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Finite-Mass Helium Atoms. I. The 2 'P State*
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The 2 P states of the helium isoelectronic series are investigated via 50-term variational wave functions
containing two nonlinear parameters. The Hamiltonian, spin-free and nonrelativisitic, is written directly in
center-of-mass coordinates so that no adiabatic approximation is required. The expectation values of the
Hamiltonian and of moments of the interparticle separations are reported. Isotope shifts are found and, as
noted in a preliminary report, are in excellent agreement with experiment. In order to compare the results
with previous theoretical results, the systems were similarly studied in the infinite-nuclear-mass limit
(adiabatic approximation). The energies so obtained are the deepest thus far obtained by a direct calculation
with a variational wave function. The expectation values of the operators were subjected to a differencing
process to obtain estimates of the perturbation expansion coeKcients for them, and the results are in good
agreement with the directly calculated results of Knight and Scherr.

I. INTRODUCTION

'HE theoretical treatment of the I" states of the
two-electron atom has been a subject of interest

in the quantum mechanics that starts with the pioneer-
ing work of Breit' and continues down to the present,
e.g., in the work of Pekeris, Schiff, and I.ifson. ' These
investigations have always used an infinite-nuclear-
mass approximation and have attempted to account for
the actual motion of the nucleus by some perturbation
technique such as was developed by Hylleraas' (Ryd-
berg constant correction) and by Hughes and Eckarte
(first-order mass polarization correction). For many
purposes, this is an entirely adequate mode of procedure.
However, occasionally difhculties arise. For example,
certain isotope shift effects are too small to be handled
by these techniques in first order. 5 Also, there are
systems where the masses of the particles are more
nearly equal than in ordinary atoms, for example, in the
tt-mesonic isotopic hydrogen molecule ion' P+tt d+, or
in the interesting but so far hypothetical~ system of two
electrons and a positron, e e+e . In such systems, the
above procedures are obviously inappropriate. Success-
ful attempts to dispense with the infini. te-mass approxi-
mations have now been made by a number of investi-
gators, usually for states of zero angular momentum.

Scherr and Machacek' have made extensive study of
systems of three Coulombic particles possessing unit
angular momentum in which the mass dependence was
rigorously and completely taken into account. Their
computer programs have been used here to investigate
in more thorough detail the 2 V' states of the helium
isoelectronic series.

Knight and Scherr"" have investigated the I' states
of the helium isoelectronic series by a Schrodinger
perturbation procedure. This procedure, as is well

known, presents a wave function as an expansion in
powers of the perturbation expansion parameter —in
the helium atom case, inverse powers of the nuclear
charge Z. Thus,

Consequently, expectation values of operators are also
obtained in a power series in Z '

d.en+ ==(n) =pz.--(n).. .
where the value of e depends on the nature of the
operator Q. The 4 is assumed to be real and to be nor-
malized for simplicity. In particular, the expectation
value of the Hamiltonian is the total energy-

It is possible" "to obtain estimates of the leading coeffi-
cients in Eqs. (2) and (3) from the results of a series of
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TABLE I. The energies in reduced atomic units. '

Isotope (m/bf) X 104

He'
He4

Li
Li'
Be'

10

11

C12
C13

N14
+15
016
017
018
Flo

Ne"
QTe21

Qe22

1.8192
1.3706
0.9126
0.7821
0.6089
0.5480
0.4984
0.4573
0.4220
0.3919
0.36585
0.3431
0.3228
0.3049
0.2888
0.2745
0.2614
0.2495

E(true mass}

—2.12383358—2.12383565
—4.99332659—4.99332987
—9.11073181
—14.4772178—14.4772236
—21.0932455+—21.0932520
—28.9590082—28.9590152
—38.0746055—38.0746130—38.0746196
—48.4401009
—60.0555039—60.0555120—60.0555194

E(infinite mass)

—2.12384195+

—4.99334951

—9.11076965

—14.4772810

—21.0933298

—28.9591137

—38.0747323

—48.4402412

—60.0556735

a Reduced atomic energy units are in units of pe45~. I.et m be the mass
of the electron and M be the mass of the nucleus, then the reduced mass,
p =mM/(M+m). For the infinite-mass systems p, =m, and the rydberg is
the familiar infinite-mass rydberg.

'4 At first, it might seem more reasonable to optimize for the
real, physical systems, and use the thus obtained values for the
artificial, infinite-nuclear-mass systems. However, the infinite-
nuclear-mass systems serve as a sort of surveyor's bench mark on
which everyone can base his work for comparison. Aside from
being independent of future improvement of the experimental
mass determinations, the choice of the infinite-mass systems also
begs the issue of which nuclear isotope to consider.

variational calculations by a procedure referred to as a
"diGerencing technique. " These estimates have been
obtained from the results reported here, and the com-
parison with the perturbation results of Knight and
Scherr indicates that their first-order results" are good;
no conclusion can be made about their higher order
results. Both the work. of Knight and Scherr and the
coeKcient estimations made here deal with wave func-
tions constructed in the infinite-nuclear-mass approxi-
mation. For the perturbation approach to be applied in
the true mass calculation, the systems (i.e., He, Li+,
Be~, etc.) all would be required to have the same
nuclear masses. In this way, most of the systems studied
would be just as artificial as the infinite-nuclear-mass
systems.

II. PROCEDURE

The wave function employed by Scherr and Machacek
has already been brie6y described, ' and a more thorough
report will soon appear. ' Aside from being an eigen-
function of the angular momentum, it is a 50-term
expansion with an exponential factor containing two
nonlinear parameters. These nonlinear parameters were
carefully optimized for the systems with infinite nuclear
masses. These same nonlinear parameter values were
then used in the variational calculations for the systems
with the true nuclear masses. " (The 50 linear param-
eters were, of course, determined each time via the

TABI.E II. Isotope shifts.

System

He
He4

Li'
Ll
B10
B"
/12
C13

N15

017
016
018
Ne21

e20

Ne22

Rydbergs

109717.345
109722.267
109727.295
109728.723
109731.296
109731.840
109732.291
109732.678
109733.009
109733.294
109733.767
109733.544
109733.963
109734.44i
109734.297
109734.571
109737.309

Shift (cm ')a

1.673+0.005

2.127+0.006

3.41 ~0.05

3.82 ~0.06

4.08 %0.06

4.36 &0.07
8.19 &0.07

4.66 &0.08
8.90 &0.08

a The error estimate is based on the assumption that the pertinent entries
in Table I and the rydbergs listed in this table may each be in error by so
much as one unit in its last recorded digit.

TABx,z III. The e„ in atomic units.

2
3

5
6

Recovered here'

—0.157023
0.02606
0.0061—0.0061—0.006

Knight and Scherr

—0.15702123b
0 02612431b
0 0060456ic
0 00442904c—0.00477658'

a The Z =2 value not included in the analysis. The last digit reported is
to be regarded as unreliable.

b Data from Ref. 10.
e Data from Ref. 11,not to be regarded as definitive values.

"For the choice of nonlinear parameters fs,bg, four additional
points pa, b(1&6)g and Lo(1&6),bg were computed, where the
6's were some value between 0.001 and 0.00025; except for the
He and Li+ systems, of the five points computed the central
set, i.e., the values Lo,b], was the deepest also in the true mass
calculations.

ordinary secular equation procedure. ) The reliability
of retaining the infinite mass nonlinear parameter
values was checked for all the true mass calculations by
varying the nonlinear parameters slightly. "The value
of the lowest energy found for each value of Z is dis-
played in Table I for both the inhnite-mass calculations
and for the more common or stable isotopes of the
atoms with nuclear charges from Z= 2 to 10. Scherr and
Machacek found' for the three-body systems they
studied (two particles identical) that when the charges
were all equal in magnitude no stable symmetric state
('P) existed for any mass ratio. Thus, II has no stable
'I' state. The isotope shift effect' data as well as the
appropriate Rydberg values used in their evaluation
are also entered in Table II.

The diGerencing technique to recover the perturba-
tion expansion coefFicients implicit in the expectation
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TABI.E IV. Recovery of (Q)0 and (Q)1.

Qperator

Recovered' (0)0

Exact (n),
Recovered' (0)i
Knight and Scherr" (tt)q
Relative error of the

recovered (O)o
Relative error' of the

recovered (0)&

0.25986
0,259869—0.31419—0.314042—0.000042

0.00047'

5.107
5.1082
5.661
5.5945

--0.00026

0.0118

31.76
31 890.
71.84
67.939—0.0040

0.057

0.62503
0.625—0.13069—0.129932
0.000042

0.0058

3.250
3.25
2.721
2.6939—0.00011

0.0102

16.44
16.5
34.29
32.339—0.0038

0.060

& The Z =2 and 3 values are not included in the analysis. In general the last two digits are shaky.
b Truncated (i.e., not rounded) from the data of Table III of Ref. 10.
e That is, under the assumption that the Knight and Scherr results are the correct values.
d Cf. footnote 19.

values was first applied to Es(Z), defined by

Es(Z) =E(Z)+ (5/8) Z' —(1705/6561)Z,

for Z from 3 to 10 inclusive. The root-mean-square
(rms) error estimates for the first few coeflicients re-
covered were judged to be as good as could be expected,
and no further refinements were tried. The results are
shown in Table III. The differencing technique was also
applied directly to the total expectation values of the
moments of the interparticle ordinates.

III. DISCUSSION

A. Nonlinear Parameters

Variation of nonlinear parameters is a vexatious
procedure, not only because of its time consuming
nature, but also because of the nature of the energy
surfaces that are developed. Multiple minima abound,
and relatively sudden variations, particularly near a
minimum, occur. The task in the present instance was
somewhat simpli6ed because of the features common to
all the surfaces studied. However, as systems of higher
and higher Z were studied, the smooth trend of be-
havior of the paiameters was interrupted due to the
growth of former secondary minima to the status of
true minima. In fact it is possible that the absolute
minimum for one or another of the atoms has actually
been missed, but it is felt that the energies reported
here, if they are indeed not the absolute minima them-
selves, could not differ from the absolute minima by so
much as 5 in the eighth significant figure. Since the
reported energies probably di6er from the exact eigen-
value in the sixth or seventh decimal place, this is
satisfactory minimization.

B. Comparison with Pekeris, Schiff,
and Lifson

Pekeris, Schi8, and Lifson' employed a 220-term
variational wave function in a study of the 2I' and 3I'
states of the helium atom. Their energy result" for the

"Pekeris, Schiff, and Lifson also present "extrapolated"
results which should be very accurate. These are, for the 2'P
state, —2.1238429 a.u. , and for the 3 'P state, —2.0551460' a.g.

(infinite mass) helium 2'P state is —2.1238414 a.u.
(atomic units). The deeper energy of the 50-term wave
function is to be attributed entirely to the fact that
Pekeris, Schiff, and I ifson preselected their nonlinear
parameters. It was not possible to use their parameter
values in the 50-term wave function, as they lie in a
region of parameter space inaccessible to the computer
program as written. The extrapolation for infinite Z of
the optimized parameters found for the 50-term wave
functions is not clearcut because of the facts noted in
Part A of this section; they extrapolate approximately
to 1.005Z and 0.64Z, and the Pekeris, Schiff, and I ifson
values to Z and 0.5Z, correspondingly. As th, ose authors
point out, the latter value, 0.5Z, is necessary to ensure
correct behavior at large distances.

An observation that may have bearing on the con-
struction of excited state wave functions concerns the
quantitative inferiority of the 3 'I' level obtained
in this note compared to the 220-term value. This
latter is —2.0551375 a.u. , and the 50-term value is
—2.0537433 a.u.

C. Recovery of Perturbation Energy
CoefBcients

The Scherr and Silverman analysis" of the Pekeris
extrapolated results' for the ground-state energy
values of the helium isoelectronic series later received
an unexpected substantiation via a comparison with
directly computed higher order coefficients. Seven
decimal places of e2 and six of e3 were shown to have
been obtained correctly by their differencing procedure.
The e4, e5, and e6 values had disagreements in the sixth,
fifth, and fifth decimal places, respectively. If analogous
results can be expected for the recovered e; of the present
note, then the e5 and f6 values are to be expected to be
shaky in the third decimal place. Thus, only a qualita-
tive agreement is established between the two sets of
data in Table III.

D. Recovery of the (Q)„
Since the (Q)o values for all the operators considered

are known, these were removed from the data before
"C. L. Peimris, Phys. Rev. 112, 1649 (1958);115, 1216 (1959).
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instituting the differencing analysis. However, as a
check, and as a means of getting the "feel" of the data,
the raw data were also analyzed. As a general result, the
best agreement with the exact (Q)s and with the (Q)i of
Knight and Scherr was obtained when the Z equals 2
and 3 results were not included' in the differencing
process, and the tabulated results are accordingly based
on the Z equals 4 through 10 values only. The results
are shown in Table IV (recovery of (Q)s and (Q)i) and
Table V (recovery of the higher coefficients after
removal of the exact (Q)s). In the tables, r is the electron-
nucleus separation and I is the electron-electron separa-
tion. It is comforting to note that in every case but
one," after removal of the exact (Q)s, the recovered
(Q)i are in closer agreement with the (Q)i values of
Knight and Scherr than the (Q)i entries of Table IV.
The associated rms deviations either remained essen-
tially the same or improved slightly.

The variational procedure tinkers most effectively
with an approximate wave function in the "energy"
region of configuration space, that is, at interparticle
distances of the order of 1 a.u. These distances are more

TABLE V. Recovery' of the (n)„.

(n)o

5/8
13/4
33/2

1705/6561
67031/13122

1883081/59049

(n)z

—0.13032
2.714

32.96—0.31434
5.633

69.2

(n),

0.0047
2.300

37.3
0.0829
4.41

75.2

a The Z =2 and Z =3 values were not included in the analysis of the data.
In general the last two digits are shaky.

' The result is to be expected occasionally and is a consequence
of the nature of the difFerencing technique. If time permits it is
planned to return to this problem.

"The somewhat anomalous results obtained with (I ')z are
presumably referrable to the fact that (zz ')z =2zz.

important for evaluating operators of the form r-' than,
say, r'. These latter depend more sensitively on the
description at larger separations. This consideration ac-
counts easily for the much superior recovery of pertur-
bation coefficients from the (zz ') and (r ') data than
from the other (Q). This superiority may be seen at a
glance from the relative error entries in Table IV. These
same data also sh, ow that the ease of recovery from the
(I) is about the same as from the (r), and from the (u')
about the same as from the (r').

E. Isotope Shifts

The isotope shifts for Z equals 2 and 3 calculated in
this note have already been discussed elsewhere. ' ' The
results for the isoelectronic series, presented in Table
II, can be roughly fitted to an expression whose leading
terms are

shift(cm ') =4.3'/X104Z'zzzp '(1—1.85Z '+ .)
where p is the magnitude of the difference of the recipro-
cal masses of the two nuclei involved and m is the elec-
tronic mass. If the shift is calculated from a simple,
properly symmetrized, product wave function of the
type considered by Hughes and Eckart, ' but using the
Pekeris et al'. ' prescription for the orbital exponents,
then the result is

shift(cm ') =4.45&(10 Z'mlz '(1—2.21Z '+ .)
Similar calculations have been started for the 'I'

states of the helium isoelectronic series.
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