
P II YSI CAL REVIEW VOLUM E 136, NUM 8 EiR 3A 2 NOV&. M 8 L~R 1964

Piezoelectric Ultrasonic Harmonic Generation in Cadmium Sulfide
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Theory and experiment are presented for the strong acoustic harmonics produced in photoconductive
cadmium sul6de as a result of nonlinearities in the electron-lattice interaction responsible for ultrasonic
amplification. Data have been taken at fundamental shear-wave frequencies of 11.5 and 30 Mc on a 7-mm
crystal and at 30 Mc on a 3-mm crystal. The second-harmonic output was measured as a function of input
power at the crossover point (where the electron drift velocity is equal to the sound velocity) for various
sample resistivities. The harmonic power is shown to be proportional to the square of the input power, and
the largest harmonic obtained was 4 dB below the fundamental for an input acoustic intensity of approxi-
mately 1 W/cm'.

I. INTRODUCTION

S TRONG ultrasonic harmonic generation has been
observed in photoconductive cadmium sulfide. The

mechanism which produces the harmonics is the non-
linearity of higher order terms in the electron-lattice
interaction responsible for ultrasonic amplification. ' The
second harmonic power can be as large as 4 dB below the
fundamental for an input acoustic intensity of approxi-
mately 1 W/cm'. The data have been taken at crossover
(where the electron drift velocity is equal to the sound
velocity) in order to simplify the interpretation of the
experimental results. At crossover, the change in the
amplitude of the fundamental during propagation down
the crystal is due solely to losses to higher harmonics
while at other drift voltages the fundamental and the
harmonics are amplified or attenuated at diferent rates.
However, dispersion as a function of frequency is a
maximum here, giving rise to coherence phenomena
similar to the optical harmonic case. '

The possibility of achieving large harmonic generation
and parametric interaction of acoustic waves in piezo-
electric semiconductors was first realized by Hutson. '
Harmonic generation in CdS has recently been reported
by Ishiguro, Uchida, and Suzuki, 4 Tell, ' and Kroger. '

The physical situation is that the self-consistent field
produced by the interaction of the electrons with the
traveling wave contains higher harmonics which, since
the crystal is strongly piezoelectric, give rise to large
strains at the harmonic frequencies.

In the original explanation offered by Hutson' in
regard to the saturation of acoustic Aux, the space-
charge wave at one frequency would interact with the
piezoelectric held at a second frequency giving rise to
strains at the sum and difference frequencies. This inter-
action would take place by virtue of the nonlinearities
in the electron lattice interaction. In particular, the

'A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev.
Letters 7, 237 (1961).' P. A. Franken and J.F. Ward, Rev. Mod. Phys. 35, 23 (1963).

A. R. Hutson, Phys. Rev. Letters 9, 296 (1962).
4T. Ishiguro, I. Uchida, and T. Suzuki, 1964 IEEE Inter-

national Convention (unpublished).' B. Tell, Bull. Am. Phys. Soc. 9, 478 (1964).
e H. Kroger, Appl. Phys. Letters 4, 150 (1964).

nonlinearities arise from the term (8/r)X) iE(r)D/r)X))
in Eq. (2) below. This term is omitted in the ordinary
treatment of the ultrasonic amplification process. ' ~'

YVe have, in eGect, an equivalent third-order elastic
constant which can be larger than 10"dyne/cm' com-
pared to the usual lattice anelastic constants of 10"
to 10"dyne/cm'. '

II. THEORY

Following Hutson, ' the electric field E and the strain
S are expanded in Fourier series

E=Es+P E „sin(k„X—nzcof 1q e ), (1a)

S=Q S„„sin(k„X—m(of+ (pe„), (1b)

where L~'s is the applied drift Geld. Using Eq. (7) in
%hite' with the notation previously used~
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where D is the displacement vector, p the mobility, and
D„ the diffusion constant. Substituting for D= eE+eS
(e is the dielectric constant and e the piezoelectric con-
stant) and solving for E„„in terms of S„, at crossover,
with the assumptions that the second harmonic is small
compared to the fundamental, higher harmonics are
negligible, and dispersion can be neglected in the above
equation yieMs
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7 D. L. White, J. Appl. Phys. 33, 2547 (1962).
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~ J. M. Ziman, Electrons and Phonons (Oxford University Press,

New York, 1960), p. 152.
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(&u /&X)(&'u /&X') is the driving term for the second
harmonic, and its coefFicient is an effective third-order
elastic constant which we deGne as czzz". The super-
script e.l. denotes electron-lattice to distinguish it from
the usual lattice anelastic constant czzz.

The solution to these equations with the boundary
condition that u=A sin( —~t) at X=O is

u= u~+u2„,

A Itl fcIII
u=A sin(k, x—~t)—

8 4 c

sinL(~X/Uo)(V~„—V„)/Voj
X cos(k2X —2cvt) . (8)

(V2.—V.)/Vo

This approximation is valid for

Ak~ czzz" sin AX Vp V2 —U Vp

8 c (V,„—V„)/V,

In terms of the acoustic intensities P„= c„V„(k„u„)'
and. P2„——-,'c2„V2„(k2„ug.)' and here taking c=c„=cm„,
V„=V2 = Vp and k2„——2k„, the Gnal result is

I'„' czzz". ' sin' AX Vp V2 —V Vp
(9)

SVpc c [(V2„—V„)/Vo]'

The harmonic consists of a wave which is locked to
the fundamental which therefore exists only in presence
of the driving term and has frequency 2' and propaga-
tion vector 2k&. There is also a free wave of frequency

where co,=o./e is the conductivity frequency and
co& ——Vo /D„ is the diffusion frequency. Substituting for
E in the wave equation $Eq. (2) from White~j

B2Q B2S BE
p =c —e

Bt' BX2 BX
gives

p(B'u„/Bt') =c„(B'u„/BX')=0

where c„ is defined as

2' and propagation vector k~ which is a solution to the
homogeneous equation. The sum of the two solutions,
obeying the boundary condition, results in the form ob-
tained in Eq. (8).At crossover, the dispersion is given by

(C 1/2 — +2

V„„=i =Vo 1+—,(10)
k p 2 1+((o,cog)/mme)2)

with Vo ——(c/p)'/' and E'= e'/ce is the electromechanical
coupling constant. This dispersion is the result of the
difference in the screening, at different acoustic fre-
quencies, of the longitudinal electric Geld which accom-
panies the sound wave in a piezoelectric crystal. ~'
Equation (9) exhibits the coherence effects similar to
optical harmonics, ' and reduces to the result obtained
by Melngailis et al."for the usual anelastic case in which
there is negligible dispersion.

III. EXPERIMENT

The experimental arrangement was similar to that of
Hutson, McFee, and %hite. Data were taken at cross-
over for various light levels at the fundamental shear
wave frequencies of 11.5 and 30 Mc on a 7-mm crystal
and at 30 Mc on a 3-mm crystal. The crossover voltage
was determined at low input power levels for each re-
sistivity. The fundamental and second harmonic were
then measured as a function of input power at the low
input crossover voltage.

The harmonics could be reduced by greater than
30 dB by removing the illumination and returning the
crystal to its insulating state. This appears to establish
the presence of the harmonics as due to the electron-
lattice interaction and not to other effects which should
not be appreciably affected by illumination. Further-
more, working at crossover eliminates the possibility
that a small spurious signal could be ampliGed.

The low input level was chosen for determining the
crossover point because it was felt that in the absence
of nonlinearities the crossover should be independent of
the power level. In the dark or insulating condition, the
fundamental output power was linearly proportional to
the input up to the highest power used, whereas in the
illuminated state the output deviated fz.om its dark
value at high input levels. The depletion of the funda-
mental in the conducting state appears to be a further
check on the origin of the harmonics.

The major experimental problem was the measure-
ment of absolute acoustic intensities which is necessary
in order to determine the e6'ective anelastic constants.
The absolute intensity can be determined from insertion
loss measurements if the input and output terminals of
the system are electrically and acoustically symmetric.
Identical transducers were used for transmitter and
receiver, and were inductively tuned and then shunted

by a j.OO-Q resistor which made the input and output

"J.Melngailis, A. A. Maradudin, and A. Seeger, Phys. Rev.
181, i972 (i963).
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0 TABLE II. The ratio of fundamental to second harmonic power
for the maximum fundamental intensity is given in dB.
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Pp 1 (crn") Psin'((coX/Vp) (Vp~ —V )/Vp7

P 8V,C ( c j P(Vp„—V„)/Vo7'
at 30 Mc for P„=0.18 W/cm' as a function of sample resistivity
on 7-mm crystal.

FIG. 1.

impedances effectively 100 Q. The resistors considerably
increased the insertion losses, but made the transmitting
and receiving eKciency of the transducers equal and also
matched the transmitting transducer to the rf pulse
generator. The ratio of the input to output power (in-
sertion loss) was determined by inserting an attenuator
with 100-0 characteristic impedance in place of the
sample while maintaining the same input voltage and
output signal level, and the input power was determined
by measuring the voltage across the 100-0 terminating
resistor. The acoustic intensity was then found by as-
suming all of the electrical power was absorbed in the
terminating resistors, and therefore the acoustic in-
tensity is the input power diminished by half of the
insertion loss. Allowing for some electrical and acoustic
asymmetry (which can be estimated by Gipping the
sample) the acoustic intensities are believed reliable to
within a factor of 3.

In order to check for harmonics which may exist in
the electrical input, a band pass 61ter, centered at the
fundamental, was sometimes used. However, checking

Resistivity Experimental Theoretical
(K, 0-cm) (dB) (dB)

7 mm —30 Mc/sec Maximum fundamental intensity
is 0.85 W/cm'

10 18 15
30 9 a

90 0
7 mm —30 Mc/sec Maximum fundamental intensity

is 0.18 W/cm'
10 21 22
30 14 S

45 15 15
90 7 6

270 11 5

3 mm —30 Mc/sec Maximum fundamental intensity
is 0.13 W/cm'

90 18 8
270 14 2

7 mm —11.5 Mc/sec Maximum fundamental intensity
is 0.25 W/cm'

25
17
14
19
21

28
19
14
6

Es Theory predicts the second harmonic should be zero.

the dark value of the harmonic (where the interaction
was turned oQ) proved the filter to be unnecessary. It
was also pointed out to the author by White that a
sine-wave incident on a nonlinear medium will in general
reQect a harmonic, thereby changing the boundary con-
dition used in deriving Eq. (8). However, calculation of
the rejected harmonic at the interface between quartz
and cadmium sulMe leads to the belief that this e8ect
should be negligible. "This calculation does, however,
neglect any effects due to the acoustic bonds.

Another cause of experimental error could be inhomo-

TAIILE I. EGective third-order elastic constants. ~

(~./~) (~/~n)fs«p
&III' '=

2Uop (cpa/co+ pI/pID) (cpc/2po+2co/oon)
Resistivity CIII '

'.

(0-cm) (dyne/cm')

11.5 Mc/sec
30 000
60 000
90 000

180 000
270 000

10000
30 000
90 000

200 000
270 000

30 Mc/sec

4.8X10"
1.7X10»
3.4X10»
1.0X 10~4

1.8X10'4

8.3X10"
4.9X10»
1.6X10'4
3.2X10'4
2.4X10'4

+ The values of the constants used in the calculations are a)c =1.25 )&10»
o(Q 1cm 1),co~ =6.0X109sec 1, a=0.8 cgs, e =6.5)&104cgs, andc=1. 5 X10»
dyne/cm~ and lid, =200 cd/V sec.
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FIG. 2.
Pp 1 cur")psinpp(cpX/Vo) (Vp~ —U )/Uo7

P 8Upc c / L(Up —V )/Uo7-'
at 11.5 Mc for P~ =0.25 W/cm' as a function of sample resistivity
on 7-mm crystal.

'N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606
(1962).
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geneities in the crystal such as a nonuniform distribution
of trapping centers and in the illumination which might
smear out coherence effects. Furthermore at low-carrier
concentrations trapping eBects may become important, 4

thereby partly accounting for the discrepancy between
theory and experiment at high resistivities.

48

IV. RESULTS

The effective anelastic constants czzz"- are given as a
function of frequency and resistivity in Table I. In
Table II, the experimental results are compared with
the theory as given by Eqs. (9) and (10),and some of the
results are plotted against the theoretical curve in
Figs. 1 and 2. It is seen from Table I and Figs. 1 and 2
that the general fit is good except where coherence
effects should produce a null in the harmonic output and
at high resistivities. The causes of these discrepancies
are not entirely clear, although possible reasons have
been mentioned at the end of the preceding section.

The plot of fundamental and harmonic power against
input power for the case of maximum harmonic produc-
tion is given in Fig. 3. It is seen from this figure that
both the fundamental and harmonic deviate at high
power from their low power slopes. The deviation
becomes signi6cant for inputs greater than 25 dB
(=0.12 W/cm'). The criteria for the validity of the
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Fn. 4. Graph showing Pm„proportional to P '.

V. CONCLUSIONS

This work has given an absolute measurement of the
electron-lattice nonlinearity as originally predicted by
Hutson. ' A theory, in terms of equivalent third-order
elastic constants, has been developed which is in reason-
able agreement with the experimental data except for
the above mentioned discrepancies. It is felt that the
unambiguous appearance of coherence effects and agree-
ment at high resistivities would require work on select
samples of various lengths under extremely homogene-
ous lighting conditions, which may be beyond our
present technology.

theory as given by Eq. (g) was

30] cp sinL(&AX/ Vp) (Vp —V„)/ Vp)
A(]

8 c (Vp„—V )/Vp

At 0.12 W/cmP this quantity is approximately 0.2, so
that for lower input levels or cases of less harmonic
production, the theory should be valid.

In Fig. 4, it is shown that the harmonic power is
proportional to the square of the fundamental power
even at the highest power level.

-lo
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4 X10"4
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FrG. 3. Fundamental and harmonic intensities as a function of
input intensity at 30 Mc and 90-k 0-cm on a '?-mm crystal.
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