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Ke prove some general addition theorems for certain matrix elements which involve hydrogen-atom wave
functions. In particular, if f„r (q) is the Fourier transform of the hydrogen-atom wave function with quan-
tum numbers n, l,nt, then if„r (q) i' summed over all l and nt for a given n is equal to 2'mac 'n '
X (g'+as 'n ') ', where ao is the Bohr radius. Two applications of the theorems are given. Firstly, we con-
sider charge-exchange reactions of the type H++H(nilinti) ~ H(n4l~m4)+H+ and use our general theorems
to obtain for the cross section for reactions proceeding from the initial atomic state nI to the anal state n2 an
expression which is both simple and fully exact (in Born approximation). Secondly, we indicate how the
theorems may be applied to get simple expressions for the cross sections for ionization of excited hydrogen
atoms by various processes.

f„,„(q)= dr@„r (r) exp(iq r),

where n, l, m are the usual H-atom quantum numbers.
Such expressions do not often occur in physical con-
texts, matrix elements containing two atomic wave
functions being more frequently met. However, (1),
and the related function g(q) defined below, can occur
as the matrix elements in charge-exchange problems,
and in expressions for cross sections for ionizing excited
H atoms.

ln Sec. 2 we prove the following useful theorem:

n—1 l

Z 2 If-r-(q)l'=
l-0 m=l n' (q2+Xsn ')4

(X is the inverse of the Bohr radius). Physically, the
simplicity of this and allied results may be expected
from the remark that the wave functions p„r (r) form
a complete set with respect to square integrable func-
tions' (although in Hilbert space one must add to
{p r ) the free-electron Coulomb wave functions to
complete the set). It is then reasonable to expect that
the angular part of the completeness (which is the part
involved in summing over / and sn) will lead from the
left-hand side of Eq. (2) to a simple expression in n and

q. The rigorous proof in Sec. 2 follows these lines.
Equation (2) is a special case of a more general

relation which may be proved for

n—1 l

Z f.r (q)f.r *(q').
l~0 m~l

(3)

i. INTRODUCTION

' "X this paper we consider some addition theorems for
~ ~ the Fourier transform of the simple H-atom wave
function p„r,

by use of the relationship (28). For example, use of
(28) gives immediately,

n-1 l

Z Z lg-r-(q)l'=
l-0 m—l

24~&3

ns (rt2+)Pn-2) 2

The matrix elements f(q) and g(q) are the only ones of
interest in the physical contexts which prompted the
present investigation: however the technique used in
Sec. 3 to relate f(q) and g(q) can be extended to
generate other related matrix elements, for which the
analogs of Eqs. (2) and (24) can then be obtained.

In Sec. 4 we outline two applications of the addition
theorems.

Firstly we consider charge-exchange reactions of the
type

H++H(nrlrrrtr) —+ H(nslsnts)+H+.

This more general result Lsee Eq. (24)j can be ex-
pressed in terms of TschebyscheG polynomials. Results
such as (2) for functions like i fnr~(q) is summed over /

and m are useful in evaluating cross sections, while
results for the summand if„r (q) fur (q') i

serve in the
evaluation of transition probabilities for individual
impact parameters. '

Results for the sum over the quantum numbers m
only (sn= l to +—l) for the summand i f(q) f(q') ) and
the special case i f(q) i2 are also obtained en route in
Sec. 2.

The above discussion, and that in Sec. 2, have been
given for the Fourier transform of the H-atom wave
functions, f„r (q): in Sec. 3 we show how any ex-
pression for f(q) can be trivially converted into an
expression for the matrix element

dr
g.r-(q) =— —4.r-(r) exP(tq r)

'See, for example, R. Courant and D. Hilbert, Methods of
Mathematical Physics (Interscience Publishers, Inc., New York,
1955), Vol. I, p. 95.

~ The sum over all impact parameters which leads from indi-
vidual transition probabilities to total cross sections introduces a
factor b(q —g').
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exp(iq r) =P i'(2l+1) jt(/Jr)Pt(cosb)
l~0

together with the addition theorem for spherical
harmonics,o ((tt t}i tts)

~e sum over the final-state quantum numbers l2 and YVe then use the standard expansion
m2, and average over the initial quantum numbers l&

and mi, to get the total cross section for reactions pro-
ceeding from the initial atomic state n~ to the final
state e2.'

ey,—1 lg

~(tttlttli j ttslstms). (7)
+1 ly 0 m1 l1 lm 0 Ng2 lg

(Nis is the total degeneracy of the state with principal
quantum number Ni.) The resultant simple expression

(37) for o ((Ni) ( Ns) is fully exact in Born approximation.
Previous work in this field comprises calculations of
o (1 ( ttsls) for Ns & 4 s and approximate results for
ts&)1,~~ together with numerical calculations of
o (20

~
ns0) and o (60

~
tts0) for all tts. s LThere is, of course,

extensive work on the special case of 1s—1s transitions,
~(1l1) j

As a second application, we consider the ionization of
H atoms by various rnechariism, namely collisions with
massive particles (ions and atoms) and photoelectric
ionization (again in Born approximation). The cross
sections for such processes contain matrix elements of
the form (1).Particularly when the H atom to be ionized

is in a highly excited state, the present theorerns are
seen to lead to simple expressions for the cross sections.

(2l+1)Pt(costi) =4s Q Fi (eris) Ft„*(0',y'), (12)

where 0, P are the polar angles of q, and 8', g' those of r,
referred to some fixed axis. Equation (1) for f„t (q)
now reads

The orthogonality relation for spherical harmonics,
together with the addition theorem (12), now leads
directly from (13) to

Z j.t-(q) j-t *(q')=4 (2i+1)I-t(C)
m=l

&(I„t(q')Pt(cosg), (14)

where p is the angle between the vectors q and q', and
I(/t) ls tile liltegral

2. THEOREMS ON f / (q)
I„t(q)= r'drj t(qr)R.„/(r)

Ke now proceed to evaluate the sums over ns, and
over 1 and t/t, of the function f«~(q) f„t„'(q').

We begin by writing down the wave functions for
the simple H atom:

(tt—i—1)! i»

(st+i)! (st+i)!
go+2~—s/2

2)P/s (tt i 1) I
/s— —

E.t(r}=
(st+i)!n2

gle x/2

„+,( ) (g)
s is defined by

(st+i)!

Xjt (s&/2)L t ts'+'(x}/Ex. (15)

s= ttq/X.

exp( —xt/(1 —t)) t'L, +s'(x)
=Z

'-e (i+2l+1)!(1 t)st+2

e D. R. Bates and A. Dalgarno, Proc. Phys. Sec. (London) A66,
972 (1953).' J. R. Oppenheimer, Phys. Rev. 31, 349 (1928).

'S. T. Butler, R. M. May, and I. D. S. Johnston, Phys.
Letters (to be published).' S. T. Butler and I. D. S. Johnston, Nucl. Fusion (to be
published).

s R. M. May, Nucl. Fusion (to be published).
~ J. R. Hiskes and M. H. Mittleman, U. S. Atomic Energy

Commission Report UCRL-9969 1962, p. 128 (unpublished).

where for convenience x is defined by

x=—2) r/N.

X is the inverse Bohr radius, X= 1/as=erne'/t'ts, and the
l,aguerre polynomials are defined by the generating
function

The integral in (15) may be expressed in terms of
Gegenbauer polynomials as'

8(2w)'/'~(e+l)!
e z/sect+2 j (sz—/2)I st+I (&)

0 (s'+1)'

2s
X

s'+1
t t'+'I ~, (17)

where T;o(y) is the Gegenbauer polynomial, defined by

9 This expression may be obtained straightforwardly by use of
the generating functions (10) and (18) for the Laguerre and
Gegenbauer polynomials together with the integral.

g ~+~yg(ar) exp( —br)dr=2~1!a~(a&+y)
0

See also H. A. Bethe and E. E. Salpeter, Quaetlm 3fechalics of
One astd Two Etectross A-toms (Acade-mic Press Inc., New York,
1957), p. 39.
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the generating function

Z ~'T'2(y)
(1+8—2~y)l+~ r(P+-,');~

T42(y) are just the Legendre polynomials I';(y), and
T,il2(y) are Tschebyscheff polynomials.

Introducing the notation

T~ii"(1)= (2/2r)'"I (25)

leads to Eq. (2), namely

where 8 and 8' are given in terms of q and q' by the
definitions (16) and (19), and $ is the angle between

(18) the directions of q and q'.
Finally, in the special case when q=q' we have 8= 8'

and &=0 which, together with the fact that

s' —1 (s')' —1
cos8=— ; cos8'—=

22+1 (2')'+1

n—1

P P lf-l-(q) I2=2'~n'/! 2(22+1)4 ~

l-0 m—l

and consequently

2s'sin8=; sin8' =
s'+1 (z')2+1

we may use (15) and (17) in Eq. (14) to write

The above Eq. (24), which is relevant to certain
impact parameter calculations, seems to be rather

(20) complicated in the general case (cos8cos8'+sin8sin8'
&(cosg is not a simple function of q and q'); however,
for small n the equation is simple, and for large e
asymptotic forms may be employed.

2'll n4(2l+1)
fnlm(q) f.i~*(q') =

m~l g2 (22+ 1)2(s'2+ 1)2
3. THEOREMS ON g„l (q)

For the physical applications we have in mind, we
need not only f„l (q) but also the matrix elements
g~l~(q) defined by Eq. (4). A relation between f„l„(q)
and g„i (q) involving only q and n may be obtained
directly from the Schrodinger equation for the H atom.
In three-dimensional form, the wave equation for an
eigenvector with principal quantum e reads

(42—l—1)!
(sin8 sin8') '

(I+l)!
)& T 4 2'+&(cos8) T l i'+'*(cos8') T42(cosp) . (21)

Putting q=q' implies 8=8' and /=0, so that we have
as a special case —~'4 -()—(2~/)4- .()=—(!~'/ ')4- () (27)

l 242r2N4(21+1) (22—l—1) 2S
2 lf-l-(q)l'=

m=l g2 (z2+ 1)4 (I+)) ! 22+1

X T' ~i'+~
(28)(q2+l~'22-2) f„l (q) =2!~g„l„(q)

Taking the Fourier transform of this equation with
respect to q, and using the fact that p„i (r) vanishes at
in6nite distances, we get

(22)

which could be useful in some physical contexts. We
proceed to the much simpler expressions obtained on
summing over /.

An addition theorem for Gegenbauer polynomials
states thatm

n—1

P (2l+1)t (n —l—1)!/(I+l)!)(Sin8sin8')'
0

)(T~ l i+ (cos8)T~ l i (cos8 )Tl (cosg)

=(2/2r)'l'T 2'l'(cos8cos8'+sin8sin8'cosp). (23)

Using this in (21) leads to the result

n—I 2'ir's'
Z Z f-l-(q)f-l-*(q')=
t=o m=i ~2(2~)'l2

X T~ i (cos8 cos8
("+1)'((")'+1)'

"

+sin8 sin8' cosg), (24)
'0 P. M. Morse and H. Feshbach, Methods of Theoretical Physics

(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
p. 784.

with f(q) and g(q) defined by (1) and (4).
Thus each of the addition theorems (21), (22), (24),

and (26) may be converted to the corresponding equa-
tion involving the functions g(q), since the conversion
factor Lnamely (s2+1)/222] is dependent only on the
principal quantum number rI, and the modulus of the
vector q.

A family of other matrix elements may be related to
f(q) by multiplying the Schrodinger equation by powers
of r before performing the Fourier transform: for ex-
ample multiplication by r-' leads to

dr iq r—4f „i (r), 1— exp (iq r)
r2

""
l )r

(V'+&'n ')'f l (q) (29)
4X'

Addition theorems corresponding to (24) and (26) are
then obtained for these ielated matrix elements; how-
ever, since we have no application in mind for these
functions we shall not consider them further.
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4. SOME APPLICATIONS

In this section we consider two applications of the
general theorems (2) and (5) which have been proved
in Secs. 2 and 3.

Firstly we consider charge-exchange reactions of the
type H++H(ttilimi) ~H(zts4ms)+H+. For such re-
actions proceeding from the initial H-atom state e&l&m~

to the final state n2l2m2 we can write the cross section
in Born approximation as"

cr(rtifimi j Nslsms) = (2zrp) '
dgedg„~ fi(g) ~'

p(p, tt„rts) is defined as

1
t

1 1 1 1~'
P(p» )= — p'+2p'I —+—+ ——

I (36)
4p' Ertis Nss nis ttss)

The integral in (35) is trivial, and we thus get for the
cross section in Born approximation the fully exact
result

2' 1
o((tti)

~
rts) =zrao'--

5rtisrts' p'p'

For the special case where the initial H atom is in
the ground state (tti=1, ii=0, mi=0), Eq. (37) yields

where the proton mass has been taken as infinite, and

p is the (dimensionless) speed of the incident proton
relative to the target H atom:

28
o (1~ ns) =zrao'

5Ns' p'(n(p, ms) }' (38)

p—=As/e'.
with zr(p, rts) given by the appropriate specialization of

(31) (36) .

The proton has been taken incident along the 2' axis,
and the vectors q and Q consequently have components

( —
1 1)-)~)

a=I v*,q. p' ——,——,I —
I,

ttP rt,si 2pi'
(32)

(33)

We also note the identity"

g2+$2/zt 2 —Qs+k2/zz 2 (34)

The matrix elements f(q) and g(Q) in (30) are, of
course, just those defined by Eqs. (1) and (4) above.

If we now sum over the final-state quantum numbers
l~ and m2 for a given e2, and average over the initial
quantum numbers l& a»d m~ for a given e&, we can
immediately make use of the theorems (2) and (5) to
write

28y8

cz(p, ns) = p'+2p' 1+—I+ 1——
4ps ~,si ~,s

= f (p'+1)/2p)' for its)&1. (40)

e'kk '
z(rlrtm~k) Qd= dry„t~(r)e'&' dQ, (41)

2g mccoy

For a second application of our theorems, we con-
sider the ionization of H atoms both by the photo-
electric process and by collisions with ions and atoms.

Suppose we have a H atom, with initial quantum
numbers e, l and m, which is to be ionized by photons,
with energy Ace, incident along the s axis and polarized
with their electric vector along the x axis. We assume
that the final state of the electron can be written to
sufhcient accuracy by the plane wave P(r)=L "'
)&exp(ik r) (this corresponds to Born approximation).
Then for the differential cross section we can write the
standard result"

o((ni)
~
zzs) =

p'ttisttss (tf*'+tfo'+) 'P)'

k' = 2mzo/ttt —X'/rts. (42)

(35)
where the modulus of the final-state wave vector k is
given by

This total cross section is defined by Eq. (7), and

"See Refs. 3 or 4. We have written Eq. (30) in the form in
which it appears from an alternative impact parameter calcu-
lation given in Ref. 6. Such an impact parameter derivation was
first given by J. A. Gaunt t Proc. Cambridge Phil. Soc. 23, 732
(1927)g in a ditferent context. The identity between such impact
parameter calculations and the usual Born approximation has
been rigorously established by J. W. Frame L'Proc. Cambridge
PhiL Soc. 27, 511 (1931)j. For an excellent summary see T-Y.
Wu and T. Ohmura, QNarztlnz Theory of Scattering (Prentice-Hall,
Inc. , Englewood ClifFs, New Jersey, 1962), Sec. M.

12A general symmetry theorem for rearrangement collisions
Lsee for example M. Gell-Mann and M. L. Goldberger, Phys. Rev.
91, 398 (1953)j asserts that in the expression (30) for the cross
section it does not matter whether we take

~ fz(q)gz(Q) ~
or,

instead, ~gi(q)fz(0) ~. From the relation (28) between f(q) and
g(q) together with (34) we can understand the bookkeeping in
this symmetry theorem.

The vector g in the matrix element is given by the
analog of Eq. (32) for this problem:

(43)

x is the wave vector of the photon, having modulus
co/c and directed along the s axis.

If we wish to find the average cross section for
photoelectric ionization of H atoms with a given initial
principal quantum number e, we average over l and m.

"See, for example, L. I. Schiff, QNarztzznz Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), p. 273.
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Noting that the matrix element in (41) is of the form

(1), we may use theorem (2) to write the average
differential cross section

o((n) Ik)do=
32e9 'kk~'

(44)
n2cp&n' {(24—k)2+Xpn 2)4

The total cross section. is found by integrating over
angles for k and is

Av/e2) 1/n. (46)

128m e'X'
o ((n) I k) =— (45)

3n2C(dnr) {(Xpn 2+$2+ K2)2 —4/2@2)2

with A2 given in terms of 4o and n by Kq. (42). The
Born approximation will be valid so long as the in-
coming photon frequency is large compared to the
initial characteristic frequency of the atomic electron:
Using (42) this criterion can be expressed in terms of
the speed of the outgoing free electron (n2v—=Ak) as the
requirement

V(r) = e2/r; U(q) =4rre2/q2

and if it is a H atom in the ground state,

(51)

U(r) =—e'
I
0'»p(R) I'

r Ir—RI

V (q) = 47re2 (8X2+q2)/(4)). 2+ q2) 2.

(52)

We see that (48) contains a matrix element of just
the kind defined by (1). If we average over all I and n2

for a target H atom in the given excited state e, we

may use our theorem (2) to get;

the electron energy difference,

ro 2/v= —(X2n—'+02)/2Xp, (50)

with p defined by (31). V(r) is the interaction potential
between an electron and the passing particle when they
are separated by a distance r, and U(q) is the Fourier
transform of this potential: for example if the ionizing
particle is a proton,

In the limit where the initial atom is in a highly excited
state I and in general so long as (46) is strongly fulfilled),
we may simplify Eq. (45) to read

24&5

o ((n) I k) =
7rL'(Av)'n'

de(V*+~-2/v) I U(q) I'

)& {X'n '+ (q—k)') —'. (53)
256n nX)"" 1

o.((n) I k) =prap2 —
I
—,(47)

3n' 2)rJ (1—n)r/2X)'

o (nln2Ik) =
(22r Av) 2L2

dql &(q) I'

where n is the fine-structure constant, n=e2/Ac. Equa-
tions (44), (45), and (47) are well-known results in the
most interesting case when the H atom is initially in
its ground state, m= i.

We next consider the case where the H atom is
ionized by collisions with massive particles (massive in
the sense that their mass may be taken to be infinite
compared to the electron mass).

By means of an impact parameter calculation similar
to that performed in Ref. 6, we get an expression" for
the cross section for ionization of a H atom (initially in
the state n, t, n2) by bombardment with massive par-
ticles (incident parallel to the s axis and with speed v

relative to the target atom):

o ((n)I free) =
7r4 (A V)'n'

dk de (q,+ro.2/v)

X IU(q) I'{)"-'+(q-k)')-'. (54)

The special case of target H atoms in the ground state,
m=1, is of course well known for all physically inter-
esting interactions V(r).

Our expression (54) also leads to a particularly simple

expression in the limit n))1 provided that V(q) is
regular and square-integrable. LOur exemplifying po-
tential (51) is not regular at the origin, but (52) is both
regular and square-integrable. j In this limit we notice
that because of the last factor in the integrand in (54)
we must have IkI = IqI up to order 1/n', so that (54)
can be written as

If we now compute the total cross section for ionizing
collisions, by integrating over all final states k Lusing
the density function p(k)dk= (27r) 2Lpdk), we get an

expression which in general will be reasonably tractable:

+00

X—
2Ã

ds exp{22(Co))2/v gz)) ) (48)
(( ) I

f ) @Iv( ) I2]( ( 2/2~ )) (55)
(22rAv)'

U(q)= dRU(R)e')4' dry ( (r)e4«k) r

Again the final state is represented by plane waves
with wave vector k (i.e., Born approximation): A4o„2 is

We have neglected all terms of relative order 1/n',
which will be permissible in the lixnit e&&1 provided

V(q) satisfies the conditions required above. Equation
(55) can be written in simpler form as

"This is a simple generalization of the expression given by XVu
and Ohmura LRef. 11, p. 225, Eqs. (M56) and (M57) j.

o ((n)Ifree) =
22r (Av)' p

qdq{ V(q))2. (56)
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We have given no illustration of the use of the more
complicated addition theorem (24) for

~ f(q) f(tl') ). We
plan to use this result in an impact parameter calcu-
lation to examine the validity of Born approximation
for the charge-exchange cross section o((er)~es) for
various values of e~ and e2.
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Measurements of Electron Capture in Close H+-on-He and He+-on-H Collisions*

HERBERT F. HELBIG AND EDGAR EVERHART

Physics Department, University of Connecticut, Storrs, Connecticlt

(Received 4 June 1964)

Differential measurements of electron capture probability Po are made for close encounters in the reaction
H++He ~ H+He+. The energy range of the incident proton is 1.6 to 180.0 keV and the scattering angle is
varied from —,

' to 4'. The impact parameters associated with these collisions extend from 0.015 to about
0.50 A.. There is little angular dependence to the data. When Po is plotted versus energy, a damped resonant
structure is seen with peaks at 36, 7, and 2.6 keV with amplitudes of 0.52, 0.16, and 0.05, respectively. The
phenomena are discussed in terms of the energy-level diagram for HeH+ and with reference to the existing
theories for charge transfer in the nonresonant case. Measurements of the inverse reaction, He+ ions incident
on atomic hydrogen targets, are also presented and discussed.

1. INTRODUCTION

ESONANT electron capture in violent (or close)
single encounters in symmetrical or "resonant"

ion-atom systems has been studied in several experi-
ments' and the pertinent theory' ' explains many of the
observed features. However, a somewhat similar phe-
nomenon found in the unsymmetrical or "nonresonant"
reaction

H++He -+ H+He+, (hZ=+11 eV), (1)

is not well understood.
Differential scattering measurements of the above

reaction were erst made by Ziemba et al. ' These covered
the energy range of 2 to 180 keV. The incident protons
were driven through the electronic structure of helium
atoms at impact parameters suKciently small to deRect

*This work was supported by the U. S. Army Research QfBce,
Durham.

~ Experiments on symmetrical case: H+ on H: G. J. Lockwood
and E. Everhart, Phys. Rev. 125, 567 (1962). He+ on He: Data
from 0.4 to 250 keV, G. J. Lockwood, H. F. Helbig, and E. Ever-
hart, Phys. Rev. 132, 2078 (1963); data from 0.03 to 0.60 keV,
W. Aberth and D. C. Lorents (to be published), and Bull. Am.
Phys. Soc. 9, 427 (1964). Ne+ on Ne: P. R. Jones, P. Costigan,
and G. Van Dyk, Phys. Rev. 129, 211 (1963). Ar+ on Ar: P. R.
Jones, in Proceedings of the Third International Conference of the
Physics of Electronic and atomic Collisions, edited by M. R. C.
McDowell (North-Holland Publishing Company, Amsterdam,
1964). H2+ on H2, Ne+ on Ne, Kr+ on Kr: See Ref. 5 below.' D. R. Bates and R. McCarroll, Advan. Phys. 11, 39 (1962);
See also Refs. 6 and 8.

3 W. L. Lichten, Phys. Rev. 131, 229 (1963).
4E. Everhart, Phys. Rev. 132, 2083 (1963). References 2—4

list many other papers concerned with the symmetrical case.' F. P. Ziemba, G. J. Lockwood, G. H. Morgan, and E. Ever-
hart, Phys. Rev. 118, 1552 (1960), See Fig. 4(c) and Sec. 4c for
early H+ on He data.

the fast particles through an angle of 5'. The proba-
bility I'0 of electron capture by a proton in such a single
collision was measured. When I'0 was plotted versus
incident energy T, a damped resonant structure was
seen.

The purpose of the present study is to repeat these
measurements of H+ on He collision with considerably
improved accuracy, and further, to study the angular
dependence as well as the energy dependence of the
quantity I'0, thus varying both the impact parameter
and the velocity of the collision.

In addition, similar measurements of the inverse
reaction,

He++H -+ He+H+, (AE= —11 eV), (2)

are also studied here, making use of the atomic hydrogen
target chamber previously developed for the H+ on H
studies. '

There is, at present, no published theory in a form
readily applicable to the reactions (1) and (2) under
study here. The general theory of charge transfer in
nonresonant collisions is that of Bates, Massey, and
Stewart' as improved by Takayanagi, and Bates and
McCarroll. Further contributions by Bates and Lynn, '

' D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy.
Soc. (London) A216, 437 (1953). See, particularly, Eqs. (120) to
(129) on p. 454.

'K. Takayanagi, Sci. Repts. Saitama Univ. (Japan) 2A, 33
(1955).

'D. R. Bates and R. McCarroll, Proc. Roy. Soc. (London)
A245, 175 (1958). See particularly Eqs. (12) to (18) p. 177.

'D. R. Bates and N. Lynn, Proc. Roy. Soc. (London) A253,
141 (1959).


