
SUPERCONDUCTIVITY IN Cu AND Pt WITH Pb

racy of this number is of course subject to the same re-
strictions as discussed before in the case of platinum.

In conclusion, it has been shown that the effective
coherence length of the normal metal should be calcu-
lated from the coeKcient of normal electronic specific
heat and the residual resistivity. If the data are then
plotted in such a way as to exhibit all the temperature
dependence in one term, one gets a linear plot of which
the slope (k ') is verv close to the calculated coherence
length. Since the electron-electron interaction in both

Pt and Cu was found to be very close to zero, any more
accuracy prediction for these metals will have to await
much more precise film thickness control or measure-
ments at even lower laboratory temperatures.
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A simple test, recently suggested by Armstrong, is used to estimate the quality of the variational wave
function erst used by Aviles and Iwamoto in treating the ground state of the hard-sphere many-boson sys-
tem. In this special case, Armstrong's method can be simpli6ed by using a result obtained by Lieb in his
recent work on the ground-state energy of the Bose gas. The wave function was previously used by the author
to compute a 6rst-order correction to the energy, due to a weak additional interaction outside the hard
sphere. The errors in this computation are in good agreement with the estimates obtained by Armstrong's
method.

SIMPLE test, to be used in conjunction with a
standard Rayleigh-Ritz variational method, to

give some estimate of the accuracy of the trial function
has recently been suggested by Armstrong. ' He inte-
grates the Schrodinger equation over all space, and
obtains an expression for the energy

provided the integral in the denominator is non-
vanishing. ' This is compared with the corresponding
variational expression using the same trial function

of the method' were to standard one- and two-particle
systems, including the ground state of helium.

It is the purpose of the present note to apply this
procedure to a many-body system, previously ex-
tensively considered by several authors4 ' from a
variational point of view. This system is the boson
hard-sphere gas with~ or without' ' an additional weak
attraction or repulsion.

The variational method is very clearly described by
Aviles. 4 A product trial function

y(r, r~) =II f(r,—r;)

dv /Pf', (2) is used to approximate the ground-state solution of the
Hamiltonian

and the difference Ey —L'~y between the two is a rough
indicator of the quality of P.' The original applications I1=—(A'/2m) P 7'+Q V(r, —r)

'B. H. Armstrong, Bull. Am. Phys. Soc. 9, 401 (1964), and
private communication.

~ If the denominator vanishes, it may be possible to rewrite
Eq. (1). I'or example, if P has angular momentum different from
zero, the Schrodinger equation in partial waves can be used to
reformulate Eq. (1) in unambiguous form.

3 Certain special choices of tt may accidentally give E~=Ezz
without, in fact, corresponding to exact solutions. A notable case,
observed by the author and Armstrong independently, is the trial
function expL —o(r&+r2)g often used for the helium atom LE.
Merzbacher, QNantum Mechanics (John Wiley 8z Sons, Inc. ,
New York, 1961), pp. 430—436j. These special cases can be
easily shown not to satisfy the eigenvalue equation.

The hard-sphere boundary condition requires that

f(r) =0, for r&rs,

while V(r) is the additional weak interaction. r The

4 J. B. Aviles, Jr., Ann. Phys. (N.Y.) 5, 251 (1958).
' F. Iwamoto, Progr. Theoret. Phys. (Kyoto) 19, 597 (1958).
6 R. J. Drachman, Phys. Rev. 121, 643 (1961).
7 R. J. Drachman, Phys. Rev. 131, 1881 (1963).
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variational energy takes the form'

k' prp'
X'.y = — - — - Ps

2m 2

g-f gf. f—v'f 2m
+ V(*) a(x), (6)

fs

linearity in p of g. This term has been showns to be re-
sponsible for the logarithmic term in Eq. (9).

One easily evaluates Eq. (10), inserting the value
e'=n/3 which minimizes Ev, and iinds

where x = r/rs, p =1V/0, and E~r/E= 4rrprs(It'/2m) [1+(ssn)'I'j . (12)

J P [
sdrr dr.rv

Defining d, = [Ey Errv]—$ ', one obtains

A = 4rr pro (It'/2m) ( [(5@2 3—45)/3463a'i'+ sn 1nrr) (13)

is the two-particle correlation function. Using the con-
venient trial function' '

f(x) =1—x-re—'("—') x&1
=0 a&i (&)

one can write the correlation function in the low-density
limit4 as

g(x)/f'(x) = 1+(2/x) [e—"—g
—""'g+ (3e/16x)

X (e "*[(3ex—13/2) ln(4yex) —3ex]
+e'*(3ex+13/2) Ei(—4ex)), (8)

where 7 is Euler's constant.
Consider first the pure hard-sphere gas, with V=O.

Using Eqs. (6) and (8), one finds the minimum energy
per particle [for e'=n/3, n= 8s.prssj to be'

Lieb' has used Eq. (1) in another context in formu-
lating a new method for the analysis of many-boson
systems. For our purposes here, the important expres-
sion is his Eq. (3.7), which gives the result for the hard-
sphere gas

as the difference between the variational and non-
variational energies. Expressed in percentage, the
errors are n' term-exact; a"' term-5%; n intr term-100%.

One may therefore conclude that the part of P which
yields the first term is exact, that yielding the second
term is fairly good, while the third part is very poor,

' in spite of fairly good agreement between the exact and
variational logarithmic terms in the energy. '

If one now uses P as an approximate solution of the
pure hard-sphere ground state problem, one can add a
perturbation:

V=0, ~&i,
V= —V„1&x&b,
V=O, x&b.

This is exactly the situation considered previously by
the author. ~ The first-order energy shift obtained is

«)v/&= —4~p«(h'/2m)~[1+ (4/v3)~"'+~ »~3, (14)

where 6=mrs'Vs(b —1)'/3jt'. This is to be compared
with the exact result'

(V)/1V = —4' pre (Il'/2m) 5[1+ (1&/2/37r) n"
+4(-;—%3/vr)n 1nn] . (15)

where

Egy =47r pre
—g (x)S 2' dx

(10)
Defining 6'=[(V)v —(V)jÃ ', one obtains

d,
' = —47rprs(5 /2m)5[(4m V3 —16&2)n i

+ (12v3—137r)rr Inn j/3s. (16)
g(ri, ) =0' ltdrs dr~ fdri dry

and is the appropriate two-body correlation function
to use with the nonvariational Eq. (1).

We note that, due to the product form of i(, g is
quite similar to g, and a similar analysis yields

g(x) = f(x) (1+(1/x)(e—' —exp[—x(e'+rr/2)'i']) ) .
(11)

There is, however, no term corresponding to the com-
plicated expression in braces in Eq. (8), due to the

' E H. Lich, Phy. s. Rev. 130, 2518 (1963).

as the error in the erst-order perturbation energy due
to errors in the variational trial function P. Again, the
n' term error vanishes, the n'i' error is about 4%, while
the error in the logarithmic term is about 70%. Thus,
5' is clearly well correlated with 6 as expected, and
hence the present calculation gives another indication
of the usefulness of Arm. strong's method. '

ln Ref. (6), where the logarithmic term in Ev was derived, it
was noted that T. T. Wu LPhys. Rev. 115, 1390 (1959)7 had re-
quired three-particle correlations in the wave function to derive
the exact coeKcient 3

—V3 jul-. Since no such terms are contained
in the present P, it is not surprising that Eq. (12) indicates a large
error. Once again, one sees that excellence of a variational energy
calculation tells very little about the accuracy of a trial function.


