of k, it is necessary to retain all orders of
k p in N„(k,r) which contribute to that power. That is,
beyond the first order the convergence of the k p ex-
pansion is slow.

(3) For those alkali metals in which m~/m deviates
from unity, neglect of the Hartree term leads to con-
siderable error in the calculated g shift.

(4) None of the values calculated for potassium and
cesium are in good agreement with experiment.

(5) The polarization correction invariably removes
the agreement with experiment. Although the polariza-
tion correction has been studied in detail and improve-
ments made, no source of error in them has been found
sufficient to explain the discrepancy.

The failure of these calculations for the heavier
alkali metals remains unexplained and disturbing. There
are a number of possible explanations.

The 6rst is that the choice of a local potential in the
derivation of Yafet has led to the neglect of important
terms in the g shift. It is known, from the work of
K.ane, 4~ that the inclusion of a nonlocal potential leads
to additional terms in the k y expression for the effec-
tive mass. While it seems clear that the expression for
E2 used here takes account of them, there is no indica-
tion that the g-shift expression also does.

The second possibility is that the g-shift expression

4' F. S. Ham, Phys. Rev. 128, 82 (1962).
"H. Brooks, Trans. Met. Soc. AIME, 227, 546 (1963)."E.O. Kane, Phys. Chem. Solids 8, 38 (1959).

does not converge sufficiently rapidly to allow the
neglect of higher order terms. It has been shown that
the wave function outside the core converges in the
following manner. The ratio of the first- to zero-order
term is small because the pseudopotential is weak. The
convergence rate beyond first order is fairly rapid,
because the pseudopotential is localized. Spin-orbit
interaction, however, depends on the properties of the
wave function in the region near the nucleus. The wave
function in this region is determined by the properties
of the true potential. This potential is not nearly as
localized as the pseudopotential. Thus, if the potential
was sufficiently weak so that it could be treated by
nearly free electron theory, the core function expansion
would be expected to converge at a much slower rate
than the function outside the core. This implies that the
higher-order terms of the g shift may be significant. The
disturbing aspect of this analysis is that by analyzing
their effects at the Wigner-Seitz sphere radius, we
would probably meet small wave function differences
magnified by large coeflicients. Such an analysis points
to the need for a calculation of the g shift directly at the
Fermi surface.

Another factor which has been neglected is the true
shape of the Wigner-Seitz polyhedron and, correspond-
ingly, the Fermi surface. No efforts to evaluate the
accuracy of the spherical approximation have been
made. However, the now-recognized small distortion
of the Fermi surfaces from spherical shape suggests
that this effect could not account for the errors.

We note that the Hartree terms tend to bring the
vallles of Es closer to unity. The parameter (E&—1) is
reduced by ten to thirty percent for the heavier alkali
metals. Since (E. 1) can be re—lated4' to the distortion
of the Fermi surface, it is highly likely that it is the
neglect of the Hartree term which led to the disagree-
ment between Ham's calculation and recent experi-
mental values. "

ACKNOWLEDGMENTS

The authors would like to acknowledge helpful dis-
cussions with Yako Yafet on the meaning of the terms
in the g shift and their calculation. Discussions with
Frank Ham helped the authors to clarify their ideas
on errors in the QDM.

In addition, discussions with David Adler, Gerald
Peterson, and Shan-Chun Yu on a variety of topics
have been of considerable aid.

APPENDIX 1. A GENERALIZATION
OF BOW'ERS' THEOREM

In the course of the analysis described in Secs. III
and IV, it was necessary to integrate quadratic func-

~' M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958).
49 F. S. Ham, Phys. Rev. 128, 2524 (1962)."K.Okumura and I.M. Templeton, Phil. Mag. 7, 1239 (1962);

8, 889 (1963).
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tions of the radial solutions. In this Appendix the r„, we obtain the result
generalization of Bowers" theorem,

r

Fp B'Fg, L(r,)
Fg, L'(r)r'dr=F g,L(r„)

BF, (.) BF . (.)
(A1.1)

appropriate to nonlocal potentials is derived. The
derivation is presented because one important approxi-
mation is made within it which limits the general
applicability of this theorem.

For each ~ there exists a set of solutions of the
Schrodinger Eq. (3.1) which can be labeled as

Fg, L'(r)r'dr

B'Fz,L(r„) BFg,L(r„) BFg L(r„)=Fg,L(r„)

rp Co BFg, L(r')
+ Fg,L(r) VL(r,r')

0 0 t9c

BFg, L(r)
F~,L—(r') VL*(r,r') — r'sdr'rsdr

Bc

+ (n'/4) P(J+1)—L(I.+1)—3/4j

pJ,L,mg (L) —FJ,L (r)0j,L, mg (r) ~ (A1.2)
rp BFg, L(r')

Fg, L(r) W(r, r')

The p's are two-component spinors whose arguments
are the orientation angles of the vector r". They are
normalized on the unit sphere with spin summation
included.

Similarly, since V and W of Eq. (3.1) must be in-
variant under the transformation r and I' going into
Sr and Sr', respectively, where S is a member of the
rotation group, they can be written in the general form

V(r, r') =PL VL(r, r')PL(r" r'). (A1.3)

Differentiating Eq. (3.1) by e, and multiplying on the
left be P, we obtain

P(~)4(~) (—» 4)

Similarly, multiplying the Schrodinger equation for
P* by BP(r)/Bs, on the right we obtain

BFg, L(r)—Fg, L(r')WL*(r, r') — r' dr'r dr (A1.6)
86

The two integrals make this expression particularly
inconvenient to use. In the QDM, as used here, the
potentials VL(r, r') and WL(r, r') are assumed to be local
for r greater than some radius r„which is greater than
the core radius and less than the Kigner-Seitz sphere
radius. The condition that the Hamiltonian be Hermi-
tian leads to the requirement

and
VL (r,r') = VL*(r', r-)

WL(r, r') = WL*(r', r) . (A1.7)

This requirement implies that VL(r, r') and WL(r, r')
are local for r') r„.Thus, the integrals can be written as

rp rp BFg, L(r )Fg, L(r) UI, (r,r')
0

BFg, L(r)
I"g,L(r') VL" (r,r') — r"dr'r'dr

C

BFg,L(r')
Fg, L(r) VL(r)5(r r')—

86

Subtracting the first equation from the second, using
the forms of Eq. (A1.2) for P(r) and (A1.3) for V and
H/, and integrating the result over a sphere of radius

"W. A. Bowers, Ph.D. thesis Cornell University, Ithaca, New
York, 1943 (unpublished).

BFg,L(r)-
Fg,L(r') VL (r)—8(r r') — r' d—r'r'dr. (A1.g)

8

The first integral vanishes because of Eq (A1 7)
The second integral vanishes because the ranges of r
and r' do not overlap. Any ambiguity about the method
of treating the integral at r„ is eliminated by Eq. (A1.7).
The terms of Eq. (A1.6) involving W are treated in the
same manner. Kith the vanishing of the two integrals
Eq. (A1.6) reduces to the desired expression, Eq. (A1.1).


