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state of a pair of ions, coupled either antiferromagneti-
cally or ferromagnetically. In each case, there are four
possibilities for coupling two ions of spin ~, leading to a
total spin S=0, 1, 2, and 3.In a first approximation they
take a quadratic isotropic exchange energy H= J(SrSs),
with J=33 cm ' for the antif erromagnetic coupling,
and in that case the positions of the 4 levels are
0—J=33—3J=99 and 6J= 198 cm '. The observed
far-infrared lines are interpreted as the S=0~ 1 and
S=0 —+ 2 transitions. The S=0 —+ 3 would lie at
198 cm ', where the lattice absorption is considerable.
Figures 12 and 13 give the behavior of the population
for every level versus temperature, in each type of
coupling, calculated from the partition functions. There
is a drastic change of the population ep of the lower
level only in the first type, and it explains quite well
the observed variations of intensities of both lines with
temperature. 4 The contribution of ferromagnetic pairs
would give two lines at 35 and 42 cm ', which could be
mixed with the antiferromagnetic one at 33 cm '. That
would explain the slightly higher wave number observed
(37 cm '), but this contribution is certainly small, and
a check at 21 cm ' is planned.

Recently, Kisliuk' has considered a more refined
antiferromagnetic coupling with a quit e different J

' P. Kisliuk, Appl. Phys. Letters 3, 215 (1963).

FIG. 13.Variations
of the populations
no n1 n2 n3 of the 4
sublevels of a ferro-
magnetic pair, versus
1/T.
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(J= 11 cm ') and. a small biquadratic term: H= J(S,Ss)
—j(S&Ss), with j/J= 2%%u~. The new positions of the 4
levels are now Oy 10 3) 32 7p and 67.9 cm '. They are
quite diferent, but there are so many lines in the red
that this scheme is also possible. However, the far-
infrared spectra are strikingly in favor of the first one,
and are impossible to explain with the second: There is a
line at 100 cm '; there is none near 68 cm '.
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Infrared absorption by small needle-shaped ionic crystals of cubic structure has recently been found to be
anisotropic. In this note, a single strand is used as a limiting model for such a crystal, and the calculated ab-
sorption in both directions is shown to be in qualitative agreement with observations on lithium fluoride.
Features of absorptions to be expected from other crystals are discussed.

ECENTLV, Hass' prepared small needle-shaped
lithium fluoride crystals by evaporating a thin film

of lithium fluoride onto an optical grating (rather than
onto a plane surface as is usual). The grating spacing,
and hence the width of the resulting crystals, was small
compared to the infrared absorption wavelength. The
resulting absorption was found to be strongly
aniso tropic. 2

We may summarize the experimental results by re-

~ M. Hass, Proceedings of the Far Infrared Physics Symposium,
Riverside, California, January 1964 (unpublished}.' Anisotropic Absorption by Needles of NiSb has also recently
been reported by B. Paul and H. Weiss, S~lid State Electron {to
be published). D.W. Berreman, Phys. Rev. 130, 2193 (1963)has ob-
served similar anisotropy and polarization dependence in the
absorption of obliquely incident beams by thin 6lms.

ferring to the somewhat idealized rod-shaped crystals
of Fig. 1.Let the light wave propagate in the s direction
(into the paper); then the "usual" sharp absorption is
found if the light is polarized in the x direction (parallel
to the long edge of the crystal), but a broad absorption
shifted to a higher frequency is found if the light is
polarized in the y direction (perpendicular to the long
edge of the crystal).

The simplest, and purely qualitative, theoretics, j

FIG. 1. Model of a needle-shaped crystal.
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x@~000 ~ 0 ~ 0 ~ 0 ~ QO
Fxo. 2. Limiting model of a needle-shaped

crystal (single strand).

Xs(P) = 1—cosm P,

explanation for this, is as follows. Each normal vibration
has associated with it a dipole moment in the x direction
P and a dipole moment in the y direction P„; these
depend on the displacements of the atoms during that
vibration, in the x direction in one case and in the y
direction in the other. As these two displacements are
not necessarily the same on account of the lack of sym-
metry in the crystal of Fig. 1, P and P„will not neces-
sarily be the same either. The absorption of bght of the
proper frequency and polarized in the x direction
depends on the square of P„and that of light polarized
in the y direction on the square of P„.In a crystal which
is large and cubic in growth shape as well as cubic in
internal symmetry, there will be, for any mode with
given displacements in the x direction, one mode with the
same displacement in the y direction and one with that
same displacement in the s direction. Therefore isotropic
absorption will result from the totalP ', P„',P,'resulting
from these three. On the other hand, in a crysta1 so small
in one direction that boundary effects are important,
these three symmetrical modes will not necessarily exist,
and absorption shown by light of difFerent polarization
will therefore not be necessarily the same.

To make quantitative calculations of the quantities
P, and P„would be by no means easy. Let us therefore
idealize the situation even further, and replace the long,
thin crystal of Fig. 1 by the even longer and thinner one
of Fig. 2. The width and thickness of the crystal have
been shrunk to one atom here, and the length in the
x direction increased to infinity; in short, a one-dimen-
sional crystal. The light wave is still envisaged in the
s direction, into the paper. In this situation, the vibra-
tions in the x direction ("longitudinal" )' and those in
the y direction ("transverse") ' are separate and distinct;
only the former have a dipole moment in the x direction,
and only the latter have a dipole moment in the y
direction. Let us assume nearest-neighbor interaction
and in addition Coulomb interaction between all atoms.
Then the frequencies of the longitudinal vibrations are
known, 4 and those of the transverse vibrations can be
easily calculated in the same way. One has longitudinal

transverse

I Let us make clear that throughout this paper "longitudinal"
and "transverse" mean iattice vibrations

~j or J to the iong axis
of the crystal, not to a light beam.

4 H. B.Rosenstock, Phys. Rev. III, 'H5 (1958).

Here X is proportional to the square of the frequency ~,

&= mu'/2a,

o. is the force constant for longitudinal nearest-neighbor
interaction and P the force constant for transverse
nearest-neighbor interaction, m is the mass of each atom
(all atoms are assumed to have the same mass here, for
simplicity), P is the wave vector defined so as to run
from 0 to 1, and o =2e'/arras is roughly a measure of the
ratio of strengths of Coulomb to nearest-neighbor forces;
ro is the equilibrium distance between atoms, and e is
their charge. Xs(P) are thus the squared frequencies in
the absence of Coulomb forces—the frequencies of a
"one-dimensional metal. "Both the functions Xs(P) and
S(P) are shown in Fig. 1 of Ref. 4; their general shape
is similar although they differ in their analytical be-
havior near P= 1.

The two expressions (1), (2) appear surprisingly
similar, but there are important qualitative differences.
In (1), the function 5 is preceded by a minus sign, but
in (2) by a plus sign (the Xs term is positive in both
cases). Thus X„„„.is positive for all values of the param-
eters, but Xi,„,becomes negative if o- is large enough.
Since a negative 'A implies an imaginary vibrational fre-
quency, this means physically that the longitudinally
vibrating lattice is unstable for large enough Coulomb
forces, or for small enough nearest-neighbor forces,
whereas transverse vibrations are always stable, even
if nearest-neighbor forces are entirely absent. Direct
physical intuition will verify this after a glance at Pig. 2:
Imagine one of the atoms displaced longitudinally —to
the right, say. This increases the Coulomb attraction
from its neighbor to the right and decreases its Coulomb
attraction from its neighbor to the left, and thus causes
further displacement to the right; in the absence of
repulsion between nearest neighbors, the originally dis-
placed atom will therefore Inove further in the same
direction until the lattice collapses. If, on the other
hand, an atom is displaced transversely, up, say, the
situation is difFerent: The Coulomb forces exerted by the
two nearest neighbors are both downward, in a direction
opposite to the original displacement, and the lattice is
thus stable for transverse vibration under Coulomb
forces even in the absence of any nearest-neighbor repul-
sion. Since, in any physical situation, one would expect
the noncentral nearest-neighbor restoring force to be
quite small (P/a«1) if not absent, this seems fortunate.

It may be worth noting parenthetically that the quali-
tative apprearance of Xi,„,(P) and. X&„„,(P) is quite
difFerent, P~„„„being just the sum of two "S-shaped"
functions shown in Ref. 4, is itself S-shaped with its
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minimum at p=0 and its maximum at p= 1, but, as is
shown in Ref. 4, ) ~,„shas its maximum not at P = 1 but
at a smaller value of p, and a minimum at p= 1.This is
illustrated in Pig. 3 for a special set of values of the
force constant ratios.

What really interests us here, though, is the behavior
of the two functions at p= 1—the value of p near which
optical absorption takes place. ' At p=1, Eqs. (1) and
(2) become

1.0 -—

D.8—
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cr =. 3/4
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/
/
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/

where

X(,„s(1)= 2—2$o,

intrans(1) = 2P/(x+ (o ~

(5)

(6) 0.4

/=1 '+3 '+5 '+ .=1.052 (7)

It follows that X~„„,(1) will be greater than X~, ,(1) if
and only if

o& 2(1 0/~)—/3k

or (since P is probably small and close to unity)

0.2

0.2 0,4 0.6
1

0.8

0.&0.6. (9)
FIG. 3. The squared frequencies ) t„&.and Xi, ,

as a function of wave vector p.

Values of 0 4 seem physically reasonable' ' and our
crystal can therefore be expected to exhibit absorption
of transversely polarized light at frequencies higher than
the absorption of longitudinally polarized light. We shall
discuss this somewhat more quantitatively later.

Let us review these arguments leading to this result
from the physical rather than the mathematical view-
point. Large restoring forces produce high frequencies,
small restoring forces produce low frequencies. In the
longitudinal case the restoring force is small because the
Coulomb force counteracts the dominant nearest-
neighbor force, and the resulting frequencies are low; in
the transverse case, both the nearest-neighbor force and
the Coulomb force act in the same direction, the restor-
ing force produced is therefore large, as are the resulting
frequencies. (Note that this argument will not work in
the absence of Coulomb forces, or indeed in the presence
of only weak Coulomb force. In that case the longi-
tudinal frequency will be the larger. )

It is, of course, clear that we have taken two rather
large steps toward simplification and away from reality
as we went from the real crystal first to Pig. 1 and then
to Pig. 2; but we may hope that our argument, particu-
larly in its qualitative form of the last preceding para-
graph, may have validity in the realistic case as well. It
remains to explain the broadness of the observed peak
in the transverse case. Here again we hope that a quali-
tative argument will sufBce. We may attribute the
difference to the fact that boundaries have larger per-
turbing effects on "small" crystals than on "large"

crystals. (This has been shown elsewhere, ' but is prob-
ably physically obvious to most. ) We now return to
Fig. 1 but remember that the real crystal will not have
the perfect shape depicted there, but will necessarily
have somewhat irregular boundaries. It seems plausible
that for the same reason the vibrations in the direction
in which such a crystal is small will be more strongly
perturbed by the boundary irregularities than the vibra-
tions in the direction in which the crystal is large. Since
the observed absorption represents the additive effects
of many such crystals, each with absorbing properties
only slightly different from the ideal in the longitudinal
direction but appreciably different in the transverse
direction, a broader absorption for transversely polarized
light should be expected.

One restriction in the work above that can be removed
is the assumption that both the positively and the
negatively charged ion have the same mass m. We now
show that the conclusions drawn remain valid, even
quantitatively, under the more realistic assumption of
two ions with diferent mass.

If one ion (of the lattice shown in Fig. 2) has mass m
and the other has mass M, then Eq. (1) for the squared
longitudinal frequency is replaced by two equations,

A maui, „s'/2 =n(A Bcosvrp)—
—(2e'/rs')LA P k ' cos(ks p —1)

even ~

~ Usual]y it is said that absorption appears when the wave vector
is zero; here it appears at 1, because we have chosen a unit cell
with one (rather than the usual 2) particle per unit cell.

See C. Kittel, in Solid State Physics, edited by F. Seitz and
D. Turnbull (John Wiley 8z Sons, Inc., New York, 1953), Chap. 2;
and Ref. 4 above.

+A P k ' —8 P k 'cosks-p$ (10)
odd k odd k

' H. B. Rosenstock, J. Chem. Phys. 2B, 2415 (1955).
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BM(gi, g'/2=u(B A—coss p)
—(2e'/rs')(B P k '(coskg. p —1)

evenk

+B P k '—A Q k 'coskgpf. (11)
odd k

Equation (2) for the squared transverse frequency is
also replaced by two equations, but we need not write
them down, as they can be obtained from (10) and (11)
by simply replacing u and P and e' by —e'/2. ~e then
obtain X(P) by solving the determinantal equation of the
coefficients of A and B. For p= 0, which is the value of

p at which the "limiting" or optical frequency appears
in the diatomic scheme, that determinantal equation is

1—o$—)i, g0= —(1—a/) 1—o.$—MXj„„g/m

The splutions of this are found to be h,„g=0 (which is
not of interest) and

plausible that they would do this without "crossing
over"; i.e., that if co&„„,&co~,„~ for the single-strand
crystal, the same will hold true for any thickness (until,
with infinite thickness, they approach equality).

YVe can calculate this limiting frequency for infinite
thickness —i.e., for a crystal in the shape of an infinite
cub- -in terms of the same parameters as appear in our
one-dimensional equations. The nearest-neighbor inter-
action term 2u(1 —cosg p) is replaced by (2u+4P)
(1—cosg p), because in addition to the two neighbors in
the direction of the vibration, there are now four
neighbors in directions perpendicular to vibration exert-
ing noncentral forces. The sum of the Coulomb terms
becomes, for p=0

(2"/ ') 2 2 2 (-)"-'"(2P- '- ')
L, m, n even, even, odd

X (ei uMO)/(p+ ms+ rs2) s's.

The secular equation corresponding to (12) then becomes

P—m(o'
0=

&long= 1 (13)
where

lb —Mcu'

y, ),„,—=mM~(„„,'/2u(M+m), (14)

and for the transverse frequency, by analogy, X&»»=0
and

where

&~-= (Plu)+(~/2) 5

g,„,—=m3IAe„,„,'/2u(M+ m) .

(15)

Thus (13) and (15) differ from the corresponding ex-

pressions (5), (6) of the monatomic case by the same
constant factor 1i/m where, p, =mM/(m+M) and rela-

tion (8), which is based on their ratios, is entirely un-

changed. (To be sure, this simple proportionality wouM

not be retained at points other than p =0.)
Let us now consider two points related to experi-

mental observations that have been, or might be, made.
As we pointed out, the frequencies we calculated for
longitudinal and transverse vibrations are valid only in

the limit of the single strand of Fig. 2. In the real case
of rod- or needle-shaped small crystals to which the
available observations apply, ' ' the crystals are much

more than one strand wide and thick; but it seems

reasonable that the relationship between transverse and
longitudinal frequencies computed for a single strand
will hold in the same sense for a rod of any thickness.
Put more precisely, the argument is this: As the one-

strand crystal becomes thicker, and finally approaches a
cube, the two frequencies cubi, „~and co&„„,will come closer

together and 6nally become equal. ' It seems highly

8 W'hen the rod has grown to a cube, the frequency erst called
transverse will be indistinguishable from the longitudinal one,
except for a 90' rotation in the direction of all the displacements
(or except for a 90' rotation of the crystal as a whole). For
detailed discussion of this point, see H. B.Rosenstock, Phys. Rev.
121, 416 (1961); A. A. Maradudin and G. gneiss, ibid'. 123,
196g (1961);T. H. K. Barron, ibM 123, 1995 (1961). .

P= 2u+4P (2e'/re') V—

( )l+m+n

l, m, n even, even, odd

&((2P m' I')/—(P+.—m'+B')'" (17)

is a number which has been computed, '

V=3.754. (18)

The solutions of the secular equation. are a&=0 (pf np
interest) and

ol

w~ga'/2u=1+2(P/u) —(o V/2)

&xi)=1+2r (o/2) V, — (19)

Kirgns 2D = r+0.5260. '(21)

The three-dimensional limiting frequency which they
both approach as the crystal approaches infinite thick-
ness is

Kgi) = 1+2m 1.877o . —(22)

The magnitude relationships between these three ab-
sorbing frequencies are shown graphically in Fig. 4 as a
function of the parameters 0- and 7-.

9 H. 3. Rosenstock, Phys. Chem. Solids 4, 201 (1958).

with &=p/u and Xgn by analogy with (17)
Let us summarize: Longitudinal and transverse

squared frequencies of the one-strand crystal are, re-
spectively, (13) and (15), viz. ,

(20)



AN I SOTROP I C LATTI CE ABSORPTION A 765

TAnLE L Semiempirical values of o =2ss/oro'
for various alkali halides.

~2

0
0 .2 ~4 .6 .8

FxG. 4. Magnitude relationships between frequencies as a
function of the force constant parameters cr and 7-. I., T, and 3D
have been written for 'A]png A,trans, and X3L).

LiF
LiCI
I.iBr
NaCl
NaBr
NaI
KCl
KBr
KI
RbCl
RbBr
Rbl

respectively,

0'y from
r "potential

1.05
1.01
0.98
0.82
0.79

0.65

o; from
e~/& potential

0.81
0.84
1.00
0.59
0.62
0.69
0.77
0.64
0.64

One physical property that has been ignored so far is
electronic polarization. It is known, of course, that this
will change the frequencies of vibration, but we can
show that under certain reasonable conditions, it will
leave the relative magnitudes of the frequencies of
optical interest unchanged; i.e., if 'A&„„,&P ~,„,holds in
the absence of polarization, then it will hold also when
polarization is taken into account. The simplest method
of taking polarization into consideration is the sheD
model. "If we let the halide ions consist of a mass point
of charge minus e and the metal ions of a shell of charge
e' surrounding a mass point of charge (e—e'), and let y
be the Hooke's law force constant between metal shell
and metal core, the resulting frequency can be expanded
in a series in y '; one gets

=n e'5+V —'(n «'5)'+—o(v ') (23)

P~.".=P+s 'c+7 '(P+z '5)'+o(V ') ( 4)

The linear terms in each case are seen to be the corre-
sponding frequencies in the absence of polarization
(y= ~), and the quadratic ones are seen to be propor-
tional to the same quantities if we set e'=e (i.e., the
reasonable situation in which the polarizable charge of
the metal ion is that of the one valence electron); one
can then deduce from (23), (24) that if $.„„„,)R~,„s for
y= ~, then the same will be true for finite y if terms up
to y ' are retained.

Next, we shouM try to get a quantitative estimate of
the value of the critical parameter r for rea1 substances
in order to predict, from (9) whether Xt„„,)'A~,„,. Some
fairly old semiempirical calculations enable us to do this.
Empirically, the short-range interaction in ionic crystals
is usually put either into the form br "or the form ae "'&.

Our force constant n can be related to these; one finds
n=bn(m+1)r " 'in the former case, andn=ae ""&p 'in
the latter. From these expressions, one can derive,

rs W. Cocbran, Proc. Roy. Soc. (London) A255, 260 (1959).

o = (12/M) (—Ec. i/E„p)/m(m+1)

o=(12/K)( —Eco i/E. )p'/rs'

where E~,„~and E„~are, respectively, the contributions
of the Coulomb and the repulsive forces to the cohesive
energy, and 3f=1.754 is the Madelung constant. The
R's are given by Seitz" as are the e's"; p and ro are
given by Mott and Gurney. "Results of the calculations
appear in Table I; it is pleasing to note that where
figures are available for both theories, the (T's agree to
at least one significant figure. One concludes that the
observation X&„„,)X~,„g for LiF agrees with our criterion
(9), as the table gives o )0.6 for that case. Figure 4 also
suggests that in this case X&, I should diGer only slightly
from PI,3D also in agreement with experiment. For most
other alkah halides, the table suggests that X~„„,should
be greater than X~,„,also, though by a lesser amount;
for some, near equality shouM be expected.

Finally, a diferent approach to considering this prob-
lem should be put into perspective. ' '4 Rather than be-
ginning with the limiting case of a single strand crystal,
one can begin with a large cubic crystal, and then con-
sider the effects of the boundary, which provide polariza-
tion forces larger in directions in which the crystal is
small. Qualitatively similar results can then be obtained.
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