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Group-Theoretical Consideration of Landau Level Broadening in Crystals

J. ZAK*

Fatzonal 3/magnet Laboratoryg Massaclzzzsetts Instztzzte of Technology, Cambrzdge, 2fassachzzsetts
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A group-theoretical classiGcation of the energy levels for a Bloch electron in a magnetic Geld is given. The
fact is used that the magnetic translation group is a subgroup of the symmetry group for a free electron in a
magnetic Geld, and it is shown that the broadening of the Landau levels in crystals is a general feature that
follows from symmetry considerations. An explicit formula for the broadening in the case of cubic symmetry
has been derived.

where y= iVi(it/B—r), A= sLBXr7, e is the magnitude
of the electronic charge and a is an arbitrary vector. The
infinitesimal operators in Eq. (1) were identified' with
the coordinates for the center of the Landau orbits.
Since the energy does not depend on the center of the
orbit, there is an inIIinitely high degeneracy of the
energy levels for a free electron in a constant magnetic
6eld. In addition, when a periodic electric potential is
introduced, operators again exist which commute with
the Hamiltonian'4

where

i e
exp — y—-A R„

C

R Niai+ ssas+ rtsas

(2)

is a Bravais lattice vector and al, a2, a3 are vectors of a
unit cell. In previous papers' a magnetic translation
group (M.T.G.) was defined which commutes with the
Hamiltonian for a Bloch electron in a magnetic field.
Although a detailed description of the energy levels and
the eigenstates according to the irreducible representa-
tions of the M.T.G. was already given before, 4' we
nevertheless repeat it in this paper by using a somewhat
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I. INTRODUCTION

'HE broadening of the Landau levels in a periodic
crystal potential has been treated by many

authors. ' In the present paper this problem is considered
from a group-theoretical point of view. For a free
electron in a constant magnetic field there exists a set
of operators which commute with the Hamiltonian'.

i e
exp — y —-A a

c

different construction which shows clearly how the
Landau levels get broadened.

The relation between the operators defined in Eq. (I)
and those defined in Eq. (2) is the same as between
arbitrary translations for a free electron and discrete
translations by R for a Bloch electron.

In order to find the Landau level broadening caused

by the periodic potential of the lattice, we here use the
fact that the operators $Eq. (2)7 for a Bloch electron in
a magnetic field form a subgroup of the operators

t Eq. (1)7 for a free electron in a magnetic field. ' The
usual procedure of comparing the irreducible representa-
tions of a group (the symmetry of the original problem)
with the irreducible representations of its subgroup (the
symmetry of the problem after the perturbing potential
is introduced) allows one to find the splitting of the
energy levels which is caused by the perturbation. (In
our case the periodic potential of the lattice leads to the
lowering of the symmetry. )

In Sec. II we present the classification of the energy
levels for a Bloch electron in a magnetic field by using
the irreducible representations of the magnetic trans-
lation group' (M.T.G.). In Sec. III we construct
symmetry adapted functions for the irreducible repre-
sentations of the M.T.G. from the eigenfunctions for a
free electron in a magnetic Geld and calculate the
broadening of the Landau levels.

II. CLASSIFICATION OF ENERGY LEVELS

Let us start~ with a short description of the subgroups
of the magnetic translation group. ' tA'e are interested
here in commutative subgroups for the classification of
the energy levels by means of the eigenvalues of the
elements of these subgroups. The operators of the
M.T.G. are defined as follows':

i( e
r(R„IR„",R;)=e~ -I y —-&

C

c (Ri, ,R,)-
Xexp 27ri, (4)

hc/e

'The operators deGned in Eqs. (1) and (2) do not form a group
because a phase factor appears when products are formed. In Ref.
5 operators are deGned which do form a closed set and therefore a
group, called the magnetic translation group.' Part of the results of this section were obtained elsewhere:
See Reis. 3, 4, 5, and E. I. Blount, Phys. Rev. 126, 1636 (1962).
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C (RI, ,R,)
=exp 2mi

h

where C(RI, . ,R,) is the magnetic flux through the both cases they are described by wave vectors k:
polygon enclosed by the vectors Ri, ~ ~, R;, —R„.We
distinguish between the following cases: D{T(/'$'8'+/2$282+23383I R'»' 'R') }

(1) H does not lie in a lattice plane. The invariant
commutative subgroups of the M.T.G. are given by the
elements c e

r(T3,8,~R„. ,R;), for i=1, 2, or 3, (5) 2'
Xexp /I/223 exp{ik R/T}, (10)

where e; takes all integer values.

(2) H lies in a lattice plane, say, in the plane given
by the unit cell vectors al and a3. In addition to the
invariant commutative subgroups defined by Eq. (5),
the M.T.G. has the following invariant commutative
subgroups:

r(T/181+23383~ Ri, ,R;), (6)

where el and m3 assume all integer values.

(3) H lies in a direction of a lattice vector, say, 83 (the
unit cell vector a3 can always be chosen in a direction of
any lattice vector). In this case there are two possi-
bilities:

(a)
H. 81X82 rs

Q—,where m and E are integers.
h%

In addition to the subgroup defined by Eq. (6) there is
another invariant commutative subgroup of the M.T.G. :

T(23282+T/383~ Ri, . &R;)

for all integer values of e2 and es.

H 8,X82
(b) — -=-—for integer &3 and /'&r.

he/e IY

The invariant commutative subgroup of the M.T.G. is
given by the following elements

T (/1$181+ /2$282+ r/383
~
R1,R;), (8)

where siss= 13&I (or X/2 for even I) and /, , /2 and Tss take
all integer values. (We assume that Ts and 1V have no
common factor. ) In our consideration of the Landau
level broadening, we use the case (3b) because, in this
case, it is easy to construct the irreducible representa-
tions of the M.T.G-. However, we shall see that the
broadening is a general feature for a Bloch electron in a
magnetic 6eld.

Let us consider the case (3b) of the M.T.G. in more
detail. The latter can be written by means of its sub-
group F consisting of the elements LEq. (8)j as follows:

i(=0 1 ~ S1—1
F2~0, l ~ ~ ~ s2 —1

r(iiai+i282) iiai+i282)F. (9)

The summation in Eq. (9) is a direct one. Since F is a
commutative group we can easily find its representa-
tions. They differ slightly for odd and even e, but in

where R3T= /)$181+/2$282+23383, the first phase factor is
given in Eq. (4) and

Ki K,
k=mi —+ms—+msK3, 0(mi, ms, ms(1 (10a)

Sl $2

where Ki, K2, Ks are unit cell vectors of the reciprocal
lattice. All the representations of Ii are obtained when
the wave vector k varies in the first magnetic Brillouin
zone which is defined by the vectors Ki/si, K2/$2, and
Ks. ' This Brillouin zone is smaller than the usual one for
the same Bravais lattice by a factor of Ã because the
commutative magnetic translation group F is con-
structed on the translations slal, s2a2, and a3 as on unit
vectors. Since the group Ii commutes with the Hamil-
tonian, the energy levels and the states for a Bloch
electron in a magnetic field can be labeled by the vectors
k LEq. (10a)$. The description is thus similar to the one
for an electron in a periodic potential alone. The only
difference is that the unit cell vectors for the commu-
tative translations are larger and the Brillouin zone is
therefore smaller. As a consequence of the de6nition of
k the energy will be periodic in k with periods Ki/$1,
K2/$2, Ks. The vector k varies continuously and the
energy as a function of k, E(k), will exhibit a band
structure. For a full description of the energy spectrum,
we have to use the whole M.T.G. In order to see the
e8ect of the other symmetry elements, let us take a
similarity transformation:

T '(ii»+i282
~
iiai+i282)

X T (/1$181+ /2S282+ Ssa 3
~
/1$181+ /2$282+ T3383)

XT (3181+i282
~
ila 1+'4282)

T (/1$181+ /2$ 282+ 23383
~
/1$181+ /2$282+ 23383)

X exp {27ri( —/isiis+ /2$2ii) r//1V }.

By applying both sides of Eq. (11) to an eigenvector

&
m), ms, ms) of the elements of F, we find that'

T (3181+i282
~
3181+3282)

~
mi m2 ms) +

22 Zl
m,—,m, +—,wr,) (&2)

$2 Sl

is again an eigenvector of the elements of Ii but corre-
sponding to the eigenvalues mi —(is/$2), ms+ (ii/$1) ms.
The element in Eq. (12) will thus transform a wave
f1111C't1011 &/'m&, ms, ms IIltO &pm& —(&3/ss), ms+(i&/s&), mS. ThiS again
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is similar to the case of an electron in a periodic po-
tential. In the latter case the rotations or reQections
(denoted by n) of the space group transform the k
vector from one point in the Brillouin zone into another:
kink. For the description of the representations of
space groups it suSces to take vectors only in a part of
the Brillouin zone. For example, in a cubic symmetry it
suffices to consider only 1/48 of the Brillouin zone. For
the M.T.G. we have to take, according to relation (12),
only 1/X of the magnetic Brillouin zone and by means
of the k vectors in this region we can define all its
irreducible representations'.

D., (mi, mb, tab)( (R
~
R )}

=8p,;,exp( —z.i(F2+2j')ni(N/1V) }
Xexpfik R„},

where j and j' take values from 0 to E—1 and

It=mi(Ki/1V)+ m2(K2/E)+m3Kb, .
0&m„m„m, &1. (14)

PIn the representation of r(R„~Ri, ,R;) and addi-
tional phase factor

c (Ri, ,R;)
exp 2x$-

hc/e

will appear in Eq. (13).7 As a result of the symmetry
elements that do not belong to F the energy as a function
of k, E(k), will be defined in a 1/X' part of the usual
Brillouin zone. Denoting by K any vector that is
obtained in relation (14) by assuming integers for mi,
m2, andm3, we get

E(k+K) =E(k) .

Let us compare the result in Eq. (15) with the
symmetry of the energy for an electron in a periodic
potential. In the latter case the energy obeys the con-
dition LEq. (15)j for vectors of the usual Brillouin zone
and also an additional relation which follows from the
point symmetry of the space group:

E(nk) =E(k), (16)

where n is a rotation or a reaction. The relation LEq.
(16)j for the magnetic case is expressed by the fact that
the magnetic Brillouin zone is split into E equal parts
and hence the energy variation need be considered only
in one of these parts. From the representations fEq.
(13)$ it follows that the degeneracy of the energy levels
is X-fold.

III. LANDAU LEVEL BROADENING

Having described the energy levels for a Bloch elec-
tron in a magnetic 6eld and the representations of the
magnetic translation group, we can now solve the
following problem: What happens to the Landau levels
for an electron in a constant magnetic field when a weak

periodic potential is turned on? We know the exact
solutions for an electron in a constant magnetic field
and we choose these in one of the representations given
in Ref. 2. Let us denote the operators p —(e/c)A by ~
and require the eigenfunctions of the Hamiltonian

(p+ (e/c) A)'/2m (17)

Xexp —— B„.18

Here Ab are the eigenvalues of z.„li= (hc/eH)iI' is the
radius of the cyclotron orbit and A is a normalization
constant. The functions (18) obey the following
equations:

eXp Z zaz lan, b
= eXp('Lbag}4'nb, ,

Z

exp 7i'pay fn, b = tt'n, b ay/b2—

(19)

where a, and a„are any translations in x and y direc-
tions. According to the interpretation given in Ref. 2 the
operators z and x„are connected with the y and x
coordinates of the center of the cyclotron orbit. Equa-
tions (19) show that the energy does not depend on the
continuous variable b, because a state with any eigen-
value of the operator m. , can be obtained from the state
tt„b by applying operators exp( (i/A)ir„a„} that com-
mute with the Hamiltonian (17). The energy is thus
infinitely degenerate. By turning on a periodic potential
the Hamiltonian of the problem will be

(p+(/c)A) /2 +I ( ). (20)

The symmetry. of the Hamiltonian (20) is lower than
for the free electron in a magnetic field and we have to
expect that the degeneracy of the energy levels will be
partly removed. The operators that commute with (20)
are given by Eqs. (19),but now a and a„are compo-
nents of lattice vectors. The magnetic translation group
is thus a subgroup of the symmetry group for a free elec-
tron in a magnetic field. The operators exp((i/fi) z „(E„)„}
will no longer give us a state with any eigenvalue of x
from the state p„b, we obtain, instead, a discrete set of
states that belong to the same energy. The infinite
continuous set of functions (18) will split into an infinite
number of discrete sets, each one leading, in general, to
a different energy. Sets that are created from states
with very close eigenvalues b will presumably have
close energies. The Landau levels will thus be broadened.

to be eigenfunctions of m. , too. By choosing a gauge
A= 2L'HXrj and by directing the z axis of the coordi-
nate system in the direction of the magnetic field, we
have'

zxy z

P„,b(xyz) =A exp — +ibm+ p,z—
2P'



LAN DAU LEVEL BROADENING IN CRYSTALS

A more detailed description of the broadening can be
given for the case (3b) of the M.T.G. For simplicity we

take a cubic crystal with the s axis along one of the
principal axes of the crystal. In order to get the splitting,
in the lowest order of perturbation theory, of the
Landau levels which are described by the eigenfunctions

(18), we have to use these eigenfunctions to construct
symmetry adapted functions for the representations
(13) of the M.T.G. Let us treat the simple case when
e= 1, and ignore the s dependence of the wave function
which is of no interest in this treatment. The usual con-
struction of symmetry adapted functions4' leads to
the following result (apart from a normalization con-
stant):

2x4,;"(xy) = exp ——imz j P z (mNa&
~
mNaz)

Ã

Xexp{—2zrzmzm)lp&, (Q&/z)(mi —/)/))/& (21)

where )P„z is the function defined in (18) for s=0, j
takes values from 0 to T—1, r is a vector with com-
ponents (x,y), and

and H, ~(zz) are the overlap integrals:

H,„(N)= V, ~ exp —— — H/ —
/

2 "/zri/9, zz ( 2 l( kl()

1 y qN—a ' fy qN—a)
Xexp ——

—2'
Xexp ipy dy. (25)

Here V, „ is the Fourier transform of the potential
V(xy):

1 2m.

V, ,=— exp — z (qx —py) V(xy) dx(Ey. (26)
8 C

H „,*(zz) =H, ,(zz) . (27)

The integration in (26) is over an area of a unit cell in
the x-y plane.

From the definition of the overlap integrals (25) and
from the reality of the potential V(xy), it follows:

k= mi(Ki/N)+m, (K&/N), 0&m„m&& 1. (22)
It can also be shown (see Appendix)

H „,(zz) =H, , „(I)=H, ,( ) . (28)
The functions (21) correspond to the classification of the
energy levels for a Bloch electron in a magnetic field
that is given in Sec. II. Two consequences follow from
the above construction of the symmetry adapted func-
tions (21): First, the Landau levels become N-fold
degenerate instead of being of in6nite degeneracy.
Secondly, the Landau levels are broadened because of
the dependence of the energy on the vector k. This
dependence may be calculated by taking matrix ele-
ments of the periodic potential V(r) in (20) between
states (21), which are the correct fimctions for the
lowest order perturbation theory. The matrix of the
secular equation in the lowest order of perturbation
theory will be automatically diagonal and we are left
with the calculation of matrix elements of the potential
V(r) only between states (21) with the same I, j, and k.
For a given e, the perturbation energy will depend on k
only (we take therefore j=0):

V (k) = + *~(xy)V(xy)4 "(xy)dxdy. (23)

By expanding the potential V(xy) in a Fourier series
and by taking a proper normalization for the functions
0„",we get

Combining (27) and (28) we find that the overlap
integrals H„,(zz) are real.

The final expression for the perturbation energy (24)
will be

V„(k)= P cos(2zrmip) cos(2zrm, q)H„(zz)

=H,.+2 g icos(2zrmip)+cos(2zrmzp))H. „(zz)
y=l

+2 Q cos(2zrmip) cos(2zrmzq)H~, (0) . (29)
p, l 1

As expected the perturbation energy V„(k) satisfies
relation (15) and has the symmetry of the potential.
The first term in (29) is a constant (it equals V„) and
leads to a total shift of all energy levels. The other
terms in the perturbation energy (29) will lead to both
broadening and unequal spacing of the Landau levels.
In order to estimate these two effects let us take the
lowest order term of V (k). We have (omitting the
constant term H„):

%2zrl), ~'
V (k)=2Voi exp —— L,

a a )
V„(k)= p exp{ 2zri(mip+mzq—))H,~(zz), (24)

where p and q take all integral values from —0() to +~;
mi and mz define the k vector according to relation (22)

X (cos2zrmi+cos2zrmz), (30)

where 1.„(x) is a Laguerre polynomial. The argument
(zrX/a)' in both the exponential and the Laguerre
polynomial is very large for all practically achievable
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magnetic fields:

(vrX/u) '-10"X1/P. (31)

For fields H 10' 6, (nA/u)' 10'. For small quantum'
numbers e, the perturbation V (k) will therefore be
negligible. For high quantum numbers (e) 100) we use
the asymptotic expression for the Laguerre polynomials

1.„(r) exp{—,'g}x '14m '~'

icos 2 e''x —— 0 Q
—@' .

4

The perturbation energy V (k) will be

2+9P '~4

V„(k) Voi e cos 2x—V2m ——
9 u 4

X (cos2~nz~+ cos2wm, ) . (33)

For JI 10' 6 and e 10', we get

V (k) 0.01Voi(cos2~mi+cos2~mu) . (34)

This is already a strong perturbation, and we have to
expect that, for high quantum numbers e, the shift of
Landau levels and the broadening will become con-
siderable. However, when I -+~, V (k) ~ 0. This is in
agreement with the fact that very high-energy levels are
not influenced by the periodic potential.

Finally, it is interesting to note that the formula (29)
for the perturbation energy has the same form as in the
case of the tight binding approximation. This fact is not
surprising because the procedure used here for con-
structing symmetry adapted functions in the magnetic
field is exactly the same as one uses for constructing
Bloch-type functions from atomic orbitals.

IV. CONCLUSION

The Landau level broadening considered in this paper
is an example of symmetry lowering which is caused by
the introduction of a perturbation. In the case under
consideration, a periodic electric potential is introduced
as a perturbation into the problem of a free electron in a
magnetic field. As a result of the perturbation, the
degeneracy is partially removed and we get a broadening
of the energy levels. It is a usual thing in quantum
mechanics to expect that when an additional field is
applied to a system the symmetry of the latter is
lowered. This is, however, not the case when the
additional applied Geld is a constant magnetic field. To
see this let us compare the translation operators

exp{ (i/A)y a}, (35)

vrhich commute with the Hamiltonian for a free electron
(a is an arbitrary translation) with the operators (1)

vrhich commute with the Hamiltonian for an electron in
a constant magnetic Geld. The latter do not form a
subgroup of the operators (35). The same can be said
about the case when a magnetic Geld is applied to a
Koch electron. The translation operators that commute
with the Hamiltonian for a Bloch electron are

em{(i/&)1 R-}. (36)

When a magnetic Geld is also present, the operators that
commute with the Hamiltonian are defined by Eq. (2).
Again, the latter do not form a subgroup of the usual
translation group (36). The fact that we get a diferent
symmetry group by introducing a magnetic Geld prob-
ably explains the difhculties in solving the problem for a
Bloch electron in a magnetic field. The only case vrhen
symmetry is lowered in the presence of a magnetic field
is the example treated in this paper. This example is in
fact very easy to treat.

APPENDIX

We derive here the symmetry properties (28) of the
overlap integrals H„,(e):

II„(w)=-— V, , y (
—)y.( )

2x
Xexp ——iqy dy, (A1)

= exp ——— II„ (A2)

The integrals that appear in (A1),

y y —pA"a 2m

I„,= p.„—p —e. xp i' dy —(—A3)
Q

are the Fourier transforms of the products p„(y/X)
Xp„((y pEa)/X). Using the fo—rmula for a Fourier
transform of a product of tvro functions, we get

(A4)

Since we assume cubic symmetry for the potential
energy relation (28) follows at once from the equal-
ity (A4).
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