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smooth decay in Fig. 8, some structure can be seen in
the x-ray Qux.

We feel that the stabilizing effect of hot electrons
should not be overlooked in the planning of thermo-
nuclear experiments.

Pote added irt proof. A lower limit to the heating eK-
ciency of the electron beam is easily calculated, and is
found to be surprisingly high. The heating efficiency is
defined as the ratio of the steady-state loss of power
from the plasma to the input power of the beam. A
lower limit to the power loss from the plasma is given

by the total energy stored in the plasma divided by its
decay time constant. Any instability during steady-state
operation would cause the plasma to be lost faster, and

give a larger value to the power loss. An upper limit to
the power input is the power drain on the power supply.
Since some of the electron beam does not pass through
the hollow anode and does not reach the plasma, this
number is too big. The largest ratio of these two num-
bers is found in the short-lifetime experiments using the
diamagnetic loop. Here the lower limit to the heating
efFiciency is about one percent.
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Magnetic Properties of the Canted Antiferromagnet zr-CoSO&f
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It is known from neutron scattering experiments that n-CoSO4 is a four-sublattice canted antiferromagnet
with no net magnetic moment. In this paper the magnetic properties of this material are analyzed using a
model in which an isotropic fictitious spin of -,'- is assigned to each Co~ ion. The large canting angle of 25'
is interpreted in terms of antisymmetric terms in the Hamiltonian due to anisotropic superexchange and the
large anisotropy in the g values. Corresponding to the four sublattices, there are four spin-wavemodes at
k =0. Calculations indicate that the resonant frequencies of these modes should lie in the far infrared, and
that only three of the modes should be observable spectroscopically. In addition, static susceptibilities of the
system have been calculated for T=0 and T))T& (12'K), and the g values have been estimated. Far-infrared
transmission experiments have resulted in the observation of three lines at 20.6, 25.4, and 35.8 cm, with
relative intensities 1:1:0.1. Although these lines are presumed to be the three expected resonances, an
unambiguous fitting for all the parameters of the model has not been possible. The temperature dependence
of the resonance lines is anomalous,

I. INTROQUCTION

'QR several years there has been much interest in
~

~

~

~

L canted magnetic systems. Purely on grounds of
symmetry and the thermodynamics of phase tran-
sitions, Dzialoshinski' first suggested the form of the
interaction which gives rise to the canting. Moriya'
included the eGect of spin-orbit coupling in the super-
exchange Hamiltonian of a system with a nonde-
generate orbital ground state to 6nd, in addition to the
usual isotropic exchange and the well-known symmetric
anisotropic exchange (which 6nds its origin in the
combined effects of the spin-orbit coupling and the
crystal fMld), that there is a further exchange term
which is antisymmetric with respect to the interacting
spins S, and St and is of the form

ac =D;; S;~S;.
t Supported in part by the U. S. Office of Naval I&esearch, The

National Science Foundation, and the Alfred'. Sloan Foundation.*Present address: Clarendon Laboratory, Oxford, England.' I. Dzialoshinslri, Phys. Chem. Solids 4, 241 (1958).' T. Moriya, Phys. Rev. 120, 91 (1960).

Here D;; is a vector that depends linearly on the spin-
orbit coupling constant, the precise form being derived
in Moriya's paper. In most of the canted antiferro-
magnetic crystals which have been investigated, for
example, O.-Pe~03,' MnCO3, ' KMnI'3, 4 and CuC1~

~ 2H~O, ' the canting angle has been found to be of the
order of 1'.

cr-CoSOe has an orthorhombic crystal structure and
a four-sublattice canted antiferromagnetic structure
having zero net magnetic moment. Its magnetic struc-
ture was Grst determined in the neutron diffraction
experiment of Frazer and Brown. 5 They, however, were
not at the time of their Grst paper, aware of the existence
of the two forms of CoSOe (see Sec. III), as they
attempted to explain the static susceptibility measure-

'A. S. Borovik-Romanov, Zh. Eksperim. i Teor. Fiz. 36, 589
(1959) LEnglish transl. : Soviet Phys. —JETP 9, 539 (1959)j.

4A. J. Heeger, .Olaf Beckman, and A. M. Portis, Phys. Rev.
123, ieS2 (&9e&).

'„B.C. Frazer and P. J. Brown, Phys. Rev. 125, 1283 (1962};
P. J. Brown and B. C. Frazer, zbzd 129, 1145 (196.3).
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II. CRYSTAL STRUCTURE
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MnSOq ",P-CoSOq" has the space group Ds~,"and is
isostructura1 with CuSO4 and ZnSO4. ""Methods of
preparation are described in the references cited and
also by Brown and Frazer' and Kreines. "' These will

not be detailed here.
The positions of the orthorhombic space group D2J,'

occupied by the atoms of a-CoS04 (notation of the
International Tableszr) are as follows:

Co
S
Og

On

0
0
0
0.250

0
0.361
0.250
0.472

0
0.250
0.058
0.250

TmLE I. Position parameters of atoms in e-CoSO4.

4 Co in 4 (tz);
4Sin4 (c);
80z in 8 (f);
80zzin 8 (g);

(0,0,0);
(0 y, -')
(O,y, z);
(x,y, -',);

(00 s)

(0, —y, —z); (0 y z
—s) (o, —

y —:+z)

The remaining positions are obtained by adding (-'„-', 0)
to those listed above. Rentzeperis" has made the most

complete analysis of n-CoSO4 and we shaB use his
results. The lattice constants are

tzo=5.200~, ho=7 8764, co=6.531 A,

netic moments of the cobalt ions and the corresponding
oxygen octahedra are identical, save for the magnitudes
of the tilt angles. The angle between the Co —Oz bond

TmLE II. Interatomic distances in O.-CoSQ4.

and the various parameters are given in Table I. In
Fig. 2 we show the chemical cell.

Let us consider the environment of the Co'+ ion at
(0,0,0) which is surrounded by a distorted oxygen
octahedron. Its six nearest neighbors are 2 Qr's at
& (O,y, z) and 4 Ozz's at & (—x+-', , y

——'„e) and
&(x—zs, y ——'„ez). We note that this environment has
inversion symmetry. Figure 3 shows the projections of
the 7 ions on the ab and ac planes. The Co —0 and the
S—0 distances are also relevant and we list them in
Table II.'0

Finally, the Or —Or, Or —Orr, and the Orr —Orr
distances in the SO4 tetrahedra are 2.51, 2.51, and
2.60 k, respectively. These parameters were all deter-
mined at room temperature. Although the octahedron
of oxygens surrounding the cobalt is strongly distorted
as is shown in Fig. 3, the tetrahedron of oxygens about
the sulfur is only very slightly distorted. Further,
each Orr is bonded to two cobalts and one sulfur,
whereas each Or is bonded to only one cobalt and one
sulfur. The Co06 octahedron is tilted as well as being
distorted. It is of great importance to notice that the
adjacent octahedra along the crystal c axis are tilted
with respect to one another (the axis of rotation being
along tt), whereas the octahedra surrounding the cobalts
in the ab plane have the same orientation. Comparing
Figs. 1 and 2, we see that the orientations of the mag-

Atom

Co
Co
S
S

Neighbor

Or
On
Oz

On

Coordination Distance
number (L)

2.01
2.10
1.53
1.5/

+

4r

+gxXr)—

"M. J. Coing-Boyat, Compt. Rend. 248, 2109 (1959).
'4 P. A. Kokkoros and P. J. Rentzeperis, Acta Cryst. 11, 361

(1958).
"A. S. Borovik-Romanov and N. M. Kreines, Zh. Eksperim. i

Teor. Fiz. 33, 1119 (195/) (English transl. : Soviet Phys. —JETP
6, 862 (1958)].

'o N. M. Kreines, Zh. Eksperim. i Teor. Fiz. 35, 1391 (1958)
(EngIish transl. : Soviet Phys. —JETP 8, 972 (1959)j.

"Iwterttateortal Tables for X Ray Crystallography (The-Kynoch
Press, Birmingham, England, 1952).

0

Fzo. 3. The octahedral environment oi the cobalt ions: (a) pro-
Jection onto the ab plane; (b) projection onto the cc plane. The
+ and —denote above and below the plane of the paper.
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The S —0 bond is a very strong one and its predominant.
character is covalent; the Co —9 bond is comparatively
weak and is mostly ionic.

and the b axis is $0.9', and the angle between the plane
containing the four Oii's and the ca plane is 7.7'. If the
octahedron were tilted but not distorted, these two
angles would be equal; however, even if these angles
were the same, the octahedron could still be distorted.
One can consider a larger environment of the cobalt
ion in which case vre see that it is actually sitting in a
distorted octahedron of (SO4 ) tetrahedra. In this
case we find 29.9' and 33.8', respectively, for the angles
given above, where the angles are now between the
Co—S direction and the b axis, and between the plane
containing the 4 sulfurs (associated with the Co —Oii
bonds) and the ca plane. For comparison, the cant angle
of the magnetic moments is 25' in the same sense.

It is convenient to label the four cobalt ions at the
positions (0,0,0), (0,0, i~), (-,',~,0), and (—,'P„i~) in the
chemical unit cell with the numbers 1, 2, 3, and 4,
respectively, as shown in Fig. 1. In Table III, we can
then write down those exchange paths between the
cobalts which are likely to be the most important.

Some of these paths are shown in Fig. 4. Exchange
paths of the type Co—0—0—Co in which the two
oxygens belong to a given SO4 tetrahedron have been
ignored since the oxygen ions are bonded primarily to
the sulfur and the cobalt ions and not to themselves.

TmLE III. Exchange paths in a-COSO4.

Cobaltions Paths
Number of neighbors,

Z6

Co1—Cog
Co3—Co4

Co —Ozr —Co
Co —Ozz —Co

Co—Oz —S—Or —Co

Cup

E'ro. 4. A projection of the atoms involved in some of the
important exchange paths onto the plane containing the four
inequivalent cobalt ions.

III. TWO-SUBLATTICE MODEL

Before embarking upon a long and tedious calculation
using the four sublattices necessary to treat theo. -CoSO4
problem, it is instructive and illuminating to first con-
sider a simpler problem involving only two sublattices.
The purpose of introducing this model is to show that
the anisotropy in the g values of the Co++ ions can give
rise to large canting angles of the magnetic moments if
the axes of the g tensors are tilted with respect to one
another. The two sublattices are formed from adjacent
cobalt ions located in two sites of distorted octahedra
whose axes are tilted with respect to one another. In
Fig. 5(a) the hays coordinate system coincides with the
crystal system and the x,'y s,' system coincides with
the principal axes of the g tensor of the ith cobalt ion.
Since, at this time, we are just seeking to show the
effects of the anisotropy of the g tensors, we shall
describe the system in terms of the true spin with the
t'sotropic superexchange Hamiltonian

3'.=- —JSi S2 (2)

where J is positive. It will be shown in Sec. IX, that
the true spin magnitudes are anisotropic if the octa-
hedral environment of the cobalt ions is distorted; thus,
although Eq. (2) is isotropic in the above form, it can
give rise to much anisotropy when its effects are con-
sidered within a ground manifold whose nature is
dictated by the larger perturbations of the crystal field
and the spin-orbit coupling. The problem is greatly
simplified if we put all the anisotropy into some effective
exchange constants and work with isotropic spin vari-
ables. This can be done by introducing the fictitious
spin. " The magnetic properties of a system are de-
scribed by those low-lying states which involve spin
and orbital angular momentum reorientations. In
cobalt, at low temperatures, the only energy level which
is electively populated is the ground Kramers' doublet
(see Sec. IX and Fig. 9) for which the two states can
be denoted by

~
a) and

~
b). Thus we need consider only

these two states when evaluating the low-temperature
magnetic properties of the crystal. For a doublet state
the fictitious spin is s= —', so that 2s+1=2. We shall
henceforth denote the true spin with an Npper case 5
and the 6ctitious spin with a lover case s.

The g values are defined by considering the Zeeman
Hamiltonian

Co1—Co3
C02—C04

CO —OI S OII —CO
Co—Ozz —S—Oz —Co Se,=PH (I,y2S), (3)

C01—C04
Co2 —Co3

CO1 —CO1
Coi2 —Col
Co3—Co3
Co4 —Co4

Co —Oz —S—Orz —Co

Co —Orr —S—Ozr —Co
Co —Orr —S—orr —Co

within the states ~a) and ~b), and writing down an
equivalent Zeeman operator

BCg=PH'g' 8=p(tl~ H~~sg~+g&~IX&~s& +gz H~is~ ) ~ (3 )
' B.Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16& 108

(1953).
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operating with the states (+—', ) and (
—-';). Identifying

corresponding matrix elements, the familiar relations"
are obtained:

g,.=2(biL;+25, ia),
g„=—2i(b ) L„+25„)a),
g, =2(a[1., +25, [a).

The g values may be split up into orbital and spin parts
and

g=g +g

Equation (2), which is expressed in terms of the true
spins can be written in terms of the hctitious spins if
we transform 81 and Ss to the x'y's' system (Fig. 5)
so that we may use Eq. (4). The transformation for
Sr 1S

5; =5;, )

S,„=-S;„cos8+5;.' sin8,

5,.= —S;„sin8+S;, cos8,

(5)

and similar equations hold for Ss with 8 replaced by—8. Thus applying Eqs. (5) and (4) to (2), we find

K= gJL(g~~ ) St~ass~~+ (gv~ ) COS28$11i~sgp~

+ (g~~ ) cos28$1~issgi gv~ g~~ s11128

X (srv ss, —S„.ss„.)j. (6)

The last term on the right is antisymmetric in the
6ctitious spin and gives rise to a canting of s~ and 82.

(To verify that the antisyrnmetric term is not a spurious
effect due to expressing the Hamiltonian in terms of two
coordinate systems which are tilted with respect to one
another, one may transform the Gctitious spins bacl~ to
the crystal ryan axes. If this is done an antisymmetric
term of the form D st x ss will be seen to exist. )

To determine the equilibrium directions of the fic-
titious spins below the ordering temperature, we de6ne
the x&"y&"s&" and x&"y2"s2" coordinate systems shown
in Fig. 5(a) such that in equilibrium (sr) and (ss) point
a1ong the y&" and y&" axes. The transformations are

Fro. 5. (a) The various coordinate systems in the two-sublattice
model. The xys system is the crystal system; the x'y's' the system
in which the g tensor is diagonal; and the x"y"s" the system in
which s lies along y" in equilibrium. (b) The relationship between
the Qctitious spin s and the magnetic moment m.

splns

2gy' gz' tan20

(g,')'+ (g"')'
tan2 pg =——

@ger ——gg~ii

$111~=$1'~~ Cos(p~+Stg» Sin+a )

Srz' Sry i Slnps+Srz» Costs y

(&) Finally, to fmd the equilibrium direction of the mag-
netic moments, we note that by projecting s~„" onto
the single-primed axis

and again we get the transformation on s2' by changing
the sign of p, . In the x"y"s" systems s„" must be a
constant of the motion. '~ Thus by performing the
transformation (7) on Eq. (6) and using

stree' pgz'srz' pga'sty" sill pa y

Bsrv& —Pgvisry~ Pgy&sry~ & COS +8 .
(10)

zMsv»/di= $$v», Xj:=0,
we Gnd for the equilibrium angle q, of the 6ctitious

If q is the angle between the magnetic moment and
the single-primed y axis LFig. 5(b)j, then

tang = (g, /g„) tang, ,

rs J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). and in equilibrium the value of the magnetic moment
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Tmxx IV. Permutation of the Co++ ions under the operations of the space group. '

Co site

Coi(0,0,0)
Cog(0,A)
Cog($ z 0)

4Ig 4Ig 4C2~ 4C2," 2o-g 2~,' 4C2y

1 3 2
2 4
3 1 4
4 2 3

so 2& gl1 2& gl2 4C sal

4 2 4 2
3 j. 3 I
2 4 2 4

3 1 3

4C2pa 2 2u, 20@i

4 2
3
2 4
1 3

a I1 and Is stand for inversion, C2& is rotation by ~ about the ith axis, and o& is reflection in a plane perpendicular to the ith axis. Superscripts sc and
gl refer to screw and glide operations, respectively.

ln a notation in which the bottom row shows the effect of the operator outside of the parentheses on the top row, we note:
»

(T =Translation)QSa Stj Sz/ Sg Sy Sz /

(S» —Sz —g» ) (
zz zz z»)

is given by

jii(V'z) =Pg(pg) y"
=pfgy, ' cos'y, +g,' sin'y, j"'sy-. (12)

The magnetic moment defmed by Eq. (12) is that which
would be measured in a neutron diGraction experiment.
The value of s„" is —,

' at T'=0; for TWO, one must use
the proper statistical average. It is to be noted that if
g„&g... then I always lies between the equilibrium
direction of the 6ctitious spin y" and the y' axis. The
magnitude of Imust also satisfy the inequality

g„)2m/P) g. . (13)

We now consider two limiting cases:
(a) The g tensors are not tilted with respect to each

other. In this case 8= 0 and from Eq. (9) p, =0 so that
there is no canting.

(b) The g tensor is isotropic. From Eq. (9) we find

tan2p, = —tan20 or q, =- —0 and again there is no
canting.

To get an idea of the order of magnitude of the
canting due to the anisotropic g tensor we use some
typical values in Eq. (9):

g"'= g"'=-2 5 (14)

If 8=20', then q, = —17' and from Eq. (11) we find

p = —7.5'. The angle of cant away from the y axis is

8+p = 12.5'. We conclude that the anisotropy of the

g tensor alone can give rise to large canting angles.

IV. THE HAMILTONIAN FOR THE
FOUR-SUBLATTICE CASE

As can be seen from Table III or Figs. 2 and 4, the
principal exchange paths of o.-CoSO4 are many and
varied. Each cobalt spin on a given sublattice not only
interacts with its nearest neighbors on the other three
sublattices, but also has an intrasublattice interaction
with its nearest neighbors along the crystal a axis. For
an initial attempt to write down a Hamiltonian which
describes the magnetic structure, one might assume
that the exchange between the true spins is isotropic,
attributing the anisotropy and canting to the g-tensor

effects as was shown in the previous section. Although
this approach yields the proper magnetic symmetry, a
consideration of the stability shows that the equilibrium
direction of the magnetic moments must always be
between the crystal b axis (y axis in the notation of Sec.
III) and y' axis (also defined in Sec. III), no matter
what combination of ferromagnetic and antiferromag-
netic exchange integrals is used between the different
spins. If the y' axis of the g tensor were to coincide with
the Co —Oi bond, then the angle 0 between the y and
y' axis would be 11', and since the angle between the
y axis and the magnetic moment is 25', we would not
be able to stabilize the magnetic structure observed for
n-CoSO4. On the other hand, if the y' axis of the g tensor
were to coincide with the Co—S direction, the angle 8
would be 30', and one might be able to use an isotropic
exchange model. Actually, the charge distribution in the
sulfate tetrahedra is complex and unknown; conse-
quently, we cannot determine the angle 0 and therefore
we shall consider it as a variable for the present.

Our program in this section is thus to write down the
most general Hamiltonian taking into account all ex-
change interactions which have been previously men-
tioned. 4Ve shall then show how it is possible to simplify
the Hamiltonian enormously by considering the space
group of the crystal.

Labeling the cobalt ions or spins as is shown in Fig.
1, the exchange Hamiltonian can be written. '

&C= 3'."+3Ci3+K"+K"+K'4+BC'4
+K"+K"+BC"+%44, (15a)

where, if the crystal coordinate system is used,

K = Jgg SizSjg+ Jyy" SiySjy+ Jzz Si»Sjz

+Egy (SizSjy+SiySjg)+Kyz' (SiySjz+Si»Sjy)
+It zg '(S'zSjg+S'zSzz)++gy '(SigSjy S.ySj z)

+Iyz (SiySj z SizSjy)+I zg (S»gSjg SizSjz)~—
This is a completely general expression for the quad-

ratic exchange interaction between two spins. The spin
components in this expression are those of an isotropic
fictitious spin of —,. The coefFicients of the spin operators
in (15b) will contain effects due to isotropic real spin
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/$ ~~$
TQ

I y

FIG. 6. The symmetry elements of
space group D2y, ' . Most operations are
self-evident. The inversion I~ is lo-
cated between Coi and Coe, etc. ; the
translation in gyg'1 is 8/2; in gyg' 3 is
(a+8)/2; and in o zg' is (t3+b)/2.

5C.I
ZX

SC,

Czz' Cz

exchange, symmetric and antisymmetric anisotropic
real spin exchange, and g-value anisotropy. For a spin
of ~, there can be no real single-ion anisotropy effects
since all squares of spin- —,'matrices are multiples of the
unit matrix, and thus do not exhibit anisotropy effects.
In our case, the intrasublattice exchange terms X"
will produce effects which look like single-ion anisotropy
on a four-sublattice model. The pairs of spins referred
to in the expression for X"in (15b) are never identical,
so that terms such as s;,s; should actually be written
s;,s; . In order to limit the number of sublattices to
four, we have set s;,=s;,. Later, in taking the com-
mutator of s; with K", we must remember this since s,
commutes with all components of s;.

The Hamiltonian (15) has 90 parameters. Next, we
write down the elements of the space group D23" (Ref.
17), their spatial positions being shown in Fig. 6. In
Table IU we show how the four cobalt ions are permuted
by the space group operations. Now let us consider the

information we obtain by operating with the various
elements of the space group on the Hamiltonian, Eq.
(15), which must remain invariant. Noting that it is
not necessary to consider the operations involving
reQection as each of these operations can be paired o6
with a twofold rotation which has exactly the same
effect on the magnetic Hamiltonian, we 6nd:

I1'. provides no information,
J12 J34 ~ E12 +34 ~ L12 L34 ~ J14—J32 ~

) ) )
E14=E32 L,'4=I"

Jll —J33 ~ +11—/33 ~ J22—J44 ~ /22 —/44 ~

)
I13—I24—0

In a similar way, we continue to apply the symmetry
operations of the crystal to the Hamiltonian to Gnd
relations between the exchange parameters. Taking all
of these relations into account, we are able to write
down the most general quadratic exchange Hamiltonian
allowed by the symmetry of the crystal:

X = Jgg Slg$2g+ Jyy Sly$2y+ Jss Slz$2s+I'yz (Sly$2s Slz$2y) ~

X =Jgg Slg$8g+ Jyy Sly$8y+ Jzz Slz$8z+Eyz (Sly$8z+Slz$8y) i

= Jgg Slg$4g+ Jyy Sly$4y+ Jss Slz$4s+Lys (Sly$4s Sls$4y) y

X = Jzgl $2g$8g+ Jyy $2y$8y+ Jsz $2z$8s I yz ($2y$3z $2s$8y) y

—Jgg $2g$4g+ Jyy $2y$4y+ Jzz $2z$4z I~ ys ($2y$4z+$2z$4y),

Jgg Sss$4g+ Jys $38$4y+ Jzz Ssz$4s+Lyz (Ssy$4z Sss$4y) &

X = Jgg Siss+ Jgy Sly +Jzz Sls ++yz ($18$1s+SlzSly) y

X Jgg $2g +Jyy S2y +Jzz $2s Ityz ($28$2z+$2s$2y) |
X Jzs $8g +Jyy $8y +J2z $8z +Eys (Ssy$8s+S3z$3y) i

X =Jgg $4g +Jyy $4y +Jsz $4s lays ($4y$4s+$4z$4y) .

(16)
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FIG. 7.. ~he various coordinate sys-
tems used in describing n-CoSO4. Their
signifzcanee is given in the text.

e see that this Hamiltonian only ll

t e yz plane and that there is no canting
'

etween either si. and s3 or s2 and s4 so at they will

be either parallel or antiparallel. All f tho is is consistent
the magnetic symmetry found by

diffraction.
Although we have now obtained a Hamiltonian (16)

which must describe the magnetic
' fic properties of the

system, we still do not have the mo t fmos convenient form
of the Hamiltonian with which to att k th bla ac t e problem.
t is a great convenience if we choose d'6e i erent axes for

each spin in such a way that the grou d- t tun -s ate magnetic
order (Fig. 1) is naturally described b thy e system of

us transform (16) to the double-primed
system of axes shown in Fig. 7. In th' d

~

1
~

sing e-primed axes are the principal axes of the cobalt

g tensor. The double-primed axes describe the equi-
librium conQ.guration of the cobalt fi t t' p'c itious spins so
that at absolute zero

$2@ — $3y» — $4y~~ =S,

where s= -,' is the fictitious spin.
Qn transforming (16) to the double-primed coordi-

nate system, we obtain equations identical in form to
(16) but with g y s replacing xgz throughout For
example,

12—T 12
gQ =~~ „~g. $y~ii$2~ i+J ~ «S y~~$2y~

T e new double-primed coefficients are functions of

the uhe unprimed coe%cients and of 0 andhe u
'

n o an p„at present

The e
particularly interested in th fese unctions.

the 16 in
e avior of the system can b de escri ed either by

e independent parameters of E 1o qs. 6 or by the
double primed parameters of E

seen that it is mu
system in terms of the latter set.

The an le of ou
the fact that the dou

r transformation is determin d bine y

(18) must rovide a
e ouble-primed equations of the fe orm

p
'

e a stable con6guration with the
titious spins pointing alo th d

i is easi y shown that the condition is

It is desirabIe to treat t i
h llc anica y, since in anisotro ic s stems,1,'.".,",

1

"
rea ment is not alwa s a areys apparent. To write

e equations o motion we use

i&= Ls,Ãj

„s„j=is„etc.
The equations are linearized b assum'T. y assuming small oscil-

letting the x" and s"
ou he conhguration described b 17y ~ and" an s components of spin have time

dependence exp( —ia&t). If p= ~ 5= ~a cv' s, the elements of
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the resonance matrix are

$1~i~

$3&i i

$4~"
$1z'I

$2Z"

$SZ"

$4,"

0
0
0
JQ

12J~ii~«
J tI

J « „14

$2*«

0

0
0

12J~il ~iI

Jo
J « „14

$3g"

0

13J~EI ply
14Jgtl gzlI

~ JQ
J )t IIg g

$4+11

0
0
0

14J~l I ~II
13J~l I gal—J - .I12

Jp

$1gir

Jo
—J
J«»13

J 1I 8I

~ Jo
J tt II

J rr

0

$3z8

J sI »g g

—Jz z

Jo
12Jg«g ~

0
0

0

$4z»
—J rsg g

J It tlg g
12Jz'~z«Jp, (22a)

0
0
0

where
J' J „„12 J „„18 J „„14+J„„11 J„„ll

fI g z g ~ (22b)

The solutions to the associated secular equation are

2 —(g /kg )2(J +J „„+J„„+J„„)(J+J 12 J, 18 J', 14)

'2
(~2/Q2) (Jp+J „„12 J „„18 J „„14)(J +J „„12+J „„18+,J „„14)

~,, 2=(S2/52)(J —J ~ .-"—j.",-"+J-.-'4)(J,—J - -»+J - „»—J „„14)
2 —(~2/Q2) (J J „„12+J „,18 J „14)(J J 12 J 18+ J 14)

(23a)

(23b)

(23c)

(23d)

%e have eight roots, only half of which are significant since the &~ solutions are physically identical. The corre-

sponding normal modes are described by the matrix which diagonalizes (22a), namely:

$48 gri

$3x"
$4&&I

$jzI I

$2z"
$3zii

$4z«

Q)1

1
1
1.

'Ep

Zp

Zp

2p

0)2

1
$p

Zp

$p

Zp

fV

ZV

ZV

ZV

fV

2V

ZV

fV

'LO 2tT

ZO

—1
—1

1
SO $0

2T

where

(25a)

V=
12 J „„18 J „„14 11'2

12+J „„18+J „„14

Jp —J' l2 —J II I +J
0 =

7

Jp —J:","+J.".-"—Jg *
"

Jp —J.-. "+J"""—J*-*'14 1/2

Jp J II II Jgllg/I +JgIIg I

(25c)

J,—,j.".- '+J.-. "+J.".-" '~'

p=
Jp+J,„,, '2 J.I I g«'8 J,I I, I I—'4—

frequency, as will be shown in the following section.
One can show that the intensity of the'line associated
with co5, 6 is proportionaL to the square of the sine of
the canting angle, and thus this li.ne disappears in the
limit of zero cant. Mode co7 8 has no oscillating magnetic
moment and will be unobservable by the usual experi-
mental techniques. In all of the modes, the tips of the
6ctitious spins describe elliptical paths about their
equilibrium directions, with the ratio of the axes of the
ellipses being given by Eqs. (25). We point out that the
resonance frequencies (23) are affected by the intra-
sublattice interaction since it is anisotropic Lsee (22b)].

VI. THE RF SUSCEPTIBILITIES

These normal modes are shown in I'ig. 8 and are
similar to those found by Joenkp for Cucl2 2H20. From
the diagram or (24) we can see that modes ppl 2, cp8 4,

and co5,6 have oscillating moments along the crystal a,
c, and b axes, respectively. Hence each will absorb
radiation polarized along one axis if it is of the proper

The calculation of the rf susceptibilities is compli-
cated by the fact that an external magnetic 6eld inter-
acts with the magnetic moments and the principal axes
of the g tensors do not lie along the crystal axes which
will be the principal axes of the susceptibility by
syinmetry. %e detail the derivation of the interaction
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X3 is similar to 3'.~ whereas X2 and 3'.4 are obtained by
reversing the signs of 8 and p, . The additional terms
are inserted into the equations of motion (20), and
alternatively taking the external 6eld along the crystal
x, y, and s axes, the resulting inhomogeneous equations
are solved for s~,",etc. The s~, etc., are then projected
into the single-primed axes where they can be converted
into magnetic moments by multiplying with the appro-
priate g value and the Bohr magneton. A further trans-
formation of the magnetic moments into the crystal
hays system then gives the susceptibilities:

4P2g 2$2 J +J „„12 J „„13 J „,14

x
A' M], o QP

(30a)

Fn. 8. The normal modes of the 6ctitious spins. The polari-
zation of the associated oscillating magnetic moments is indicated
by the double-headed arrows through the origin.

Plg 2$2

XQ

4psg 2$2

x,'=-

where

(Jp J „„12 J „„13+J, , 14)

(30b)
C05, 6

—
GO

(J +J „ „12 J „ , ,13 J , , 14)

(30c)
C03, 4

—M

Kl —2231z'Hlzy+ 1Ãly'Hly'+B'Zlz'Hlz' ~ (26)

Hamiltonian for the spin at position 1; the others follow
immediately by reversing the angles. Kith the axes as
shown in Fig. 7, let the principal values of the cobalt

g tensor along the single-primed axes be g, , g„, and

g, . If the interaction of the external magnetic Qeld with

Sy 1S Ky) then

gx= g~' )

gzy=gzi cosyz sln8+gyi sill yz cos8,

= gg cos p, cosO —
gy sin p, sine,

gyp= g2J& cos+6 cosO gg~ sings slIlg,

g„„.=g-. siny, cos8+gy cosy, sing.

(31a)

(31b)

(31c)

(31d)

(31e)

The H» ., etc. , are the components of magnetic field
observed in the single-primed system of Co&. For a
field applied in the crystal xys system, the different
cobalt ions will see different fieM components in the
primed systems since the axes are tilted with respect
to one another. Consequently we distinguish the fields
with the numerical subscripts.

We apply the transformations:

x,"64o= (22rg, ' P2$/I2) (1/p),

Xy Bop = (27rgzy P s/'II)0',

x."64o= (22rg, ,2 P2$/I2) y.

(32a)

(32b)

(32c)

(The expressions for g» and gy. will be used later in
Sec. VIII.)

The integrated absorption may be computed, as-
suming a narrow linewidth, by applying the Kramers-
Kronig relations, "with the results

JISM@&=II)Jcos9—Hg s1n8)

Hl; H„sin8+H, cos8,——

Si~~ =Ss~«)

Sly~ =Sly~i Cosyz+Slz~~ Slnyz )

sl, = —sl„sin y,+sl, cosy, ,

(28)

We notice that the mode coy, g does not contribute to the
absorption as was pointed out in the preceding section.

Using Eqs. (30) and (23), and setting 4o=0, we are
able to write the components of the static susceptibility
at absolute zero:

4g 2p2

x,'(0) = —,(33a)
(JO+Jz"* "+J",""+J"."")

and noting that 2131 ~ ——pg, sl, , etc., one obtains after a
little rearrangement:

KI—— ps„"g;H, —
Ps»"$Hy(gy. cosy, —cos8—g,. siny, sin8)

+Hz( gy~ COSyz S1118—gz~ S1Ily, COS8)$
—PSI;.PH, ( g„. Siny, sin8+g, cosy, cos—8)

+H„(g„.Siny, sin8+g, cosy, sin8)$. (29)

4g 2p2

x,'(0)=-
(J +J „„12+J „„13+J, , 14)

zo M. TiIIkham, Phys. Rev. 124, 311 (1961).

(33c)

4g 2p2

x„'(0)=- (33b)
(Jp—J .i .i'2+ J i, i,13—J „„14)



MAGNETIC PROPERTIES OF ANTIFERROMAGNET 0. —CoSO4 A 705

K=CzSz+ CzSy+ CzSz ~

If (c,'+c„2+czm)"/2kT((1, then

It should be remarked that these susceptibility results Hamiltonian
apply to a single chemical unit cell of O,-coSO4 which
contains four cobalt ions.

VII. THE NEEL TEMPERATURE AND
THE STABILITY CONDITION

Equation (18) is a convenient form of the Hamil-
tonian with 16 parameters and 12 spin variables. If a
molecular field calculation is performed using this
Hamiltonian, we shall obtain 12 values for the ordering
temperature Tr/' (i=1, , 12), and corresponding to
each root there will be a particular ordering configu-
ration. "The fact that the ground-state order is known
to be as in Fig. 1 will restrict considerably the values
that can be assigned to the parameters in Eq. (18).The
calculation is most easily carried out if one takes ad-
vantage of a useful result (see Appendix) for the

$jg/I $sy/ I $iZ/I

$~gtl
= $sy/I

$ z/I

(36)

where

(s;)r———c;/4kT, i =rc, y, z, (35)

for a spin of ~. Since, in the molecular field approxi-
mation, Eq. (18) takes on the form of Eq. (34), we can
write down the system of 12 homogeneous linear
equations, (35), in the form of a matrix:

$1gl t

$2g»

$3s//

$4g»

&»*-)

p+ J Zrr Zrr

12Jg/ I gl I

13Jgl I gl I

14J»»

$2gl I

Jgl / g/I 12

p+J
14Jg/ I gl I

18Jgl / g/ I

$3g»

13Jg/ I g/ I

14Jg/I g/ I

~+J,, „11

12Jg/ I gl /

$4g»

14Jg/I gl I

13J l...
12Jgt / gl I

~+j „„11

(36a)

$1

$3

$4)jl I

$1z

$3Z'I

$4Z/I

$]y/I

7+J „„ll
12Jyl I yt I

18Jyl I y/I

14Jy1 /.yl /

11y//z»

12L,y//z»

13y/I z»

14I/yl / z/ I

$2

12Jyl I y/I

V+jz-z-"
14Jyt t yt/

13Jy/ I y/I

y Z

.ry z

z

rl z

$3 11

13Jyt I &I/

14

|r+J rr rr

12
Jyl / yll

18y//z»

14Lzy/I rt I

11 .+yr/z//

12Lry/ I Z/ I

$4yt /

14Jyl I yl I

13Jy/ I y/I

12Jyl I y/ I

v+J,-, "
11 Il

y

y z

Z

$1z»

11Qy/tzl I

13Qy/I z/ I

14

&+j
J tr lr

18J,",
14Jz.l z

$2z»

12I.„...
11 I I11

y

14I y»z

11

12JZI I ZI I

p+ J
14Jz/ I z/ I

13J, , ~

$3Z»

13+y"z»

11E„,
12tt I I'y z

18J,»,»

14Jzl I z/ I

'Y+ jz"z"
12JZ/I Z/I

$4z/I

14L,y",.
IIy z

I I Z/I 12

»»11
y z

14JZlr Zt I

Jz"z» 13

12

y+ Jz"z"

(36b)

(37)

The matrix M is diagonalized in the usual way. If U 'MU is diagonal, then the columns of U are the spin eigen-
vectors which determine the spin con6gurations. Twelve distinct roots are obtained in all, with each root corre-
sponding to a different spin configuration and Weel temperature. Ke shall give only the root for the spin con6gu-
ration observed by neutron diffraction, which is

yt/ =4kTI/= —j„-„."——j„-„-"+j„"„."+Jz"z
"——J( —j,",-". (38)

VIII. STATIC SUSCEPTIBILITIES ABOVE THE NEEL TEMPERATURE ON THE MOLECULAR FIELD MODEL

This calculation is completely straightforward, the procedure being the same as in the calculation of the rf
susceptibilities. The results are given below:

2 2

x,(T)Trr) =
4kT+ Jzrrzrr +Jzrr rr +Jzrrzrr +jzrrzrr

"P.W. Anderson, Phys. Rev. 79, 705 (1950).

(39)



SlLVERA, THORNi. E Y, AND TiNKHAM

4P'fgyy'(4&T+A "" 4—-""+A""" A—""'4)+g.y'(4&T+ jy y "+j,"y "
+jy"y" +jy"y" )+2gyygzy( +y"z" +Ly"z" +y"z" +Ly"x" )]

xy(T) 2'~) =
(4kT+ J„//„./"+J„,/„""+J„//„. / "+J„/.y"")(4kT+ J;/g//" J,/—/, /'s+ J;,;," J;—, ,/, '4)

—(&„" '+L„-,-" E„"—,-"+L„,.;.")'

(4o)

4P Lggg (4jsT+ Jy//y// Jy//y// +Jy//y// Jy//y// )+gyp(4kT+ J////z// +J///z//

+J;;"+J;;") 2gy, g„—(Ey. .."+Ly-; "+Ey", "+Ly.;.")$
x,(T)T~) =

(4kT+ Jy /y// Jy//y// +Jy y Jy y/ ) (4kT+ Jg// // +J // // +J / // +J / )
(Ey//z// +Ly///, // +Ky///// +Ly//8// )

(41)

These expressions are worth some comment. First, it is
seen that only in the crystal x direction is the Curie-
%eiss law strictly obeyed. The susceptibilities in the
other two directions, i.e., in the canting plane, can be
expressed in terms of a Curie-gneiss law with a tem-
perature-dependent gneiss constant, and a temperature-
dependent Curie constant. At higher temperatures Fqs.
(40) and (41) reduce to the simple Curie-Weiss law.

of the crystal are completely determined by the ground
doublet.

Carrying through the analysis one Ands that the
orbital and spin parts of the g values can be expressed
as

10 4
g"'=1—(v+~), g"'=—-(7+~),

3 3

The only information we have at the present time
concerning the g values of the cobalt ion in this material
is from the neutron-measured Inoment at 4.2'K, which
indicates that the largest principal g value is at least
6.6, and the static susceptibility measurements of
Pauthenet" in a powder sample, which indicate that
one of the g values is much larger than the other two
(see Sec. XI). As the far-infrared resonance measure-
ments give the relative intensities of the absorptions,
which are strongly dependent on the g values as well
as the angles 0 and y, Lsee Eqs. (31) a,nd (32)j, it was
thought that further information might be obtained
from an analysis of the g values within the crystal-field.
approximation.

Lacking any detailed knowledge of the charge dis-
tribution and covalency of the ligands, this was done
using a simple point-charge model. Further, to make
the analysis as simple as possible, only the ground 'Il

term was considered, the I' term being neglected. A
similar analysis has been given previously" in con-
nection with CoF2. One finds that the 4F term splits in
the octahedral field leaving a 41'~ state lowest. After
including the spin-orbit coupling, this T~ state splits,
with a single Kramer's doublet lying 350 cm ' below
all other levels. The level structure is shown schemati-
cally in Fig. 9. The crystal-field terms of lower sym-
metry af/ect the states in this doublet so as to produce
anisotropic g values. As all excited states are so high,
at reasonably low temperatures the magnetic properties

g"=1+27
10 8

gy'= —+-7,
3 3'
10 4

g"'=1—(v-~), g. '=—-(v-~)
3 3

Fn. 9. The elec-
tronic split tings of
Co++ in cubic fiel
and under spin-orbit
coupling.

where 5 and y are parameters determined from the
crystal field and radial wave function parameters. It is
evident from (42) that whatever their values, the sum
of the three g values will be 13, a point useful in
analyzing the data. The radial wave functions may be
taken to be those of VVatson'4 for neutral cobalt, since

~ See 6rst footnote in E. F. Bertaut, J. Coing-Boyat, and A.
Delapalme, Phys. Letters 3, 1/8 (1963); and (private communi-
cation).

"M. Tinkham/ Proc. Roy. Soc. (London) A236, 549 (1956).

Cabic fie Id

~ R. E. Watson, Phys. Rev. 119, 1934 (1960).
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he has shown that the 3d wave function is insensitive
to the presence or absence of the 4s electrons. Using his
functions, . we 6nd (rs)=0.358 As and (r4)=0.300 A'.
The positions of the point charges forming the dis-
torted octahedron. which represents the environment
of the cobalt ion may be estimated from the room-
temperature structure determination of Rentzeperis. "
If we attribute a single negative charge to each oxygen
atom, a numerical calculation leads to the results

g, =3.82,

g, =4.69,

g, =4.49.

These values support the position that g,. is the largest
of the principal g values, but evidently the large
anisotropy required by, e.g. , the neutron-measured
moment, is not accounted for. Presumably a much more
careful treatment of the environment is required.

X. THE EXPERIMENTAL SITUATION

Transmission measurements have been made on
powder samples of o.-CoSO4 at far-infrared wavelengths
and at temperatures from 1.6'K to above the Neel
temperature. The samples were prepared by heating
reagent grade CoSO4 7Hso to 300'C for 24 h in an
atmosphere of argon and identified as o.-CoSO4 by
x-ray analyses of the powder. The pale violet colored
powder was then mixed with a small amount of paraf6n
wax which served as an adhesive. This was pressed into
disks one to 2 (mm) thick and —', in. in diameter and
mounted in the cryostat. The monochromator, bolome-
ter detector, and the far-infrared techniques used have
been described elsewhere, "The transmission spectrum
observed below the Neel temperature was normalized
to that taken above 7~. This effectively eliminates all
nonmagnetic effects such as lattice absorptions, re-
Qections, etc., which usually are relatively temperature-
independent at these low temperatures. The sample
temperature was controlled with a resistance heater
mounted nearby and monitored with a ~'~ W, 100-0
carbon resistor thermometer glued onto the edge of the
sample with GE-7031 varnish.

The study of O.-CoSO4 resulted in the discovery of
three magnetic absorption lines which are shown in
Fig. 10 and whose frequencies, relative intensities, and
linewidths are given in Table V. (The linewidth is
taken to be the interval between the frequencies at
which the absorption coeflicient is half its maximum
value. ) The two lines at 20.6 and 25.4 cm ' are similar
in width and intensity whereas the highest lying line
at 35.8 cm ' is broader and shallower. The linewidths
and intensities of the lines are highly temperature-
dependent and the lines broaden into each other so that

"R.C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961);
A. J. Sievers, III, and M. Tinkham, shed 184, 321 (.1961).

TmLE V. Antiferromagnetic resonance experimental results
(T((Ts).

Frequency
(cm ')

20.6~0.2
25.4s=0.2
35.8+0.6

Linewidth
(cm ')

j..5
1.5
3.4

Relative
intensities

0.1

pg

~ gs

A

Q-
4

$g,
1 Q

/4— 48$g

~J~J~~ l, l,
S4 8+ Af

+«yummy, cw-'

FIG. 10. The far-infrared transmission spectrum
at three temperatures.

"C.P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962).

they cannot be resolved from one another at tempera-
tures close to the Neel point. In Table V the relative
intensities refer to the ratios of the integrated rf sus-
ceptibihties J'X,"(&o)dk& of the three lines. The three
frequencies are referred to as ~;, co;, and co~ since they
have not been identified with the theoretical expressions
(23).

The temperature dependence of the resonance fre-
quencies is shown in Fig. 11. As the temperature is
raised, all of the resonance frequencies fall, but much
more slowly than the appropriate Brillouin function.
The extreme broadening of the lines makes it impossible
to follow them any farther than is shown in the diagram.
From a naive point of view, one might expect the tem-
perature dependence of the resonance frequencies to be
proportional to that of the aligned component of the
6ctitious spin since by Kq. (23) the square of these
frequencies depends on the product of two effective
exchange fields, each being proportional to (s), . The
Srillouin function 8~~2 is plotted for one of the resonance
frequencies in Fig. 11. The discrepancy from the
Brillouin function might possibly be accounted for by
the theory of Bean and RodbelP' for a magnetoelastic
e6ect in ordered magnetic crystals. The exchange inter-
actions which are responsible for the ordering depend
upon the interatomic spacing. Since the lattice is de-
formable, it will distort to increase the exchange cou-
pling and hence lower the free energy due to the ex-
change interaction, the amount of distortion being
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FIG. 11. Tempera-
ture dependence of
the antiferromag-
netic resonance lines
and the Brillouin
function for s=-', as
a comparison.

lattice spin. Thus, any of the effects discussed above,
or indeed a combination of all of them, might explain
the anomalous temperature dependence of the resonance
frequencies.

The Neel temperature has been found to be 12'K
by observing the temperature at which the antiferro-
magnetic line strengths go to zero; this is in agreement
with Pauthenet's" value which was determined by
susceptibility measurements. The powder susceptibility
(Xs) measurements of Pauthenet indicate classical
antiferromagnetic behavior, that is

Xn(0) = sX~(T~) . (44)

limited by the associated increase in free energy due to
the lattice strain. At lower temperatures where the
spins are more ordered, the exchange energy is greater,
causing greater distortion and an increased exchange
coupling constant, corresponding to a higher Neel
temperature. This "feedback" results in the magneti-
zation maintaining its low-temperature value until the
temperature approaches the vicinity of the actual
transition point, whereupon the magnetization falls
rapidly to zero. In n-CoSO. & the spin system is in close
contact with the lattice because of the strong spin-orbit
interaction and the large amount of unquenched orbital
angular momentum. Consequently, one would expect
and unusually strong dependence of exchange coupling
parameters on lattice distortion. In addition to the
distortion effects, similar behavior of the temperature
dependence of the spins follows if biquadratic exchange
terms should be included in the Hamiltonian of the
system. 7 Moreover, Harris~ has shown by a Monte
Carlo calculation that anomalous magnetization curves
can result even with quadratic exchange and a rigid
lattice in a case like MnO where there is more than a
single important exchange coupling. This result may
well have implications for the present case.

Finally, we shall brieRy consider the temperature
dependence of the sublattice magnetization or spin
from the point of view of spin waves. "In n-CoSO4 the
anisotropy is large and consequently the energy neces-
sary to excite a spin wave is large ( 20—40 cm ') and
the dispersion is small, i.e., the excitation energy at
k =0 is not too different from that at the zone boundary.
Because the Neel temperature, kT~ 8 cm ', is less
than half this excitation energy, very few spin waves
are thermally excited until the temperature approaches
T~. In this temperature region spin waves should be
excited throughout k space, rapidly reducing the sub-

' D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys
Rev. Letters 11, 10 (1963); 11, 104 (1963).

's E. A. Harris, Phys. Rev. Letters 13, 158 (1964).
~ We would like to thank Dr. A. Narath of the Sandia Cor-

poration for a discussion of this point.

This is the behavior one expects of a canted antiferro-
magnet which can be broken up into pairs of antiparallel
sublattices.

In addition, Pauthenet has found the molar powder
Curie constant, C~=3.12, and the paramagnetic Curie
temperature, 0~= —42'K. These constants are defined
by the high-temperature behavior of the powder sus-
ceptibility curve. At lower temperatures ( 80'K down
to TN) a plot of 1/X„versus T shows that 1/X„decreases
with temperature faster than the high-temperature
straight-line extrapolation, in qualitative agreement
with the behavior expected from our expressions (40)
and (41).

Neutron diffraction experiments have furnished
useful data: the magnetic structure (Fig. 1), the angle
of cant (25'), and the magnetic moment at T=4.2'K
(3.3&0.2 Bohr magnetons). H y is the angle between
the magnetic moment and the single-primed y axis (a
principal axis of the g tensor), then ()+ qr =25'. The
g value in the equilibrium low-temperature configu-
ration (experimentally 6.6&0.4) is given by Eq. (12).
Equations (11) and (13) are also applicable. From Eq.
(13) we see that

gy &6.6.

XI. THE FITTING PROCEDURE

(45)

Within the limits of the present model, the problem
could be considered as solved if it were possible to
obtain numerical values for the parameters of the
Harniltonian (18). A unique solution is impossible for
several reasons: erst, the lack of important experimental
data, and second, the lack of a reliable theory which
might enable us con6dently to relate the Weel tern-
perature and the high-temperature susceptibilities with
the exchange parameters. In view of the complexity of
(18), a useful approach is to make as many approxi-
mations as seem physically reasonable, and then see if
it is at all possible to reconcile different experimental
results using these simplified expressions.

Consideration of Table III and Fig. 4 indicates that
the Co~ —Cos and the Co~—Co4 exchange parameters
are likely to be very nearly equal. LThis is actually true
of the exchange parameters expressed in the crystal
coordinates, and is only approximately true in (18)
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because of the system of axes we have chosen for repre-
senting our Hamiltonian. ) Initially, at least, the intra-
sublattice exchange might be neglected as there is good
reason for thinking that these terms are at least a factor
of 2 smaller than any other terms in the Hamiltonian
(Table III). We are now left with an eight parameter
Hamiltonian.

Using Eq. (38) and the experimental value of the
Neel temperature we obtain

Jo=4&Tv=33.4 cm—'.
Because of the unavailability of single crystals of
o-CoSO4, an unequivocal identification of the observed
lines with the frequencies (23) is impossible. (Studies
using single crystals and polarized infrared radiation
would provide this information. ) If we tentatively
assign &o,, ~„cv&, (Table V) to &o&, cps, and cats LEq. (23)j,
respectively, then using (46) one obtains:

4coi P/(hc) =1697(cm ')
= (33.4+7,-,-i2+2J.-.-")

&( (33.4+J ~ .."—2J ~ -")
4o)PA'/(hc)'= 2580 (cm-')'

= (33.4+J."."—2J.".")
X (33 4+A e i2+2A-" ")

~

4~525'/(hc)' =4956 (cm-') '
=-(334—J - -")(334—J - ")

(47a)

(47b)

(47c)

All the interactions between the cobalt ions are assumed
to be antiferromagnetic except for that between Co~
and Co2 which is taken to be ferromagnetic. Thus, in
the Hamiltonian (18) all the parameters are positive
with the exception of J"which is negative. As the most
direct exchange paths between Co& and Co~ are much
shorter and less complicated than any of the others,
J"is expected to be the largest set of exchange parame-
ters, perhaps by an order of magnitude, although a look
at the basic interactions shows that J" can have both
ferromagnetic and antiferrornagnetic components, the
sum of which could reduce its absolute magnitude. This
choice of interactions also gives the spin configuration
associated with the root given in Eq. (38) the highest
degree of stability since the Neel temperature is then
maximized. Taking cognizance of the remarks above,
we can easily see the diKculty of reconciling the Neel
temperature with the far-infrared results (47) (if the
molecular 6eld calculation is assumed to be valid). The
situation would be somewhat improved if the intra-
sublattice interaction were large and antiferromagnetic;
however, this does not seem too reasonable. Again, if
we assume that distortions are taking place at low
temperatures, then the exchange would have a tem-
perature dependence such as to increase the effective
value of 1N which the system "feels" at temperatures
much lower than the transition temperature. If this is
the case, then it is not valid to use the value of T~

given in (46), but a larger. value which would indeed
aid in the 6tting of Eqs. (47). In order to use Eqs. (32)
for the line intensities in the fitting procedure, we require
more accurate knowledge of the g values and the angle 0.

We can get information about the g values from
measurements of the powder susceptibility

xp Cr/(—T— eI)y—x„. (48)

Above 80'K, Pauthenet was able to fit his data with
C~= 3.12, 0~= —42'K, and X„=0. We have replotted
Pauthenet's data on a plot of XpT versus T rather than
1/xp versus T:

xpT = Cp/(1 —8p/T)+x„T. (49)

This method brings out the temperature-independent
term as the slope of the high-temperature straight-line
fit, with the intercept of the XT axis giving C~. It is
dificult to extract an accurate value of Op for O,-CoSO4
in this type of plot because at high temperatures it is
suppressed, and at low temperatures, the susceptibility
deviates from the Curie-Weiss law due to either the
approach of the Neel temperature )see Eqs. (40) and
(41)j, or due to the depopulation of a low-lying excited
doublet. We have not observed the latter. We find
C~——2.3, X„=0.15&10 ', and 0~ between —10 and
—15'K.

If we take the proper average for a powder sample,
we find

Cp ——Pop'(g'). /4k, (50)

g*'+Ew'+f" = 13 i (51)

which follows from the crystal-field theory )see Eq.
(42)j and is known to be obeyed by many cobalt salts
for which paramagnetic resonance data exist, informs
us that one of the g values, i.e., g„must be much larger
than the other two. From Eqs. (50) and (51), it is seen
that g„must be between 7 and 8 which is in agreement
with the neutron diffraction data. These deductions
are only valid if the nearest excited doublet is sufFi-

ciently high so as not to contribute to the suscepti-
bility in the temperature region where Pauthenet's
data were fitted.

It must unfortunately be concluded that it is im-
possible to deduce meaningful values for the parameters
in this problem with the present limited experimental
data. It is hoped that the growth of single crystals in
the near future will enable further progress to be made.
The availability of single crystals would permit the
definite identification of the modes; static suscepti-
bility measurements will yield the three x's at T=O

where Eo is Avogadro's number,

(s')-= 3 (c*'+a"+a*'),
and k is the Boltzmann constant. Solving gives

(g, '+g„'+g, ')=74, taking C~——2.3. This, together
with the constraint
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LEqs. (33)j, the three z's at T= T&, the three high-
temperature Curie constants C, and the three YVeiss

constants 8p PEqs. (39)—(41)j.These data would trans-
form the situation and make possible a meaningful fit.

XII. CONCLUSION

By analyzing the magnetic properties of n-CoSQ4 it
has become apparent that an exchange interaction
isotropic in the true spin is quite inadequate to describe
this problem. The fact that in an octahedral environ-
ment, cobalt has a degenerate orbital triplet results in
its orbital angular momentum remaining largely un-

quenched by the crystalline 6eld. Octahedral distortions
can give rise to large anisotropic exchange interactions,
the source of the anisotropy being the spin-orbit inter-
action. By considering the system in terms of the
6ctitious spin of —„we have seen that the anisotropic

g tensor can give rise to additional effective anisotropic
and antisymmetric exchange. Use of the isotropic fic-
titious spin enables one to analyze easily the dynamical
and static properties of the crystal, as compared to the
difhculties that would be encountered if one attempted
to approach the problem in terms of the true spins or
magnetic moments. In addition, our method of writing
down the Hamiltonian and using a system of non-
orthogonal axes seems to be a useful technique for this
and other problems. This same approach is used to
treat the four-sublattice noncoplanar canted anti-
ferromagnetic P-CoSO4 in work now in preparation.

Experimentally the far-infrared studies have yielded
valuable information about n-CoSG4 and a far-infrared
mode whose existence is due to the spins being canted
has been observed.

The impossibility of reconciling the Neel temperature
and the resonance frequencies using a molecular field
model is apparent. As was explained in the last section,
some sort of progressive distortion and a temperature-
dependent T~ could possibly be responsible, and x-ray
determinations of the crystal structure at helium tem-
peratures would be of great interest. An additional
explanation is the inadequacy of the molecular 6eld
method. Even in simple cases this approximation is

known to be inadequate. A proper treatment of the
o.-CoSQ4 system allowing for the effects of long- and
short-range order and anisotropy might aid in removing
these discrepancies, and also give the observed tem-
perature variation of the resonance frequencies.
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We would like to 6nd the temperature dependence
of s with the Hamiltonian

with corresponding eigenfunctions

I a) =cospl+)+»npe"
I

—
&,

] b)= —sin&p)+&+cosine@'~ —
&,

where
tan2y= (c 2+c„2)um/c„

tang = cy/c~.

We then evaluate

(s,&r
——2 (mls lg&e~""r/ p e '&~~~

j=a, b j=a, b

to 6nd
(sg&r= ——,

'- cos2q tanh(e/kT),

(s &q ————., sin2y cosP tanh(e/kT),

(s„&r —', sin2 &p sing tanh——(e/k T) .

In the limit e/kT«1, these all reduce to

(s;&p= c~/4kT, i=x, y, s. —

K= C+g+CySy+CgSg.

Using the Pauli spin-~ matrices, we diagonalize the
Hamiltonian to find energy eigenvalues:


