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therefore en, sy to estimate with reasonable a,ccuracy.
In the case of the lighter elements-considered, the errors
in the computation of the transmission factors may be
as large as &25'Po. Statistical counting errors and
systematic errors introduced in the background sub-
traction procedure constitute another 5%. The cumula-
tive standard errors quoted in Table III were computed
in the usual manner assuming that the errors from each
of the sources listed are statistically independent. They
range from about &20/o in the heavy elements to
&30% in the lighter ones. The error quoted for the
silver measurement is smaller because many measure-
ments were made in this case with differing thicknesses.
In addition, the results obtained using the Cd"' source
were included in calculating the final co~I. value for
silver. In spite of the large experimental uncertainties,
the comparison with previous measurements is meaning-
ful since many of the other measurements differ from
the present results (and from each other) by more than
the quoted errors. In any event, it is safe to say that

some of the error estimates on previous measurements
may have been optimistic. Furthermore, there is also
little question that more accurate measurements of
fluorescence yields would be desirable.

The behavior of co~L, as a function of Z is in good
accord with theoretical expectations. ' The magnitude
of ~zl. should decrease slowly as a function of Z. In this
region of the periodic table the change in M~1, as a func-
tion of Z is considerably smaller than in the region
considered in Ref. 1. This is not surprising, because the
change in quantum energy of the L, x rays as a function
of Z is smaller in this region than for higher values of Z.
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This study is devoted to the theory and calculation of cross sections for the electron-impact excitation of
doubly-excited states in helium which are stable to autoionization. The cross sections are found to exhibit
sharp peaks just above the threshold energies for excitation and to decrease rapidly with further increase
of energy. The maximum value of the Born-Oppenheimer cross section for excitation of the (2p)' 'Eg state is
about 6&(10 ' (u,)' and occurs at approximately 11 eV above threshold. The cross sections for excitation of
the 2p3p 'p„2p3d 'D„, and 2p3d 'D„states are all less than 35 b. The cross section for the (2p)s 'pg state has
been calculated according to the Born-Oppenheimer, distorted-wave, and two-state strong-coupling approxi-
mations. In all of these cases the maximum amplitude of the scattered beam occurs at right angles to the di-
rection of the incident electrons. The cross sections of the potential-and-exchange-distortion method (DEW)
and of the complete two-state strong-coupling approximation are virtually identical. The Born-Oppenheimer
approximation produces remarkably similar results. Rigorous upper bounds to the energies of the 2p3p E~,
2p3d 'D„, and 2p3d 'D„states of helium are reported. Finally, the cross sections are calculated in Born-
oppenheimer approximation for electron-impact excitation of the (1s)'(2p)' 'P~ and (1s)'2p3p 'P~ states of
beryllium. The peak values of these cross sections are 12 (a,)s and 2 (a,)s, respectively.

I. INTRODUCTION

A LTHOUGH there is considerable evidence of
discrete atomic states with energies which lie

within the continuum for single ionization, until very
recently little attention had been directed to the
properties of these states. Indeed, their very existence
often comes as a surprise to those who have been
schooled in the doctrine that beyond the ionization
potential all is chaos. The persistence of such highly
energetic states for periods of as much as a microsecond

*Present address: Department of Chemistry, Pennsylvania
State University, University Park, Pennsylvania.

f' Alfred P. Sloan Fellow,

invariably can be traced to the selection rules for
autoionization, that is, the selection rules for the
internal conversion process whereby an electron is shed
from the atom. Our own interest in these states has
grown from an initial conjecture that they may be
involved in the formation of the diatomic ions HeA+
and NeXe+. Thus, Munson et al.' have reported appear-
ance potentials for these ions which lie above the lowest
ionization potential of A and Xe, but below the lowest
excited states of He and Ne, respectively. While it is
certainly possible that the helium and neon negative

' M. S. B. Munson, J. L. Franklin, and F. H. Field, J. Phys.
Chem. 67, 1 (1963).
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ionic states found recently by Schulz' and. Simpson
and Fano' could be responsible for these reactions,
discrete states imbedded within the continua of A+

and Xe+ still remain likely candidates. These states can
be produced experimentally by an impacting electron
which either succeeds in exciting two atomic electrons
simultaneously or in bringing forth a single atomic
electron from an inner shell. It is our purpose here to
investigate the electron impact cross section for the
former of these two processes.

In helium all the doubly-excited states lie above the
lowest ionization potential of the atom. If one of these
is strongly coupled with neighboring levels in the
continuum, the quasidiscrete state then will exhibit
instability in the sense that one of the electrons can be
spontaneously ejected from the atom. This internal
conversion process is called autoionization. Selection
rules follow immediately from the formula for the
probability of autoionization, which in first-order pertur-
bation theory is given by P = (2e/Jl)

~
V

~

', where
V= J'J'drtdrsg, ''(e'/rts)Pf. Here 1(, denotes the wave
function for the quasidiscrete state, and if ~ a continuum
state of the same energy. If V is not to vanish, the two
states must have the same parity and J values, and in
the case of L-S coupling they Inust have the same L
and S values. When these selection rules are applied
to helium it is found that among the states which
autoionize are those with the term symbols S„P„,D„
F„,e.g. , all states with s orbitals.

Doubly-excited atoms' and/or molecule s are in-

trinsically interesting because of their highly energetic
states. They undoubtedly share or even exceed the
enormous reactivity of the singly-excited species.
Consequently their importance as initiators of reactions
involved in radiation chemistry and in the chemistry
of high-temperature gases should be considerable.

Despite the fact that states of this sort are common to
many atomic and molecular species, our attention here
will be devoted almost exclusively to those states of
helium which are stable to autoionization. Thus, we

wish to avoid in this initial investigation the com-

plexities of the many-electron atom and to gain experi-
ence concerning the dependence of the calculated cross
sections upon the choice of scattering theory. With this
in mind three scattering calculations have been per-
formed. In the order of their increasing complexity and
presumed accuracy these are the approximations of
Born-Oppenheimer, of the distorted-wave method, and
of the two-state method with strong coupling.

To calculate cross sections for electronic impact
excitation of helium from the ground state, (1s)' 'S„

s G. J. Schulz, Phys. Rev. Letters 10, 104 (1963).' J.A. Simpson and U. Pano, Phys. Rev. Letters 11, 1,58 (1963).
4 During the past year and a half, a,strong interest in the proper-

ties of doubly-excited states has been revived. A critical survey
of the literature from 1928 to December 1963, appears in the thesis
of one of the authors t P. M. Becker, University of Minnesota,
March, 1964 (unpublished) j. Another summary was presented
recently by E, Holden, Phys. Norvegica 1, 56 (1961),

to one of its doubly-excited con6gurations, we shall
make use of the nonrelativistic Schrodinger equation
and neglect the effects of spin-orbit coupling. Further-
more, the system wave function will be approximated
by a linear combination of terms involving the initial
and final states of the target atom. The coefficients in
this expansion are to be identi6ed as the wave func-
tions for the scattering electron. We then invoke the
Hulthen variational principle and Hartree-Fock trial
functions' in order to generate a set of approximate
"moment" equations for the radial component wave
functions of the scattering electron. By solving these
equations subject to suitable boundary conditions one
then obtains the phase shifts and cross sections of this
two-state Hartree-Pock approximation. Because of the
truncated nature of the two-state wave function it is
imperative that the trial function be explicitly anti-
symmetrized in the three electrons. ' In this theory no
allowance is made for the effects of polarization, i.e.,
for those contributions to the system wave function
which are commonly estimated by the method of
perturbed stationary states. '

Calculations based upon this "complete two-state"
theory are probably about the best that can be done at
the present time. However, other estimates of the cross
sections are obtained by introducing the additional
approximations which lead to the simpler distorted
wave and Born theories. Since we intend to perform
calculations of cross sections for atomic and molecular
species other than helium, it is highly desirable to
determine whether these less involved and less expensive
techniques lead to reliable results. In what follows we
first consider the relatively uncomplicated Born
approximation, and then proceed to a systematic
development of the two-state theory from which the
distorted-wave approximation develops as a special
case.

As a further simplification, quite apart from the
approximations involved in the scattering theory, it
will be assumed that the wave functions of the target
helium atom can be represented adequately by products
of hydrogenic orbitals.

II. BORN-OPPENHEIMER APPROXIMATION

In this approximation it is assumed that the initial
plane-wave character of the wave function for the
incident electron is preserved throughout the collision
process. Since detailed descriptions' abound in the

~T.-Y. Wu and T. Ohmura, Qmuntgm Theory of Scatterirlf,
(Prentice-Hall Inc. , Englewood Cliffs, New Jersey, 1962), Chap.
1, p. 57, and Chap 3, p. 197.

'M. J. Seaton, in Atomic and 3folecllur Processes, edited by
D. R. Bates (Academic Press Inc. , New York, 1962), Chap. 11,
p. 374.' P. G. Burke and H. M. Schey, Phys. Rev, 126, 163 (1962);
A. Temkjn and E. Sullivan, iNd 129, 1250 (1963)..

'With the inclusion of exchange the Born approximation is
commonly referred to as the Born-Oppenheimer approximation
(BO). This is not to be confused with the Born-Oppenheimer
separation of electronic and nuclear motions,
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respectively. Here

(1)
4m

dr~dr2dr3e ' 'Q *(12)(4/r 3 2/r~—3

—2/ ) '""Vo(12) (2)

dridr2dr~e '"'&

Xf~*(12)(H J)&e—'&o neo(23)
&

are the direct and exchange contributions to the scatter-
ing amplitude, and the subscripts ns refer to the various
components of a degenerate atomic state. In atomic
units the Hamiltonian is given by

H =,—.V'y' —V'g' —7'3' —4/rg —4/r2
—4/r3+2/r~2+ 2/r~3+2/r23,

and the total energy by A"=so+ho' ——e~+k', where eo

and e refer to the atomic energy eigenvalues for the
ground and excited states. Here ko and k are the
propagation vectors for the incident and the ejected
electrons. As a matter of consistency we shall use for eo

and ~ values calculated from our approximate atomic
wave functions rather than the more accurate values
which are available. In Appendix A we discuss the
explicit forms for the wave functions and the energies
calculated from them.

The lowest five states which are not subject to
autoionization are (2p)' 'P„2p3p 'P, and 'P„and
2p3d'D and 'D„. Of these one anticipates that the
first will have the largest cross section, since it is the
lowest of the doubly-excited states which is stable to
autoionization. Ke do not calculate the cross section
for the 2p3p'P, state because of the considerable
algebraic complexity engendered by the requirement
that its wave function be made orthogonal to that of
the (2p)' SPg state. Excitation of the 'D state is
optically allowed by the two-electron selection rules
of Goudsmit and Gropper. " It is therefore of interest
to compare the magnitude of the electron impact cross
section for this state with those for the forbidden
transitions to P, states.

' H. Massey and B.L. Moiseiwitsch, Proc. Roy. Soc. (I ondon}
A258, 147 (1960)."I.I. Schi6, QuueINm Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955},2nd ed. , Chap. 9, p. 244.

"S.Goudsmit and L. Gropper, Phys. Rev. 38, 225 (1931}.

literature, we shall dwell here only on the novelties
which are speci6c to the calculations of cross sections
for doubly-excited states.

In the Born-Oppenheimer (BO) approximation the
differential cross sections for exciting singlet and triplet
states of helium are given by"

1(8A) = (&/I o)2-I f~-(8A) f-—(8A) I'
and

The differential cross sections for the four excitations
we have considered are given by

1(8A 'P.) = (6&/&0)
I fi(8A i'Pg) I',

J(8,~ P,)=(»/&.)If~(8,~ P,)I',
1(8A D-) = (6&/&o) (I f~(8,4»'D-) I'+

I f~(8,4) I') «)
1(8,y; ~D.) = (»/~0)(Ifi(8, v D.) I'+ If2(8,~) I'),
where

f, (8 p 8Pg) = —(N/6)(oPp')'@y'J~J2 sin8e '~

f (8 p 'P ) = —(21V/243) (2u'P'y'"8')' "
X (J&J4—JSJ2) sin8e '&,

f&(8 P 'D„)= (4S/243) (e'P'y'8'/6)'"
X (0.6J~J6 cos8—J~J~)i sin8e "& (4)

f (8 y ~D ) = (4X/243)(n'a'~"r'/6)'I'

X (0.6J~J6 cos8+ J&J2)i sin8e "&,

f, (8,y) = (41V/243) (oaP'q'8'/6)

X (0.6JqJq sin8)i sin8e "&t'.

Formulas for the functions J;are presented in Appendix
B.The values chosen for the screening constants n, P, y,
and 6 and the defining formula for the normalization
factor &V are given in Appendix A.

The configurations of the doubly-excited states which
are stable to autoionization do not contain s orbitals
and so the direct scattering amplitude fz given by (2)
is zero. Of all the terms in the operator (H P) only—
(—2/r23) provides a nonzero contribution to f . There
is no contribution to the scattering amplitude from the
degenerate component of the atomic state with m=0.
Equal contributions to the cross section arise from
components with m values which are equal in magnitude
but opposite in sign.

The differential cross sections for the P states vary
with the direction of the scattered electron as sin'8.
The cross sections for the D states vary nearly in the
same fashion, having sin'0 as a factor. In Fig. 1 the
differential cross sections for the D states are plotted
for several energy values. The values for the total cross
section 0 =f

deaf

d8 sin8I(8, &), which were obtained by
a simple analytical integration, are presented in Fig; 2.
It will be noted that curves (a) and (b) in Fig. 2 refer
to Born cross sections calculated with two different
choices for the ground-state wave function. For curve
(a) we have used a two-screening-constant approxi-
mation with different orbitals for different spins; curve
(b) refers to a ground-state function constructed of
two orbitals with common screening constants. A more
detailed discussion of these atomic wave functions is
given in Appendix A. A comparison of these results
clearly illustrates that the calculated cross sections are
quite independent of which of these two functions one
uses.

The cross sections for the states other than (2P)' 'P,
are so small that their peak values may be measured
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FIG. 2. Differential cross sections in Born-Oppenheimer approxi-
mation for the 2p3d'D and 2p3d'D states of helium at two
different energies. The cross sections are plotted as functions of
the scattering angle.

conveniently in barns. The past experience of other
investigators has been that for impacting energies near
threshold the cross sections predicted by the BO theory
are invariably much too large. Therefore we assume
that the BO calculations provide upper limits for these
unlikely processes and consider them no further.

The sin'0 dependence of the differential cross section
is so remarkable that it seems worthwhile to repeat here
the qualitative explanation of this phenomenon which

we reported earlier. " One can strongly contend that
the incident electron must be captured into the p
orbital which is oriented parallel to the initial direc-
tion of approach ko. Therefore, in the final (2p)' 'P,
state, the other bound electron must lie in one of the p
orbitals oriented perpendicular to ko. From the preferen-
tial direction of ejection of the third electron it then
call be argued that the intermediate complex, a helium

negative ion, is composed of a singly-occupied p orbital
oriented along ko and a doubly-occupied p orbital
perpendicular to this direction.

This unusual angular dependence is also predicted
by the two-state theory presented in the following
section. Consistent with this is the proof by Fano"
that there is no forward scattering for an atomic state
with even parity and odd I..

"P. M. Seeker and J. S. Dahler, Phys. Rev. Letters 10, 492
(1963).

"U. Pano, Phys. Rev. 1M, 3863 (1964). We wish to thank
J. W. Cooper and Dr. Fano for bringing this to our attention
prior to publication.

III. TWO-STATE THEORY

In general, one can expand the wave function for the
composite system of scattering electron and target
atom in a complete set of atomic eigenfunctions. The
basic premise of the two-state theory is that an accurate

'estimate of this wave function can be obtained by
limiting the expansion to terms which involve only the
initial and final states of the atom. Because this
truncated expansion does not include summation over
the continuum states of the target, the approximate
vrave function must be antisymrmetrized. explicitly in
order that it exhibit the correct asymptotic behavior. '

The most signihcamt e6ect of our m.eglect of spiII, -orbit
couplimg is that the total spin and orbital angular
momenta of the three-electron system will be separate
constants of the motion. Since we are interested
exclusively in the impact excitation of helium from the
singlet ground state, the total spin always will be equal
to —,'. The spin eigenfunctions for this doublet state,
denoted by y+(12,3) and )t (12,3),'4 "are, respectively,
symmetric and antisymmetric to interchange of the
spin coordinates of electrons Nos. 1 and 2. Therefore,
these two functions are appropriate for the description
of composite states involving triplet and singlet states
of the atom.

According to the general quantum-mechanical rules
for the addition of angular momenta the two-state
wave function in the LSMM, representation may be
written as'6

C (123)=g{Q Q g C(lq', l ',sLm~', ms', M)fo(12)
cyc l2' m1' nz2'

Xrs '~'o(ro, 4')&~o 2 (3)x (12,3)+g g Q
l2 ~1 nz2

XC(l~, ls, L; m~, ms, M)1t, (12)ro 'I', (ro, l,)

X l'~2 o(3)x+(12,3)) (3)

Here Fo and F& denote the radial components of the
wave function for the scattered electron which are
associated with the initial and final states of the atom,
respectively. The quantum numbers l»' and mj' refer
to precollisional states of the target atom while l~ and m~

are to be associated with postcollisional states. The
quantum numbers l&', m2', l2, and m2 provide a similar
description of the pre- and postcollisional states of the
scattering electron. %e make use of the notation
r, =(r,,e;,$;)=(r;,r;) for the vector which gives the
location of electron i relative to the helium nucleus.
The spherical harmonics F~ (i)= Y~ (r;) and Clebsch-
Gordan coefficients C(lt, ls, lo, mt, ms, mo) are those de-
6ned by Rose." Finally, the presence of the permu-
tation operator P,r, in (5) ensures that C (123) will be
antisymmetric with respect to the interchange of any
pair of electrons.

We choose the polar axis to lie parallel to ko, the

"Reference 20, p. 233.
"H. Massey and B.L. Moiseiwitsch, Proc. Roy. Soc. (London}

A227, 38 (1934)."I.C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 654 (2957)."M. E. Rose, E/enseetury Theory of Amgzdar Momentum
(John Vhley 8t Sons, Inc. , New York, 2957), Chap. 3, 4, App. 2, 3.
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direction of the incident electron. From the criterion
of cylindrical symmetry it then follows. that m2' is
zero and so M=ml'+ms' m——1+ms also vanishes. 'For
the 3Fo excited state with configuration (2p)' the value
of lj ls unity.

Although the function C(123) given by (5) is not an
exact solution of the Schrodinger equation, it is suitable
for use as a trial function in the Hulthen variation
method. The application of this variation scheme
provides a set of equations for the "optimal" Hartree-
Fock radial functions F0 and Ii t,.These equations are the
same as those which one obtains by the following
procedure:

(i) The trial function C (123) is substituted into the
Schrodinger equation.

(ii) The resulting expression is premultiplied by one
of the functions

10

b
10'-

or
h (12 3)l/0(12) V~o(3)1* I

60 80 100
E (ev&

120

t z+(12,3)+~2 C(l, /2, L& —
m2& m2& 0)g ~2(12)F12„2(3)$*.

(iii) Integrations are performed over all coordinates
of two electrons and over the angular and spin variables
of the third. The performance of these operations leads
to the single pair of coupled integrodifferential equations,

2 00

+ko +Voo(r3) Fo(rs)+ drlItoo(rl r3)F0(rl)
—(kr3 r 3

2 2
0

dr 1K&0 (rl, r 3)F3 (rl) (6a)
0

2 QO

+k'+ Vli (—rs)—F &(rs) — driIt &3 (rl, rs) F &(rl)
dr3 r3 0

driEoi(rl, rs)F0(rl) . (6b)
0

Here Fo(r) —=Fo(r, /2' 1) and F,(r) =—F——, (r,l2
——1) are the

Hartree-Pock radial functions for the partial wave with
I-= 1. It can be proved that no others contribute to the
formation of the (2p)'3Fo state. The functions Voo(r)
and V„(r), which give rise to the so-called "direct
distortions, " are scattering potentials associated with
the charge distributions of the atomic singlet and triplet
states, respectively. Polarization of these distributions
by the scattering electron has been neglected in the
present investigation. The "exchange distortion" terms,
in which the operators E00 and E«appear, provide the
scattering potentials for elastic-exchange events. .Finally,
the kernels E0~ and E~0 account for the reactive process
whereby exchange of the incident electron with one
from the atom is accompanied by a singlet-triplet
transition of the atomic state. Explicit expressions for
all of these quantities are given in Appendix C.

FIG. 2. Total cross sections in Born-Oppenheimer approximation
for several states of helium. The cross sections are plotted against
the energy of the incident electron. Curves (a) and (b) are both
for the (2P)2 3P, state, the former calculated with a two-screening-
constant ground-state function, the latter with common values
for the two screening constants. Curves (c), (d), and (e) are for
the 2P3P 'I'g, 2p3d 'D and 2p3d 'D& states, respectively.

F,(r)~k 'I'$ —S(111)011)e'&3""i")
) (7b)

where the coefFicients S(/l, l2,L; /1'ls', L) are elements of
the scattering matrix. These coe6cients are related to
the S-matrix elements in the (llml, lsm2', /1'ml', loms)
representation by the formulas,

S(/1 ml /2 m2 /1 ml /2 m2 )
=Qz, plr C(/l, l2,L; ml, m, ,M)S(/l, l2,I.;/, ', /, ',L)

XC(/1', /2', L; ml', m, ',M) . (8)

The differential cross section for the excitation process
then can be expressed in the form'

I(~,~) =( Sk')Z-, !Z Z(2/'+»'"""'-"
l y, mph''~ng'

X Yrotn»(8)4') T (/1)ml)/2)m2 I ll qml )/2 )m2 )
X s(/2', 1)/'(/„1) s(m, ', o)!, (9)

where T(n,rr') =5(or,rr') —S(rr,n') denotes an element of
the T matrix. In the case before us here l&' is equal to
zero and the only nonvanishing elements of the T
matrix are those for which L=l2=l2'=1. Therefore,
the formula for the excitation cross section reduces to

I(e,y) =~k; P„,!g.,aSV...(ff,@)

XC(111;m„m, ,o)S(111,O11)!'
= (9j8ko')!S(111;011)

~

' sin'8 (10)

To fully characterize the functions Ii0 and F& we
impose the familiar asymptotic boundary conditions,

Fo(r)-ko—' 2ge—' "'"—"i'&—S(011.011)e'&"0" ~i'&) (7a)
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In previous applications of the two-state theory it
invariably has been found that an enormous number of
partial waves contribute to the cross section. For
example, in their calculations dealing with electron-

impact excitation of the hydrogen atom, Burke and
Mccarroll" found it necessary to neglect contributions
to the scattering process from an infinite number of
angular momentum quantum numbers. Massey and
Moiseiwitsch' had a similar experience in their study
of singly-excited states of helium.

An additional complication was encountered in these

two investigations when the theory was applied to
nonspherical atomic states. Thus, for each choice of
the total angular momentum I. the Hartree-Pock
equations coupled the component wave functions
Fp(r, lp) for several values of /2 The c.ontrast is striking
when one compares the complexities which faced those
investigators to the relatively uninvolved situation
before us here. This remarkable simplicity is a direct
consequence of the fact that here the only angular
momentum values involved are I.=l2=l2'= i. The
particularly unusual situation where only the incident
and final p waves are involved occurs when the atomic
wave function is approximated by a product of orbitals
appropriate to a single atomic condguration, e.g. , to
the configuration (2p)' considered here. Instead, one
might have chosen to represent the atomic wave
function by a fi22ite series of product orbitals, each
pertaining to a different atomic configuration. He then
would obtain in place of (6) the larger but still finite
set of equations which characterize partial-wave
contributions from additional channels. The associated
elements of the scattering matrix would contribute a
6nite number of additional terms to the partial-wave
expansion of the cross section. The entire spectrum of
angular momenta becomes involved only if one were
to introduce into the atomic wave function terms which
were explicitly dependent upon the separation of the
two electrons, e.g. , functions of the Hylleraas type.
From these comments it is clear that the simple struc-
tures of the cross section formula (10) and of the Eqs.
(6) are due, at least in part, to the crude approximation
we have used for the atomic wave function. However,
in the other applications of the two-state theory to
which we have referred, one 6nds that a vast number
of partial waves contribute to the reaction cross section
even when he uses the very simplest of single-con6gura-
tion, product-orbital wave functions.

Numerical Procedure

The numerical technique we have adopted for solving
the integrodifferential equations of interest to us here
is based upon a procedure used previously by Burke

' V. M. Burke and R. McCarroll, Proc. Phys. Soc. (T.orle]on)
SQ, 422 (1962).

et al."to solve similar equations which they encountered
in a study of electronic impact excitation of the 2s and
2p states of hydrogen. The method employs a Newton
interpolation formula and is designed for solving equa-
tions of the general form d'Fi/dr'= gi(r, Fi, F2, .

, F~),
3=1, 2, 22. In the case of a single equation, d'F/dr'
=g(r,F), the solution is constructed according to the
following prescription,

F(ri) =F (rp)+hF'(rp)+h'(gp —
g 1)/6,

F(r2) =F(ro)+2hF'(ro)+h'(2go+4gi)/~, (11)
F'(r2) = F'(rp)+h (go+4gi+g2)/3,

where F'= dF/dr, gi
——gLr&, F(ri)] ri=rp+h and r2

=rp+2h. Thus if we have available F(ro), F (rp), gp,
and g 1, then we can calculate F(ri), gi, F(r2), g2, and
F'(r2) in that order. Furthermore, we then have enough
information to make a traverse of the next complete
interval Ar=2h. The repeated use of this marching
technique allows us to advance the integration to large
values of r.

The integration is begun very near the origin where
(d'/dr' —2/r')F=O is an adequate approximation to
both Eqs. (6). The solution which remains finite at the
origin is given by Il =br' where b denotes a constant.
Therefore, the starting values are F(0)=0, F'(0)=0,
gp=2b, F(—h)=bh' and g 1 g[ h, F(———h)j—. In the
numerical work the asymptotic boundary conditions
(2) are more naturally expressed in terms of rji(kr)
where j& is the spherical Bessel function of 6rst order.
Thus, one begins near the origin with some assumed
real value for the parameter b and proceeds with the
integration until he reaches the asymptotic region. There
the solution will be af the form Pf(kr) —'sin(kr+b)
—cos(kr+b)j with P the peak height of the cosine
wave and 8 a phase shift characteristic of the scattering
process. At each point the integration procedure
provides us with numerical values of Ii and F' so that
the values of the two parameters P and 6 can be calcu-
lated conveniently from the formulas,

P {F2+tk 1F~(1+k 2r 2)+F(kr) 8]2}1/2

XL1+(k.)-]-1, (»)
sin(kr+b) = (F'+r 'F)/kP

The remaining tasks are to adapt this integration
technique to the problems of interest here and to
establish the relationships between the solution param-
eters P and 8 and the elements of the scattering matrix.

S-Matrix Elements

By the strong-coupling approximation we refer to
the results which are obtained from a complete numerical
solution of the Eqs. (6). One obtains the distorted-wave
approximation by discarding fram (6a) the term which

'9 P. G. Burke, V. M. Burke, I. C. Percival, and R. McCarroll,
Proc. Phys. Soc. (T.oIldon) 80, 413 (1962).



DOU 8 LE EX C I TATION OF He 8 Y ELECTRON I M PACT A 79

Strortg Comp/i&3-g Approxir&&ation

To indicate the method which we have used in this
case the Eqs. (6) first are rewritten as

d 2
+t3,'+ V—,o(—r ) Fo

& "+'& (r )
t'3

a11d

drlL Eoo(r1,r3)F0 "' (rl)

+E„(r&,r3) F3&"& (r&)), (13)

2——+t3'+ V«(r3) f'1&"+'& (r3)
-dr3' f3'

oo

dr1LE«(r1, r3)F1I" (r&)+Eo~(r&,r3)F0 (r&)]

The iterative procedure is begun by setting Pp~'j and
P& ~'& equal to zero. The resulting homogeneous ordinary
differential equations for J p"' and F&&" are then solved

by the numerical integration technique which we

already have described. With these first-improved
functions one next calculates and stores the exchange
terms Jo"dr&L —Eoo(r1,ro)Fo "(r1)+E30(r1,ro)F3 '&(r1))
and Jo"dr&LE«(r&, r3)F3 "& (r1)+Eo&(r1,r3)F0&'& (r1)). The
second step of the iteration is now clearly indicated.
With rt chosen equal to unity in (13) we solve this pair
of inhomogeneous ordinary differential equations for
J p~'& and F~&'&. Further iterations are conducted until
convergence of the solutions is achieved. For each step
of this procedure we do, of course, use the same values
for bp and h&. In principle one could judge convergence

by comparing successive solutions over the entire
range of integration. However, it is highly desirable
to adopt a more convenient measure of convergence.
Thus, we compare the values of F~&"&(r) and Ft&"+'&(r)

at a few selected arguments, one being the end of the
integration range, and when these differences fall within
a prescribed tolerance say that convergence has been

contains the operator E~p. V/e shall distinguish between
two different versions of the distorted-wave approxi-
mation; the DEW (distortion-plus-exchange) approxi-
mation in which only E&p is set equal to zero and; the
DW approximation wherein the terms of (6) containing

E~p, Kpp and E~~ are neglected.
One can find many examples in the literature where

the further approximation has been made of discarding
from the potentials Voo(r) and V31(r) the terms which
arise from the nonspherical characteristics of the excited
atomic state. In order to obtain some estimate of the
severity of this approximation we shall perform the DW
calculations both with and without the nonspherical
portions of the potentials.

achieved. It required about ten such iterations for two
successive solutions to agree within 0.01%.

The iterative procedure just described was used to
construct solutions over the interval from zero to 25ap in

increments of 0.12up. Then beginning at this point we

changed to a smaller step size of 0.02ap and continued
the integration to 200ap. For such large arguments the
actual solutions are numerically indistinguishable from
their asymptotic forms and so the parameters 6p 8g, I' p,

and I'~ can be accurately determined. Now although
the exchange terms and the potentials Vpp and V«
are quite small near the outer end of the first interval,
(0,25ao), they are not altogether negligible. Despite
this fact we have completely neglected the exchange
terms, Voo(r), and all but the dominant 8(r ') portion
of V31(r) in conducting the integration from 25ao to
200ap. To check the adequacy of this procedure we
have continued the iterative solution beyond 25ap to
35ap and then at that point adopted the method for
the asymptotic region. In all cases that we examined
iterative solutions obtained on the intervals (0,25) and
(0,35) agreed to within 0.01%. As an added check we
have retained in a few cases the complete forms of Vpp

and V«over the final range of integration. The effect
of this rednement was limited to the seventh decimal
place of the solution parameters 8 and I' and the calcu-
lated cross section. Finally, to determine the inQuence
of interval size upon the iterated solutions we have
performed comparative DW and DEW calculations for
values of h equal to 0.12ap, 0.08up, and 0.04ap. The
cross sections in the three cases differed by less than 1%.

The equations of the two-state theory have two
independent solutions which are regular at the origin.
These can be generated by performing the numerical
integrations we have just described with two sets of
constants, (bo"& b1&'&) and (bo"&,b, &3&) which have been
so chosen that the value of their determinant is non-
zero. As Burke et a/. "have mentioned the choice of a
nonzero determinant for the b parameters does not
guarantee that the solutions will be independent for
large values of r. If the solutions are not sufIiciently
independent at large r then the accuracy of the calcu-
lated cross section will be effected. A check on the
importance of this effect was made by constructing
three "independent" solutions and comparing the
cross sections calculated from all pairs. Generally the
differences amounted to less than 5%, although there
were a few calculated cross sections which differed by as
much as 20%.

To calculate the cross section for excitation from two
solutions with parameter sets (ho&'& b &'& Po"' P "&) and
(8013&,i&, &'&,Po&'&,P3&3&) we construct the linear combina-
tions of these solutions which satisfy the radiative
boundary condition, (7). This is easily accomplished
by multiplying each equation of the first set with
Pq& )e'~«'~ each of the second set with I' &"e'«' and
then subtracting the resulting expressions. The pre-
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The results of our calculations have encouraged us

greatly, since there are clear indications that the
uncomplicated Born-Oppenheimer theory may emerge
as a reliable method for calculating the cross sections
for excitation of anomalous states —provided that the
product form is a good approximation for the excited-
state wave functions. A complete verification of this
conjecture requires that a few more special cases be
examined, the most obvious candidates being the
alkaline earths Be, Mg, Ca, etc. Provided that one
neglects the effects of excitation upon the core electrons
of these atoms, the theory presented here can be applied
almost without change to processes such as the transi-
tion from Be (is)'(2s)''S, to Be (is)'(2p)' pI', or
Be (is)'(2P)(3P) PI', . Furthermore, anomalous states
of the alkaline earths are of intrinsic interest, since there
is ample spectroscopic evidence for their existence, and
since it has been assumed in the past that these states
coul&1 not be excited by impact of a single electron. "
Born-Oppenheimer cross sections for the two beryllium
excitation processes mentioned above are given in

Appendix K.
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APPENDIX A: ATOMIC WAVE FUNCTIONS
AND ENERGIES

To calculate cross sections from the formulas given
in the preceding sections it is first necessary to make
explicit choices for the atomic wave functions and to
determine the associated energy eigenvalues. %e have
constructed approximate atomic wave functions from
properly symmetrized products of hydrogenic orbitals.
The values for the screening constants were chosen to
minimize the energy. These calculations were performed
for the states (is)0 'S„(2P)' PI'„2P3P 'I'„2P3d 'D,
and 2P3d PD„, each of which is the least energetic of its
symmetry type. Therefore, the energy eigenvalues
calculated from the trial functions are necessarily
upper bounds to the exact values.

The wave function for the ground state is given by

0'0 +L4'100(&~1)koo(p~2)+1 &00(a)2)koo(p)1)j|

The approximate wave functions which we have
used for the other states are

(2P) 0 PI': P = & „C(1,1, 1; v, m —v, tn)

Xgpg„(y, 1)go~ „„(y,2), (A2)

2p3p 'I'0 ..P = 2
—'"Q „C(1, 1, 1; v, e—v, m)

XI:Ai.(v, i)Ai,--.(»2)+A~. (v, 2)Ai, -- (»1)3, (A3)

2P3d 'D~: P~ = 2 'I' Q C(1, 2, 2; v, m —v, m)

XQ'»~(y~i)gpp ~ „(»2)+Ppg„(y,2)A2 na p(»1)1, (A4)

2p3d pD p =2—'I'Q C(112) 2; v, et v, m—)
Xgp&„(v)1)A&,~ „(»2)—Pp»h, 2)$30 ~ p(5, 1)j, (A5)

where the atomic orbitals are given by

0.i-(r) =R.~(r) Fi-(r)

Here the symbols n, p, y, and h denote screening
constants and the E.„~ are hydrogenic radial functions.

Rg 0(e,r) 2n l'=eP-

Rpg(y, r) = (yo/24)'lore &"10,

Rp~(8, 1)= (85'/19683)'~'r(6 8r)e —'"~P

Rpp(h, r) = (8P/98415)r'e —'"~P.

The expectation value for the energy of the 2p3p 'I',
state is given by

E= ~y(r 4)+pl(6 4)+Ig+Ip+Ip,

where

Ig= (45/27)( —,
' —(5/y)'+ (1 P6/234''D') j18(1+2'/D

+2y'/D'+go/DP) (60/D) (2+6—y/D+8y'/D'
+5&'~D)+ (&/D) (3+12nD+20&/D'

+15&'/D') 3)

Io (1024yoh'/218——7D ) (—126+3780/D 2892/D )—
I0 (131072yoSP/2187D"——)

XE2 (3v' —p~') —v~(3v —0&)](v —~)

Here D=y+ 005 For the 2P-3d. 'D„and 2P3d'D„states

&=4v(v —4)+ 0~(~—4)+I~+Ip

where the + and —signs are to be associated with the

TwsLE I. Energy eigenvalues for several states of helium.

TV = 2 1+ dBP&op(n, r)flop(P, r) (A1) State
Screening
constants

Energy
(eV above

(Ry) true ground)

which, in &ke special case of a=p, reduces to fqpp(n, i)
Xfxoo(P, 2)

~ G. Herzberg, Atomic Spectre and Atomic Structure (Dover
Publications, Inc. , New York, 1944), Chap. 4, p. 165.

(1s)»S,
(1s)»S,
{2p)23P
2p3p 'Pg
2p3d 'D~
2p3d 'D.

2.18316, 1.18854
1.6875
1.67188
1.84592, 1.73328
1.96419, 1.19537
1.99226, 1.0S763

—5.75132—5.69531—1.39758—1.14195—1.12328—1.116SS

0.77
1.53

59.98
63.46
63;71
63.80
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TAaxz II. Energy eigenvalues predicted for the (2p)2'P, state.
r

Method

One-parameter hydrogenic
orbital

Two-parameter hydrogenica
Self-consistent field&
Hydrogenic orbitals withe

slight corrections
Extended Pock methodd
Correlatione
Correlation f

Configuration interactions
"Experimental" h

Energy
(eV above

true ground)(Ry)
—1.39758 59.98

—1.3976—1.4018—1.4074

—1.4082—1.4109

—1.42021

59.98
59.93
59.85

59.84
59.80
59.73
59.68
59.67

a T.-Y. Wu and S. T. Ma, Phys. Rev. 48, 917 (1935).
h W. S.Wilson, Phys. Rev. 48, 536 (1935).
e T.-Y. Wu and S. T. Shen, Chinese J. Phys. 5, 150 (1944).
d K. K. Eringis, P. Sh. Fridberg, and V. K. Shugurov, Opt. i Spektro-

skopiya 11, 297 (1961) LEnglish transl. : Opt. Spectry. (USSR) 11, 161
(1961)3.' T.-Y. Wu, Phys. Rev. 66, 291 (1944).

I M. J.S, Dewar and A. L. Chung, J. Chem. Phys. 39, 1741 (1963).
E E. Holpien, J. Chem. Phys. 29, 676 (1958).
h This value is obtained from the sum of the energies of the 1s2p 3P~

state and the 320.38 A emission line. See W. C, Martin, J. Res. Natl. BIIr.
Std. A64, 19 {1960).

singlet and triplet states, respectively, and where

I1 (5/45) i 10——-—4fi'/y'+ (64fi'/729''D')
X[3+12'/D+ 20''/D'+ 15''/D']),

I2 —11484ysl)'/3——645D" .

The values for the screening constants and the energy
eigenvalues for these states are presented in Table I.

Table II provides a summary of the several calcu-
lations for the (2P)2 sP, state which have appeared in
the literature.

S=[(n+8)'+1] ',
S' =dS/d (a+8),
g 6

——144nB (1+n')

g, = 72nB'(1+n')+128',

g, = 24nB'(1+a')+128'(8 —a),
g, = 6 84(1+us) F86(1+3u2—12uB—98')

g u86(1+a2)+86(1+3u2+3uB+82)

APPENDIX C: OPERATORS FROM THE
HARTREE-FOCK EQUATIONS

The operators V00 and E00 for the incident channel
are given by

ypp(r) =4m'r-'i (1+nr) e-'-"+ (1+Pr)e-' "

+64 'P'(+P)-'L2+(+P)r]e '+e'"-)

and (for the special choice of screening constants n= p),

Epp(rl, rs) = (8/3) n'rlrs (r&/r&') lse ("+"". (C2)

The function (r&/r&')1, is equal to rl/rs' when rl(rs
and to rs/rt when rl) r2

The triplet-state potential V„ is given by,

3 1 1
V„(r)=4r 'e "'(1+ Tr+ y'r'+ y'r'

~

—r(r), (C3)— — —
4 4 24

where

APPENDIX B: THE J FUNCTIONS OF THE
BORN-OPPENHEIMER APPROXIMATION

The functions J; which appear in the formulas (4)
for the Born-Oppenheimer scattering amplitudes are
given by

J1=4Vkp(kp'+47') ',
J —8k/(3k 2 1/2) (k 2+ 1/2) 4—
Js——16i)kps(kps+ —pfis) 4

J =3[$6Jr(u/k; s/k)+0', 'Jr(p/k, e/k)],
J,=3iB 'j (6—5'/B)J2( / Bk/ )+kBl)'J ( /k, B/k)]

+g-'[(6—5~/W) J,(P/k, a/k)
+i)A 'Js(P/k, A/k)]),

J,=5[8-'Jp(ulk, B/k)+~-'Jp(P/k, ~/k)],
where

A=n+sfi, B=P+-' s()8 =a+sly, , S=P+-.', y,
and

Jr(a, 8)= —8n[ctn 'n —ctn '(n+8)]
+88[aS+8(a+8)'S' —8'(a+8)S'],

Js(u, B)= 8'k '[—3S'+ (38—a)5"+8(8+a)S'"],
kJ2(n, B)= —72u(1+u')[ctn 'n —ctn '(n+8)]

+-', (gpS glS'+ g2S" gsS'"+—
g4S""), —

T(rs) =— «1'«1 r2 dr2[+21(rl)+21(r2)]'(r&'/r&') ls
0 0

1
+~'rs'+~srs'

I

24 i

denotes the contribution which is due to the non-
spherical part of the atomic wave function. The triplet
exchange operator may be expressed in the form,

j
Est(rl rs) =~srl'rs e ' ""'+""( $E+y(1+,y)—--

24

+2(1—V) (rl '+rs ')]—Q(rl) —Q(rs)

+ (1/r&) „+6 (r& /r& )12l (C5)

Q(r) =y-sr s[6—e-P'"(6+6yr+2ysrs+-'ysrs)]. (C6)

Finally, the exchange-interaction operators E0g and
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Ego are de6ned by

&02(2'i,s'2) = —Ko(2'2, &i) = y'E—(n'p'/3) I'rs'r2 'e ~"'/2

X {(g e ~"sj 8—e @~2(8+8($2'2+4(pJ22'22+I$py s)q

+8 'e ~"2L8—e 6'2(8+88r2+40!2r22+8sr 2)]} (C'/)

with Q, =a+22' and S=p+-'27.

APPENDIX D: DIRECT EXCITATION PROCESSES

It already has been established that the Born direct
scattering amplitude f „ev anishe sfor the excitation of
doubly-excited states which are stable to autoionization.
Here we shall prove that the contribution to the exci-
tation process from direct scattering vanishes in the
two-state theory as well and that this result is true for a
large class of atomic trial functions.

Previously we have developed the two-state theory
only for excitation of the (2p)' sPo state, and conse-
quently the only reactive terms which appeared in (6)
were those involving the exchange-interaction operators
Eo~ and E~o, To study the excitation of singlet states we
replace the trial function (5) with

C (123)=Q,~,gp(12) Yrp(3)rs 'Fp(rs, L)x—(12,3)
++~2- p 2- C(4, 12",L; —2222", 2N2", 0)f 2-(12)

X V(,-„,-(3)rs—'P, (r„ls")X—(12,3)} (D1)

and then construct the integrodifferential equations
for the Hartree-Pock functions P0 and F, according to
the prescription given in Sec. III. When this is done
one discovers that the excitation will occur only if
coupling terms such as

Cr=p 2 C(/2, 12,L; —2222, 2222, 0)

dr~drsdrsf „,*(12)7~2 oo(3)

X (H—E)fo(12)F'rp(3)rs 'Fp(rs, L) (D2)

are diferent from zero.
We can approximate the ground-state wave function

very accurately with the linear combination of S-state
conlgurations,

|l0(12)= p p c„,2,„„(„R„,4(1)R„,g„(2)
nclcnacnglgnQ

XC(l,l~,0) 21„22se&0)F4~,(1)7'2,~,(2) . (D3)

Similarly, the wave function for the excited state can
be written as the superposition of /~ configurations,

4~(12)=Z .Q 4.2..020R .2.(1)Ro,2, (2)
nel~ngl gv

XC(l., lo, 4; 2, m —2, 222) I'i..(1)Y)„-„(2), (D4)'

each of which has the same parity, The sets of quantum.
numbers e l ns spec'ify the states of orbital electrons
and the functions R„~(r) are characteristic of the elec-

tronic radial distributions. Finally, the values of the
scalar coefficients u„g~ p and b„~~ ~ (which could be
determined by a variation method) are indicative of the
relative importances of the various configurations to the
wave functions for the states in question. .

In terms of these mixed-conhguration approximations
for the atomic wave functions the direct-excitation
term C~ may be written as

Cf P' ' Q ~n~k~noto cn~l~nol
na nl2ncngle L gl c4g

Ifjuly dt'gf2

0

where

XR„,4*(1)R„,[,*(2)R„,4(1)R„,s„(2)

X/C00 —2(Cis+Css+Css) j, (D5)

Coo G " l (21,&2 &s)~(11 0)~(12 L)
X5(l.,lo)5(lo, l,)5(l„lg), (D6)

C»={(—1)"'k(21 +1)/(2l +1)j'"
X Q)& p (2( /r&'+')»C(l, l„lo, 0,0,0)'}

X5(/l)0)5(12pL)8(la, lo)5(lc)4), (D'/)
and where

C;2 ——{L(212+1)/(212+1)(2L,+1)/~2(r~"/r&"+') 2

XC(12,12,L; 0,0,0)C(4,lb,l; 0,0,0)}
X~(i,l,)S(1„4), (D8)

for j=l, 2. Here l&' —=1& and 32' ——1. The precise func-
tional form of G„,„,...~s(rq, rs, rs) is of no consequence
to us here.

Now if a doubly-excited state is to be stable to
autoionization, its symmetry must differ from that of
every adjacent continuum state. However, there exist
continuum states with all values of the orbital and spin
angular momentum. Consequently the parities of stable
doubly-excited states must be different from those of
all continuum states with similar energies and with
identical values of the spin and orbital angular mo-
mentum. If the energy of the anomalous state exceeds
the value of 65.23 eV, which is required for production
of the He+(2p) ionic specie, this criterion can not be
satisfied. The reason is that beyond this limit there are
continuum states with both even and odd parity for
every value of the angular momentum. For energies
beneath this threshoM the parity of a stable doubly-
excited state with angular momentum /~ must dier
from the parities of all continuum states with wave
functions of the form,

$2),~,(12)= 2 '12(Rgo(1)(Rg), (2) P'00(1) P's,~,(2)
+R~o(2)@2~ (1)I'00(2) 1'~ - (1)]

Here 6tss, (i) denotes the radial portion of the wave
function for an unbound electron with a force-free
propagation vector k.

In order that a doubly-excited state with the vrave
function given by (D4) be stable to autoionization
the parities (—1)'+" and (—1)" must be different,
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i.e., 1,+tq+li must be an odd integer. However, from
(D6)-(DS) it follows that each of the functions Coo, Ci~,
Cig, and C23 will vanish unless this same integer /, +lq+ 1i
is even. The basis for this conclusion is immediately
obvious in the cases of C00 and C]2 with Cg3 and C23 lt
follows from the fact that C(li, l2,4, 0,0,0) equals zero
unless ii+32+4 is even. These observations establish
that direct scattering does not contribute to impact
excitation of stable, doubly-excited singlet states.

APPENDIX E: BORN-OPPENHEIMER CROSS
SECTIONS FOR TWO LOW-LYING

STATES OF BERYLLIUM

Ke have mentioned at the close of Sec. IV that there
is available a considerable amount of spectroscopic
information concerning the anomalous states of beryl-
lium. The least energetic of these, a 'P', state with the
configuration (is)'(2p)', is located well below the first
ionization potential. The next of the 'P, states has the
configuration (is)'2p3p and an energy roughly 1.7 eV
above the ionization potential. Since Herzberg" has
reported that the observed emission line for the transi-
tion (1s)'(2p)' 'P, —+ (1s)'2s2p 'P„ is quite intense,
there must exist some very effective process for produc-
ing atoms in this anomalous 'P, state. Herzberg
concluded that this excitation process was not the
result of the collision of a single electron but that it
proceeded "through the sp 'P state by two successive
electron collisions. " To us this explanation seems un-
likely since the radiative lifetimes of the postulated
intermediate states are probably no greater than 10 7

sec. Furthermore, the results presented below indicate
that the single-shot mechanism for production of
anomalous states is very efficient —so much so that it
almost certainly overshadows the Herzberg mechanism
in importance.

We have assumed that configuration interaction can
be neglected in constructing approximate product-
orbital wave functions for the various states of beryl-
lium. The basic orthonormal hydrogenic orbitals which
we have used are

Pr, (r) =2n'~'e "F«(r),
p2, (r) =1V[N2, (r) —)~pi, (r)],

with

=—Q„C(1, 1, 1; v, m —r, rN) drgdr2dr3e
—'"'3

and

X$2i„' (1)fbi „*(2)(2/r23)e'"'"1t2,(2)$2,(3), (E1)

f-(8,~; 2p3p)

2—1/2

Q„C(1,1, 1; v, m —i, m)
4x

drydr2df 38

&&I 4 ."'(1)A -- "(2)-A.*(2)A =.*(1)j
&& (2/r»)e'""V2. (2)A.(3). (E2)

Just as in the case of helium the components with m=0
vanish and

( fi (
=

( f i ).Therefore, the differential cross
sections are related to the scattering amplitudes by the
formula 1(8,4) =3(2k/ko)

~ fi(8,4) ~
~

The task of perforrrung the multiple integrals is
tedious but straightforward. The results are

f (8,~; (2p)')

=2¹koy' (ko'+y'/4) '

have chosen n=3.7, p=2.0 and y=1.75. Variation
calculations we performed for the 2p3p'P, state of
helium indicated that the screening constants for the
two electrons were very nearly equal. This provides
some justification for our present use of the same screen-
ing constant y for the $2i„and $3i„orbitals. With these
wave functions the energies for the ground state and
for the lower lying of the two excited states are
—29.1575 and, —28.6431 Ry, respectively. The di6er-
ence of 0.5144 Ry or 7.1 eU agrees fairly well with the
experimental value of 1'.3 eV. For the energy of the
(1s)'2p3p'P, state we have adopted the experimental
value of 0.808 Ry or 11.0 eV above ground. This state
is imbedded within the first ionization continuum of the
beryllium atom.

The scattering amplitudes of the Born-Oppenheimer
approximation are given by

f-(8A; (2p)')

and

».(r)= (P'/2)"'(1 —Pr/2) e '"'1'«(r),
X—=2(2cr'P')'i'(rr —P) (n+P/2) ',
E= (1—X'-) "', —

tt 2i (r) = (ys/24)'"re ""rY (ir)

$3i„(r)= (Sy'/3')"'r(6 yr)e &"I'Yi (r)—

and

fi(8,$; 2p3p)

&( drji(kr)G, (r) sin8e'~, (E3)
0

In accordance with the suggestions of Morse, Young,
and Haurwitz22 and of Duncanson and Coulson, " we

"P.M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev.
48, 1948 (1935)."%,E. Duncanson and C. A. Coulson, Proc. Roy. Soc. Edin-
burgh A62, 3/ (1944).

dr ji(kr)Gi(r)+ (kQ +~/~)

dr ji(kr)G2(r) sin8e'~, (E4)
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where

Gi(r) =-$(1 r)—e ' X—n"'e ~"5' '{8 e—(8+8Br+4B-y'+Bsys))
—B {40—s n'(40+40By+20B""ys+6Bsys+B4r')) —)ns&'-g —s{8—e

—~~(8y8+y+4+~r~++sys)) 5 (E5)

and

Gs(r) =3[(1 r)e —' Xu'~—'e ""5[ D "—{24 e —"(24+24Dr+12D'-'r'+4Dsys+D'r'))
D'{2—80 e"(2—80+280Dr+ 140D'-r'+ 44D r'+ 9D'r4+D'"r"') )

+D '{240 en'—(240+240Dr+120D'r'+38D y'+8D4r4+D"rs))

+)u'i'C '{24 eo"(2—4+24Cr+12C'r'+4C'r'+ C'r') )
—Xosl'C '{40—e c"(40+40Cr+ 20C'r'+6C'r'+C'r')) 5. (E6)

In these formulas, A =a+ay, B=1+,'y, C-=n+-'sy, and
D=1+ sty. The screening parameter P does not appear
since it has been replaced everywhere by its numerical
value 2. Although the integrals involving the spherical
Bessel functions ji(x) and the functions Gi(x) and G, (x)
can be performed analytically, the resulting expressions
are extremely complicated. In fact, we found it less
dificult to directly program these integrals for numerical
integration than to program the very involved alge-
braic expressions which are obtained from analytical
integration.

The calculated values for the total cross sections,

2' 1r

dp d8 sinHI(8, $) = (16vrk/ko)
~

fi(-', s.,0)
~

',

are illustrated in Fig. 6. The most striking features of
these results are, of course, the enormous magnitudes of

l2

8.

b4.

l2
p ( y)

16

I'zG. 6. Born-Oppenheimer cross sections for impact excitation
of two states of beryllium. The total cross sections are given as
functions of the incident electron energy. Curves (a) and (b) refer
to the (1s)'(2p)' and the (1s)'2p3p 'P, states, respectively.

the cross sections. Thus, according to the SO approxi-
mation, the probability of producing a doubly-excited
state is comparable to that of causing an ordinary single-
electron excitation. The great disparity in size between
the cross sections for helium and beryllium is due to the
strong overlap of the 2s and 2p orbitals in beryllium and
to the most negligible overlap of the 1s and 2p orbitals in
helium. From a comparison of curves (a) and (c) of
Fig. 3 one sees that a similar disparity, amounting again
to approximately three orders of magnitude, separates
the magnitudes of the cross sections for excitation of the

(2P) s and 2P3P sI', states of helium. Just as with helium
the cross sections for excitation of the I', states exhibit
their maxima when the electron is scattered at right
angles to the direction of the incident beam. Due to the
high probability of this process the anomalous sin'8
scattering pattern should be relatively easy to observe
for beryllium. Furthermore, as in the case of helium the
polarized radiation arising from subsequent dipole
emission" should provide a useful diagnostic tool.

The adequacy of the BO approximation to account for
the double-excitation cross sections of beryllium must be
verified by the performance of DEW and/or TS calcula-
tions of the sort which we have presented here for
helium. It is possible that the BO cross sections may be
in error by as much as an order of magnitude. However,
even if this turns out to be the case one still could
classify electron-impact production of doubly-excited
beryllium as a rather eKcient process. The BO calcula-
tions presented in this appendix constitute little more
than an exploratory investigation. A more comprehen-
sive study of the doubly-excited states of beryllium arid
of other alkaline earths is in progress and will be reported
in a future communication.

'4I. C. Percival and M. J. Seaton, Phil. Trans. Roy. Soc.
London A251, 113 (1958).


