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A statistical-mechanical theory of evaluating the distribution functions of a many-body system is pre-
sented. The theory is a natural extension of the quantum statistical theory of Lee and Yang for the grand
partition function and gives a new formalism which is difI'erent from that developed recently by Fujita, Isi-
hara, and Montroll. The density matrices are first developed in the Uhlenbeck —de Boer U functions. A dia-
grammatical consideration separates out nonconnected products from connected products of the V functions,
yielding an expansion formula which is simpler than that reported by de Boer some time ago. Application of
the resulting expression to free bosons and ferm, ons is made. Then the distribution functions are developed in
the binary kernel introduced by Yang and Lee. This expansion is used for the evaluation of the pair distribu-
tion function of a hard-sphere Bose gas at the lowest temperature. The results improve upon those reported pre-
viously by Lee, Huang, and Yang and others. The normalization and divergence difficulties encountered by
Fujita and Hirota are removed. Actually, their interpretation of Lee, Huang, and Yang's results in terms of
the chain diagrams is not satisfactory. Instead the chain diagram results may be compared with the more re-
cent results by Wu. Use of the approximate pseudopotential 4 =8~nb (r& —rs) is reflected in insuffrciency of the
chain diagram approximation. Satisfactory and consistent results are obtained when a new set of diagrams is
taken into consideration.

1. INTRODUCTION

'HE thermodynamical properties of a many-body
system may be derived from the partition func-

tion, and there have been published a number of
quantum. -statistical theories for the partition function. '
However, it is also important to evaluate the density
matrix itself and its diagonal elements —the distribution
functions. In particular, the pair distribution function
is most important in deriving thermodynamic functions
and obtaining information concerning the spatial cor-
relations of particles. Particularly, for a Bose system it
is recalled that Feynman attributed the peculiar prop-
erties of liquid helium to the energy spectrum via the
pair distribution function. 3

Recently a quantum-statistical method of evaluating
the pair distribution function has been presented by
Fujita, Isihara, and Montroll. 4 These authors have
generalized the theory of Montroll and Ward for the
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grand partition function of a quantum-mechanical
system and have applied their general formalism to an
electron gas. However, their method is based on a
perturbation expansion in potentials and may not be
conveniently applied to the cases where the Fourier
transforms of the interaction potentials do not exist. In
the present paper, therefore, we aim at developing a new
theory of the pair distribution function applicable to
such cases.

The theory which will be developed in this paper is a
natural extension of the quantum-statistical theory
given recently by Yang and Lee for the grand partition
function. ' In a series of papers, these investigators have
extended Uhlenbeck and de Boer's U-function method
for quantum gases, and applied their formalism to in-
vestigating a Bose gas at very low temperatures. Since
such a gas may be considered as a model of liquid helium
and since the singular hard-sphere potential prohibits
the usual perturbation methods, its treatment is of con-
siderable theoretical interest. '~

For this purpose, Lee, Huang, and Yang introduced
the pseudopotential and evaluated the ground-state
wave function. The wave function was then used for the
evaluation of the ground-state energy and the pair dis-
tribution function. The ground-state energy thus
evaluated involved a divergence due to the approxima-
tion made in the pseudopotential. Subtracting the
divergent term, they arrived at the correct ground-state
energy, which coincided with that obtained by Lee and
Yang by the binary kernel method. However, it is to
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25 (1959); 117, 22 (1960).
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Dominicis and P. C. Martin, ibid. 105, 1417 (1957); T. D. Lee,
K. Huang, and C. N. Yang, ibid. 106, 1135 (1957).
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be noted that the same wave function was used in
deriving the pair distribution function. Thus, one may
expect a possible improvement upon their distribution
function.

More recently, Fujita and Hirota, using Yang and
Lee's approximate pseudopotential, evaluated the pair
distribution function of a dilute hard-sphere gas at the
lowest temperature by summing the chain diagrams.
However, their treatment involved two unfortunate
difficulties; one concerned with the normalization, and
the other with the divergence in the ground-state energy
to which their pair distribution function leads. They
could not resolve these difficulties, as mentioned in their
paper, but were obliged to remove arbitrarily the un-
desirable term in their resulting expression to make
their results agree with those reported previously by
Lee, Huang, and Yang.

In view of these situations it is desirable to try to
develop a new theory for the pair distribution function
of a hard-sphere Bose gas. We shall show in this article
that the interpretation of Lee, Huang, and Yang's result
by Fujita and Hirota in terms of the chain diagrams is
not correct. Actually, the chain diagrams are important
at large distances, and at small distances a new set of
diagrams plays a more important role than the chain
diagrams. This new set of diagrams may be considered
as a special type of chain diagram. We find it convenient
to distinguish these diagrams from the chain diagrams
because their summation corresponds to introducing an
effective two-particle propagator, while the summation
over chain diagrams corresponds to an effective inter-
action potential.

In the next section we shall 6rst express the distribu-
tion functions in a series of U functions. We then express
the series in the binary kernel introduced by Lee and
Yang. Finally, we apply the result to a dilute hard-
sphere gas in the ground state. As a result of taking the
new set of diagrams into consideration the divergence
and normalization difficulties encountered by Fujita
and Hirota will be removed. The necessity for consider-
ing such diagrams will be elucidated in the discussion
section of this article.

Throughout this paper we shall use units such that
A = 1 and 2m= 1, where m is the mass. Also, we shall use

p for 1/kT and s for the absolute activity.

X. being the Hamiltonian

&)V= —Z ~"+Z 4'; (2.3)

The sign function C~ takes on the value +1 or —1 for
fermions depending on the even or odd permutations P
of the particle coordinates, and +1 for bosons.

The reduced distribution function for the e particles
of coordinates r" in this system is given by

gN( )— 1 1
(r~

~
W)v

~
r~)dr„+)dr„+s dr)v,

(N —n)! Z~
(2 5)

where ZN, the partition function, is

Z~ —— (r"
~
exp( —PX~)

~

r~)dr~.
c/

(2 6)

In treating many-body systems, it is convenient to
use the distribution functions defined in the grand
canonical ensemble

g(n)(rn) — P g (n)S&VZ

~ N)e

1
(r

~
W)v

~

r )df„+t dr~,
)v& n (N n)!—

(2.7)

where ™is the grand partition function

Z —P s Zsr ~ (2 g)

Following de Boer' and Lee and Yang, ' we introduce
the U functions by

+(rt', rs'~ Us ~rt, rs); (2.9)
~ ~ ~

7

The Pq form an orthonormal complete set of functions.
The sufFix n to 8'N indicates the statistics appropriate
to the system. Thus,

(r'~~W)v [r~)=Q C~(r'~~W~~r~). (24)

2. EXPANSION OF THE DISTRIBUTION FUNCTION and define the c]uster integrals by

We shall start with the density matrix for an
X-particle system:

(r'~
~
W)v

~

rN) =p lp), (r'~) exp( —pX)(r)its*(r~), (2.1)

where r =(rt, rs, rs, ,r)v) and

bt (r&, rs, ,r—~—~
Ug

~
rt, rs, ,rt)dr'. (2.10)

ltV

Then, the grand partition function may be expanded
in a cluster series:

Ws(= exp( —Ps('.s(), (2,2)
1nZ= V Q bgs'

l
(2.11)

' S. Fnjita and R. Hirota, Phys. Rev. 118, 6 (1960}. ' J. de Boer, Rept. Progr. Phys. 12, 305 (1948}.
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The terms belonging to the second group have the form

(ri, r2, .
~
Ui~ ri, r2, )Xsum of products of U functions which do not involve either r, or ri

The necessary combinatorial factor and the contribution are

exp P x'(st) ' (r'~ U,
~

r')dr'
(X—2)!

(lV—i)!
(i—2)!(iV—i)! 2~i ~N—1+1

dh (ri, r2, ,ri ~

Ui
~
ri, r2, , r~)dr3dr4 dr|.

Multiplying this by s~/" (cV—2)!, and performing the summation over iV, we end up with

1 sl 1 dS
(r, , r2, r3, , ri~ Uii r„rg, ,ri)dra dri

g (=g (i—2) t 2' x—3
exp P x'(s!) ' (r'i U,

~

r')dr'

s'
(ri, r2, , r~

~
Ui

~
ri, r2, . ,ri)dra dri. (2.15)

2 (i—2)!

Therefore, combining (2.14) and (2.15) we arrive at the formula

sl
g"'(ri, r2) =2 (r&, r2, , rii U&~ r, , r~, ,r&)dra dri+g&'i(r&)gi'&(r~).

(i—2)!
(2.16)

This coincides with the cluster expansion obtained by Fujita, Isihara, and Montroll in terms of the propagators.
It is remarked that these authors expanded the pair distribution function in ascending powers of the potentials.

We have not expanded the U functions yet, but later shall develop U in the binary kernel introduced by Lee and

Yang.
Our graphical considerations enabled us to separate out in Eq. (2.16) those configurations of particles which are

not correlated. In this respect, it is more convenient than the expansion reported by de &ocr.

3. MOMENTUM-SPACE REPRESENTATION

The pair distribution function may be conveniently represented in momentum space. For this purpose we use

the transformation matrix

(ki, k2, ,kt t ri, r2, ~,ri) = (1/fl' ') exp( —i P k, r,) . (3.1)

Its inverse is
(ri, r2, ~, ri~ ki,k~, ,ki)= (1/&' ') exp(i P k, r,), (3.2)

where 0 represents the volume of the system. We write the matrix element of U& in r space as follows:

1
(ri', r2', , ri'~ Ui

~

r, , r2, ,ri)= —Q (ki', k2', ,k~'~ Ui ~ki, kq, ,ki) exp(i+ k, ' r, ' i P k,—r,). (3.3)
Q~k'k

Thus, by putting r&' ——r&, r2'= r2, , and integrating over r3, r4, , r& we get

1
g"'(ri r2) Q expLi(ki ki) ri+i(k2 —k2)'r2j g (ki k2»3 ' ' ' k~~ « lki, k~,k3 ' ' ' ki) (3 4)

0 kl k2 ~klk2 k3 ~ ~ ok )

For the sake of simplicity, we shall define the momentum-space pair correlation matrix A (ki', k2', ki, k2) by

sl
cV(k, ',k2',. k„k2) = p p (k, ',k2', k„ ,k)~ Ut ki, k2,k„. ,k().

i-2 (i—2)!i2" »

Then, using Eq. (2.16) g"&(ri, r2) can be expressed in a more compact form as follows:

1
g

' ((r)„r )=2— P iV(k, ',k, '; k,»&) exp/i(k&' ki) ri+i—(k2 kR) r~)+ Lg "i]2.
Q2 k1',kg', k1,k2

(3.5)

(3.6)
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The pair distribution function may be defined in an
infinite volume, and correspondingly, the summation
over the k's may be replaced by integration. In the case
where the system is homogeneous, g"'(ri, r&) depends
only on the relative distance [r2—ri [.Also (1/Q)gi —+

(1/8~') j'. Thus, performing the integration over the
total momentum, we arrive at a single expression =8gg exp( —Pk'). (3.11)

In this expression, the 6rst curly bracket involves
products of F&'s, the second curly bracket involves the
products of F2"s, and so on. F~ is identical with U~'.

g "i([ru —ri [)= (8x')—' de
Correspondingly, in k space we expect the following
expansion:

where

iI = —,
' [(k,—k2) —(ki' —k2') ]. (3.8)

XexpL»e (r~—ri)]&(q)+[ g"']' (3 7)
=Z {(k '[I' '[k &(k '[I' '[4& }

X{(kg',kyar'[I'2'[ks, kp&. }. (3.12)

The function X(q) appearing in the integrand of
Eq. (3.7) may be evaluated by a diagram method.
For this purpose we return to the original function
X(ki', k2', ki, k2). This involves arguments which are not
necessary in the evaluation of gi" ([r2—ri [).Use of the
conservation laws removes them.

The matrix element &ri', r2', ,ri'[Ui [ri, r2, ,ri)
may be expanded in a series of products of lower order
U functions. The expansion may be obtained by con-
sidering all possible subgrouping of / integers and con-
sidering all permutations of the integers thus sub-
grouped. However, no term in the series shall be split
into terms corresponding to completely separate number
groups. For instance, in the case of V2', the term
(ri'[U2[ri&&r~'[Ui[r~& should be excluded. Thus, we
have

&ri', r2'I U2"
I
ri, r2& = ~(ri'I Ui [r2&(r2'I Ui [ri&

+(ri', r2'[U2[lj lp&+& r2r [iU~[r ri)2,

where + and —signs in the first and the last terms
correspond to bosons and fermions, respectively. As in
this example, we have in the right-hand side of such an
expansion those terms which correspond to all the even
and odd permutations. Thus, if an l integer is parti-
tioned so that m~ groups of 3 integers appear in accord-
ance with the relation

3m]= l )

we will have in the right-hand side of the expansion a
group of terms

= &ri', r2', . ,rg'[ I'i [ri, r2, ~ ~,ri). (3.9)

Here F&' represents the total of the left-hand side. Thus,
if the expansion is expressed in the most general way,
we have

&ri, r2, ', ri [ Ui'[ri, r2, ', ri)
=Z {(«'Ir, 'I r~&(rn'I r,

X{(rg',rA [I'2 [rz, r~& }. (3.10)

In Eqs. (3.10) and (3.11), the coordinates of the terms
in different brackets must be correlated with each other.
For instance kg might coincide with kii and kii with k~.

The terms appearing in the right-hand side of Eq.
(3.12) may be represented by diagrams similar to those
introduced by Lee and Yang. The general rules of such
a graphical representation, which is suitable to the
evaluation of Ã(2), are as follows:

(1) Each n vertex represents I' of a matrix element
such as:

(kii, ',kii, ', )kii„'[I'„[kg„kg„,kg„&.

(2) The coordinates kg„. in a ket are represented by
incoming lines of momenta k~„., while those in a bra are
represented by outgoing lines of momenta kii,.'.

(3) All the k are connected to k;. The number of
loops going out of each vertex will represent the
order of I'.

(4) A factor s is assigned to each internal line.

(5) A factor S ' is introduced, where S represents the
total number of permutations that leave a graph topo-
logically unchanged.

(6) A contracted graph generated by I', represents
the sum of all the graphs generated by various orders
of F,. %e represent the contracted graphs by dotted
graphs. For example, a single dotted circle represents

&k''I I'i
[ k'&+ &k''

I

l'i Ik &(»'I l'i [k'&+

which is illustrated in Fig. 1. The contracted diagram
generated by F2 is illustrated in Fig. 2.

(7) A factor yg(k;) is assigned to the ith internal line
of a contracted graph, where k;Nki or k2 and

m(k;) =
1—z exp( —Pk 2)

In applying the rules a few remarks may be helpful.
First, it is noted that

(r, '[U, [r,&=~- expL —(r,—r, ')'/4P];
(3.13)

x=(4~p)» .
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X is the therinal de Broglie wavelength. In momentum
space, (ki'I Ui ki) is given by Eq. (3.11). It is repre-
sented by a straight line kiki' of a single vertex repre-
senting I'

& ~

For the next simplest case of l = 2, we have

/

J,
/

+ ~ ~ ~

(ki'»s'I ~s'Iki»s) = (ks' &iIki)(»'I UiIks)
+(k ',k 'II' 'Ik, k ). (3.14)

Accordingly, we have the two diagrams such as
illustrated in Fig. 3. Here Fig. 3(a) represents the first
term and Fig. 3(b) the second term of Eq. (3.14). These
diagrams reduce to toron-type diagrams introduced by
Montroll and Ward [Figs. 3(a'), 3(b')] if the end points
of the straight lines are connected. The series appearing
in the right-hand side of Eq. (3.12) may then be re-

arranged in accordance with the number of toron loops.
In particular, U~ involves a term which consists of

I'~'s. It may be represented by l-toron diagrams since
all the F~'s must be connected with each other through
their arguments.

Fin. 2. A contracted graph (dotted circle) generated by I's.

For free fermions we need only to use

m(k) =-
1+s exp( —Pk')

(4.4)

and a minus sign for the second term in Eq. (4.3).
Equation (4.3) is in agreement with the expression

derived by Fujita, Isihara, and Montroll by summing
toron diagrams. "The labor of evaluation is more or less
the same.

It may be interesting to check the normalization of
Eq. (4.3). Upon integrating over ri and rs we find

+e ~ ~

g o(ri)rs)dr, dr2 (X)——'+Q e 'e"'m'(k) .

FIG. 1. A contracted graph (dotted circle) generated by I'&.

4. FREE PARTICLE

We shall now compute Xo for a system of noninter-
acting bosons applying the above rules. In this special
case, all U~ for t & 2 vanish. Thus, corresponding to
Fig. 4 we have

Using the grand ensemble relations,

(Ã) =P m(k)e
—e"',

(,V') —(Ã)'=P m(k)e-e"'+P m'(k)e-'~"', (4.5)

we end up with
iV o= 4,'z, 8u, s,{s'exp( —Pki' —Pks )+s' exp( Pkl )—

Xexp( —2Pks')+s' exp( —2Pki') exp( —Pks')+ )
= 3k, z,8z, a, exp( —pki2 —pkss)m(ki)m(ks), (4.1)

where

go
' (ri, rs)dridrs (1V(1V——1)). —

5. THE BINARY KERNEL

(4.6)

m(k) =-
1—s exp( —Pk')

By substituting Eq. (4.1) into Eq. (3.6), we get

(4.2) Further reduction of Eq. (2.16) may be achieved by
expanding U~ in powers of the interaction potential,
since the operator Wir defined by Eq. (2.2) may be

1
go&'&(r, ,rs) =—P exp( —Pki' —Pks')m(ki)m(ks)

0
kp kp'

Xexp(iki (rs—r,)—ik2'(rs rl))+[go

=ass+ -g exp( Pks)m(k—)
Q a

Xexp[—ik (r,—r,)], (4.3)

Fxo. 3. Diagrams for U28.

{a')

kp kI kP

(a)

i~z
(b)

where we have identified go&'& as the number density e.go as e num er ensi y +' F.London, J. Chein. phys. 11,203 (1943) and G. placzek, proc. 2nd
We have derived the above formula for free bosons. Berkeley Syrup. Math. Stat. and Prob. 5gl, 1950 (unpublished).



A. ISIHARA AND D. D. H. YEE

k2 kl k2 kl

+ et|.",

where 8 is related to U2 by the differential equation

B(p;1,2) =(~~s/~p) 5—' '+~")~s(p) (54)

kl k2 kl k2 kl k2

FxG. 4. Diagrams for a free-particle system.

expanded in the following well-known perturbation
series:

The binary kernel is determined by two particles and
is dependent only implicitly on the potential function.
It may, therefore, be used even for the cases where the
potential is divergent.

%e shall represent the binary kernel as in Fig. 5.
In terms of the binary kernel the 6rst few Ui are

expressed as follows:

W~(P) = W~'(P)+ W~'(P P') (—C~)—W v(P') dP'
dP'w(P P'; 1—)w(P —P'; 2)B(P'; 1,2);

P

+ dp' dp" Wn '(P P') ( —@'n )—
dP' dP"w(P P"; 1—)w(P —P'; 2)w(P —P'; 3)

xw '(p' p")( —e~)w—~o(p")+". , (5.1)

where it is assumed that the potential 4~ ——Q P;; is
6nite and the series converges. Also

XB(P' P";2,3)—B(P";1,2)w(P"; 3)

+ dP' dP"w(P P'; 1)—w(P P'; 2)—w(p P" 3)—

w '(p)=II (p )
i=-1

w(p; i) = exp(ps';s) .

(5.2)
xB(p'—p"; 1,2)B(P";2,3)w(p"' 1)+ (5 5)

The corresponding diagrams are given in Fig. 6.

The right-hand side of Eq. (5.1) may be represented
by diagrams. For this purpose, w(p —p', i) shall be
represented by a vertical line segment ii ' of length p —p',
the position of i' corresponding to an interaction, say—P(Ir r,'I), which—takes place at an intermediate
temperature p' and is represented by a horizontal line
at p'. The horizontal lines in a diagram are placed such
that the lower lines represent the interaction potentials
which appear further to the right in the perturbation
series. Then W&(P) is represented by connected and un-
connected diagrams. On the other hand, Ui is expressed
only in terms of connected diagrams of / particles.

The diagrams for the operator 5'N or Ui are simpler
than those introduced by Montroll and Ward for the
propagators. This is because no complication due to
statistics comes in here. However, when one tries to
evaluate the matrix element of 5'~ or Ui, toron-type
diagrams may be introduced in accordance with the
symmetry of the function operated by 8"z or U&.

The general structure of our diagram representation
is simple, and no elaborate discussion seems to be
necessary. Instead, it seems advisable to add comments
on the binary kerneP' B(p) and the corresponding
diagrams.

Lee and Yang introduced the binary kernel by

X lkr —ksl

(2P) 1 i2
I @1—k2]

dx exp(x') —(2P) ' '

Xexp L2P(k, —ks)') . (5.6)

6. CHAIN-DIAGRAM APPROXIMATION

In this section we shall evaluate the pair distribution
function for a dilute Bose gas at absolute zero tempera-
ture in the chain-diagram approximation. The chain
diagrams are obtained by connecting 1 and 2 by a linear

array of the other particles linked together by binary
kernels as shown in Fig. 7. The calculations may be
made for a Boltzmann gas because at absolute zero the

The binary kernel for hard spheres has been evaluated

by Lee and Yang. In the next section we shall use the
expansion of 8 in the hard-sphere diameter u:

B=B&+Bs+.

B,= —ga.-'b(k, +ks —k, '—ks') expl —P(krs+ ks') $;

B.=s.—'i'g'5(k+ks —k, ' —ks') expL —P(krs+ks2) j

B(P; 1,2) = —Qrs exp( —PHs), (5.3)

"A. J.F.Siegert and K. Teranroto, Phys. Rev. 110,1232 (1958);
T. D. Lee and C. N. Yang, sbQ. llB, 1165 (1959).

2 I' 2' I' 2' I 2 .

I 2 I 2 I 2 I 2

FIG. 5. The binary
kernel.
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FIG. 6. Diagrams
representing U2 and
U3 in terms of the
binary kernel.

I 2'
I 2 I 2 I 2

I 2 I 2 I 2 I 2

I 2 5 I 2 5

0

I 2 5 I 2

k=-', (k,—ko), k'=-', (»' —ko'),

K=k,+k„K'=ks'+km'. (6.8)

This expression may be simplified by remembering

that by definition g(2) is a function only of relative

coordinates if the system is homogeneous. Thus, we

introduce the relative momenta and the center-of-

gravity momenta as follows:

result can also be used for a Bose gas,
We start with

Using Fq. (6.8) in Eq. (6.7) and integrating over K and

K', we obtain

2x '"
(k'I Uolk)= —— a~ ' dP'

Uo(P) = dP'w(P P', 1—)w(P P', —2)&(P'; 1,2) (6 1) p o

Xexp{ —2P(k"—2P'(k' —k")}. (6.9)
In coordinate representation, this matrix element is
Lsee Fig. 7(a)] Further simplification may be achieved by intro-

ducing the next transformation of variables:

(ri', ro
I Uo(p) I

r»ro&= dp' dr, dro(r~ Iw(p p') lr, )

X (ro'I w(p —p')
I ro)(r„rh

I

B(r')
I
r~ro), (6.2)

q=-,'(k —k');

Q =k+k'. (6.10)

where Using Eq. (6.10) in Eq. (6.9) and integrating over Q,
we arrive at a simple function of q which we Inay denote

(r'lw(p)
I

r)=(8n-') ' dk expLik (r—r') pp'j— (6.3.) b ( ).

2xThe transformation to momentum-space representa-
( ) ( o) dpi 4(p

tion is achieved by using

The result is

(r I k& = (8~') '" exp(ik r) . (6 4) 4pi2

+ (p p')'q' -4p—'q'+—

o(P) I » o&
=

&
i'

I
r~'&& o'I ro')&ri

I ki)&ro I ko&

X(r&', ro'I Uo(P) I
r~, ro&dr, 'dro'dr, dro. (6.5)

Introducing Eqs. (6.2) and (6.3) into Eq. (6.5) and
carrying out the r&' and r2' integrations, we obtain

(k,',ko'I Uo(P) I k„ko&

(2~ '
no(q) = —

I

—(a~ ') dP'K(q; P P')Z(q; P'), (6—.12)
I p

where

1~(q, l~—yl) =exp{—4I~—ylq'+«'(~ —y) q') (6»)

Before attempting to simplify U2 further, we may

X(k,i k il g(pi)
I
k, k,) (6 6) consider the chain diagrams for U4 as shown in Fig. 7(c).

This is an exact result. We now make an attempt at
evaluating U2 approximately to order c, replacing 8 by
B& given by Eq. (5.6). The result is

P

&
~'iko'I Uo(P) lk~ik2) = —~~ ' dP'~(»+ko —kl' —ko')

I 2

X
(0) (b)

4' 2'
f ————-PI

c d a—-P2

0 h--h +i—--Ps

(c)

Xe p{—(P—P')(k "+ho")—P'(k '+k2')) (6 7) FIG. 7. First three chain diagrams.
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Corresponding y we have

( p4( rl, l'2, r3)r4)(rl', r2)r» 4

r. rrl&(pl p')("""p) r r4 Wl rg &e)&f

P1

(d
d, d„.. dr(r3(

x(.. I-(P-P)("'"" '
X r. 24)l

Here it is assume that
P&Pl&P2&P'

re resentation isin momentum-space reprThe corresponding momen

k ',k ' k ' k, '( U4(k„k21) 2) 3) 4

P P1

dPl

,k, ,k4)

k3"+k4"))(k3',k4'(B(P, —2 k„kddP3dkdk, 4 exp{—(P—,k, '

tin =k, for all i, we obtain8 by Bl and putting =, or aReplacing y

',k ' k k
(
U4(k„k2, k8, k4)(kl ) 2) 8) 4 4(

l~
2

dP2

" ( 2
—

4 ' k42)) exp{—(P,—P3)k,

0

k2," ( 2, d 2
— k4 expf —p8(k'+ 4Xexp{—(P—P2)k2" j
XexP{ P 338 l, c 3 l) 3

P,—P,)(k. +k, ') )k8'+k4') ) ~ 3 4
—

~k +k —k,—kd) exp{—( l——a)r dP8 dk, dk4 exp{ (P—a)r ')' dpi dp2

k '+k ')) exp{—(P2—

2 2))+Xexpf —(p —p8)kl l );
— — ex —

3 kl k3

p's we may rew
'

writecondition on the sRemoving the con
' '

E . (6.19) as

P1

er the momentac the iig.' ht-hand side overW g
o in

'
ates an in roof intermediate sta

()()
—p l)K(q, I p —p. l)xK(q, (P P, ()K(q, —

X&q, 2p )+similar terms. 6.20

x(
and. k4.r the momentaWe then intege rate N4 over e

we may put q—2 =kl —k,
'

bl
e 8 function

= —(k2 —
2 . s,—k '). Also, we c ange v

P'—k k2 —2)3 dP4 = — — —a7ll) 2) 3) 4 844 l) 2) 3) 4

—-'K+k kl ——„—q,—2k, =-,
—k k2' ——k2+2q,k2 ———, —, ,' —— 2

=K —k '= —(k2—k2'),2q. =

at there are alto ether six simi ar
4 ~"Therefore using t e"time ordering. e

ntribution istheir total co

1) 8 8—
)

— — )' 4) ~)(—a~—'-
l ~ d,(q)=2 —

Ii
~

' ' d

xK(q, (p p, ()K(q, (,—,—
XK(q, lp -p l)K(q, l
X q, , — P, (), (6 21)

P
— (- =)844(q) = — — —a)r—

P3

()()
P.)K(q, P. P.)K(-q,P.)-XK(q; p p3)K(q, pl —2— t' in egr

' '
rom 0 to p. Theg

lt of E (612)n of theabo eresu s oThe generalization o t e+similar terms. 6.19)

rations over thee erform integra
'

eand as ln p
. Th result is a simpmomenta E and k. e re
ressed as follows:which may be expresse a

P1
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and (6.21) is not dificult. We end. up with the following and if
chain-diagram contribution to N~.

22r~ 2 & 2(l—2)/2

ui=(t —2)!(—a2r ')' ' —
I

A)/(x) = K(q, I
x—

y [))/(y)dy, (6.30)

P

X dpi' dP2 dp4 2&(-q IP—P)l)

then, since $(1)=f(0)= 1, we have

&l(q, 1—o) =z A v(i)4*(0)

XK(q) IP1 p2[) «q) IP4 2[) ~ (6 ~ 22)

It is convenient to change the scale of all the time
variables by using the variable x; de6ned by

'= p'/p

Accordingly, Eq. (6.22) assumes the form

z«= (t—2)!(—a~--")(2~/P) 2(x/P) 2«-2) ~2P'-'

dx2 dx2 dxi, K'(q, [1—x, l)

&«(q, I»—x2[)«q I»—»I) &(q x~-~) (623)

We m.ay consider that the function K is cyclic in x so
that the eigenfunctions are exp(22rimx), m being a plus
or minus integer or zero.

Thus, the mth eigenvalue of E is given by

(6.31)

u4=(/ —2)'(—a~ ')' 'I —
I

—
I

&pi p)
(6.32)

Expressing this result in terms of X=(4)rp)'/2, the
thermal wavelength, we 6nd

u4'(q) = —32(l—2)!2r'a—9—' P (—2'—'A.„)' (6.33)

where we have added the superscript c to show the
chain-diagram contribution. Therefore, the Fourier
transform 1V(q) of the correlation function which has
been introduced by Eqs. (3.5) and (3.7) is given by

1V(q)= —32)r2a 'X ' P P(—)'(2asl) 'A )'
&(q lx —yl)~t-*(x)4. (y)dxdy; (624)

namely,
= —128)r2as2X 4 Q A~[A~ '+2asl) ') ' (6.34)

xP( gu+gu ) exP(22r2mu)du (6 25) Substitution of A from Eq. (6.28) gives

where we have used the abbreviation

g =4Pq' (6.26)

iV(q) = —512)r'as'X ' p q'[q'+42r'm9 '$ '

A should be real. Thus, Eq. (6.25) maybe rewritten as
X [q4+4)re 2q2+42r4m9. 4j '. (6.35)

1 For a dilute system the activity s may be replaced

du[cos22rmu] exp( —gu+gu2) (6 2'/) by &o, the value for the noninteracting case:

sp= nX'. (6.36)

/4. ,(q; 1—0) =- dx, dx2. dxr, Z(q) 1—x,)

XK(q [x) x2[) ' 'EC(q [x4 ) 0[) (6.29)

We are interested in the low-temperature limit of A .
Taking the limit of g going to in6nity we find that

A —) 2g/(g2+4)r2m2) . (6.28)

The multiple integrations in Eq. (6.23) are now
performed in terms of the above eigenfunctions and
eigenvalues.

We 6rst note that if

Q(q) = —256)r2a222 q4[q4+x2j —&[q4+4)ra22q2+x2$ —&dx

where

256 '
1-[ 1+—

I

q2I
(6.3"/)

(6.38)

In the limit X —+~, we may consider x=22r2m/X as a
continuous variable and replace the summation by
integration. Thus,
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d
—--P2

——----——Ppf

I 2 4

Fxo. 8. Tick-tack-toe diagram.

Hirota by using the pseudopotential. These authors
compared their results with those obtained by Lee,
Huang, and Yang. As we shall see in the next section,
caution is necessary in such a comparison.

V. THE TICK-TACK-TOE DIAGRAMS

Thus, using Eq. (3.7) we obtain

g"'(r) = —4~ 'y—'ae'

r, = (16m ae)—'". (6.41)

These results coincide with those obtained by Fujita and

The evaluation of the right-hand-side integral has not
been achieved. However, for small and large distances
we have

g "'(r)=e'(1—2a/r), (r«r.)
=e'(1—(4~' 'a' 'n, ' ') 'r ')' (r))r,) (6.40)

where

In addition to the chain diagrams, another in6nite
set of diagrams plays an important role in the evaluation
of the pair distribution function. Some of the diagrams
which belong to this category are shown in Fig. 8. These
are the diagrams which. involve only one cross in each
column, determined by a pair of neighboring vertical
lines, and in each row, determined by the cross itself,
the cross 1—2 existing always. In view of their appear-
ance, these diagrams may be called the tick-tack-toe
diagrams. These diagrams are in a sense chain diagrams,
but may be named differently because they have never
been considered before, and also because their effective
role is different from that of the chain diagrams, as we
shall discuss later.

It is convenient to start with a special case. Let us
evaluate the matrix element corresponding to Fig. 8:

(ky', kg', k3', k4'
~

U4
~
ky, k2,k3,k4)

P

= (—an
—')' dPg dp2 dp3lH fdkg exp{—(p—

p&) (k,"+k4")}8(k~+k4 —k&' —k4') exp{—
(p&

—pa) (kg'+k4') }

Xexp( —pzk4') exp( —(p —p2)k&")5(kf+k~ —ki' —k~) exp{—(p2 p3)(kf +k2')}

Xexp( —P3k2') exp{—(P—P3)k3"}5(ka+kq—k3' —kf) exp{—P3(kP+k32)}. (7.1)

Setting k3 ——k, ', k4 ——k4', integrating over kz and k~, and using the notation N4 for the matrix element thus obtained,

(kg )k2 k3 k4
~

V4 ( kg, k2, ka, k4) = 8(kg'+k2' —kg —k2)(kg', k2', k3',k4
~
u4

~
kg, k2, ka, k4),

we get

1 ) 2 y 3) 4 +4 1) 2) 3) 4

P

= (—a~—')' dp, dP2 dP3 exp{—P(kz"+k2 +kg +k4 )}exp{—P2(kP+k2' —kg"—k2")}. (7.2)

We may integrate this over k, and k4 to obtain

7r 2 P P1 P2

(k, ',k&'~ N4(k&, k2) = — (—m ')' dP& dpi' dpa exp{—p(k&"+4")—ps(kP+k2' —ki"—km")} (7 3)
0 0 0

Changing the domain of integration and summing over all 3. similar diagrams we end up with

(kg', k2'~ u,
~
k„k2) = — (—a7r-')'p' dp' exp{—p(k "+k2")—p'(kg+km' —kg"—k2")}

I

(—a7f 2)3P3 dg exp{—P(ky'2+ kg~2) —Pg(kg+k/2 —kg~2 —kg~2)} (7.4)



QUANTUM STATISTICS OF DISTRIBUTION FUNCTIONS A 629

As in the case of the previous section, one may change
the momentum variables twice, and integrate over the
total momentum. The resulting function of a single
variable is given by —S2 (r&(r,) (8.1a)

tribution function with the tick-tack-toe diagram dis-

tribution function. Thus, to erst order in a one arrives at

g(2&(r) —
g (2&+g (2&

where

Ap(P; q) = dx exp( —SxPq2(1 —SxPq') }. (7.6)

with

=»4'[1 (4—2rp "a'"»3'") 'r '] (r)&rp) (8.1b)

r,= (162ra»3)'/2.

This pair distribution function is nearly constant for
small r and approaches e2 in proportion to r 4 for large
r from lower values.

In Eq. (8.1b), a term which is proportional to 2a/r
has been omitted because for large distances we have

The generalization of the above calculation for the
case of N~ is straightforward. We end up with

24 (q) (2x/P)3(~/P)3 l—2 2( a~—2)l 1P(—1A —(P. q) (7 7)

In the limit P ~~, 2a/r((2a/r,

2a/r«(162ra322) '" (r))r.)
(7 8) or

Ap(P; q) ~ 1/4Pq2.
(8.2)Thus,

1 (2~qp ~ 3«-2&/2

Nl(q)= i

—
i

— (—apr ')' 'p' '. (7.9)
4q2(, P i P

and the term is negligible.
The pair distribution function thus obtained may be

compared with the expression obtained by Lee, Huang,
and Yang (LHY) by the method of pseudopotential and
the result reported recently by Wu."

According to the calculation of LHY the pair dis-

tribution function is given by

In terms of the thermal wavelength)(, Eq. (7.9) becomes

24((q)= —322»4a 9. 4(—2a)( ')'q '. (7.10)

Therefore, at finite 2)( ' one gets for /Y(q) the following:

E(q) = —322»4a ')( 4q ' Q(—)'(2as)( ')'. (7.11)
l=3

The summation begins with /=3 because the case 1=2
has been treated as a chain diagram. Finally, one obtains

1V(q) = 1282r'a&2'q '/(1+ 2as)( ') . (7.12)

Taking the limit of low temperature and density

X —+~, sX ' —&~

in Eq. (7.12), we find that 1V(q) approaches the following:

/Y(q) = 1282r4a»22q '. (7.13)

gLnv('&(r) =I'L(1+G(r)}'+(1+F(r)}'
—1—2f(G(r)+F(r) }], (8.3)

where

f (8/3~1 /2)—(»3a3)1/2

The functions F(r) and G(r) approach the following

forms for small and large distances:
I

F(r) -+ 1/2»223» pr')
(8.4)

G(r) ~ —1/2»2»4»pr' (r))rp)
and

F(r) ~ f (8/32rl /2) (»4a3) 1 /2

(8 3)
G(r) ~ —(a/r)+(8/2r' ')(23a3)'/2 (r&(rp)

Thus, the contribution of the tick-tack-toe diagrams
to the pair distribution function is

where
ro=(82ra»4)

—'"=2'"r . (8.6)

128x4ae2
g, ('&(r) —»42=

(Sprp)'
exp(2iq r)/q'dq

Thus, the limiting forms of gLHr(2&(r) are

gLi(v(2&(r) =»32L1—(a/r)]'+0(a/rp); (r«rp) (8.7a)

= 2a»22/r (7.14)
= »42[1+ (16a/prp»4»4)]; (r»r, ). (8.7b)

It is to be remarked that in the above calculation we
have taken into consideration only a special type of the
tick-tack-toe diagrams which has a structure such that
the vertical lines 1—1' and 2—2' are nearest neighbors.
Only such diagrams give a contribution of order a to the
distribution function.

8. RESULTS AND CONCLUDING REMARKS

Our final expression for the pair distribution function
is obtained by combining the chain-diagram pair dis-

r2

X exp ———exp
2P

(»—a)'
(r) a) . (8.8)

Expanding the right-hand side in powers of r and sub-

12 Tai Tsuu Wu, Phys. Rev. 115, 1390 (1959).

The above expression for small distances may be
derived from U2..

s'(r„r,
~

V2
~
r„rs)=2'(2x)('r')-
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stituting @=ed ' we arrive at

g"'(y)—e'+z'Us
=I'L1—a/y]', a&y&y, (8.9)

ye
4

t/ a'n~ 'n
g~&»(y)=~ 1—

~

16

in the zero-temperature limit.
Our pair distribution function at large distances is

characterized by the term proportional to r 4. Fujita
and Hirota concluded that the pair distribution function
g, in the chain-diagram approximation is identical with
Eq. (8.7b), the result obtained by LHY. However,
Eq. (8.7b) differs from Eq. (8.1b) not only in n)agnitude
but also in sign. Definitely, their interpretation of LHY s
result in terms of chain diagrams is not correct.

This conclusion may be conhrmed if we compare our
result with the recent improved result reported by %u.
His expression for the pair distribution function at small
distances is

y = 87ra5(y, —ys) . (8.13)

In contrast, the correct pseudopotential is given by

&=8xa5(y, ys)(8/—By)y, (8.14)

yields the excitation spectrum should correspond to
large distances. On the other hand, it is not hard to see
that the tick-tack-toe diagrams contribute to the pair
distribution function only at small distances.

Compared to Eq. (8.7a), our resulting expression for
the pair distribution function for small distances is
characterized by lack of a term proportional to 1/y, and
is almost constant to 6rst order in a.

This is because the tick-tack-toe diagrams cancel
exactly the 1/y term in g'"(y) which the chain diagrams
give, as can be seen from Eqs. (7.14) and Eq. (6.40). The
1/y singularity causes, actually, the divergence in the
ground-state energy and is not desirable. What follows
is further discussion of this point.

The first approximate hard-sphere potential is

X 1— 16m

This may be written

gs ~ l(y) =n'f1+(47r+20/3)a(7r'ay') '
(47rs/sal/2/ss/s) —ly—4} (y))ys) (8 10b)

(4xa Ã E—1
Fs&"= —8n.a~

kn

8—5(y)—(yI/(y) }
0 BrHere, in the right-hand side the second term is small

compared to the third term for large distances and may
be neglected. Thus, g~&" reduces to our expression given
by Eq. (8.1b) which is essentially due to chain diagrams.

Thus we can say that for large distances the chain-
diagram approximation is good. This is because the
chain diagrams correspond to collective interaction of
the particles.

Because of this situation, the g, '-' may be used to
evaluate the phonon spectrum. As a matter of fact, if
we use g, ~'l(y) in the Feynman-Bijl" relation for the
phonon spectrum:

(8.15)= 2 37(a/Q'. /') (4m.aeS) .

Here, since
expik r

p(y)= E
&so

(8.16)

we see that Eo(2) —+ 0 for 0 ~~ .
On the other hand, use of Eq. (8.13) leads to(8.11)&k—&o=k'/&(k),

and includes the operator (8/By)y. As has been pointed
out elsewhere, this operator plays the role of removing

(y)&ye) (8.10a) the 1/y singularity in the ground-state energy. As a
matter of fact, according to Lee, Huang, and Pang, if
we use the correct pseudopotential the ground-state
energy in the second-order perturbation is convergent.
Namely, we have

we end up with

S(k) 1+~—1
g (2)(y)haik

~ r/jr where

—4/rays P (P 2+ps p(ps+ 2P 2)1/2} (8 1 7)

I p
= 87MB. (8.18)

=k(ks+16aae)-~/s, (k/0)

which is in agreement with the result obtained by Lee,
Huang, and Yang.

In other words, we can say that the elementary excita-
tion spectrum in a Bose gas is phonon-like for small
values of k. Thus, the pair distribution function which

~ R. P. Feynman, Progress ie Lou Temperature Physics, edited
by C. Gorter (North-Holland Publishing Company, Amsterdam,
1955), Vol. 1, Chap. II, p. 36; A. Bijl, Physica 7, 869 (1940); R. P.
Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

This is, however, divergent. As has been discussed by
Lee and Yang, in order to obtain the correct convergent
energy it is necessary to add to Eq. (8.17) the term

s (Po'/2P') (8.19)

The same ground-state energy may be derived by
using the pair distribution functions. If, however, we
use only chain diagrams, the resulting pair distribution
function g,"' will give rise to a divergence in the ground-
state energy. Since the pair distribution function has a
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physical meaning of its own, this indicates that g."'
may not be considered the correct distribution function
and that improvements upon the chain-diagram ap-
proximation are necessary.

This is indeed achieved by taking the tick-tack-toe
diagrams into consideration as we have done in the
previous section. It is not hard to obtain the tick-tack-toe
diagram contribution to the ground-state energy. We
end up with

I-'r= s 2 I'e'/2p' (8.20)

This is exactly what we needed to add to Eo of Eq. (8.1)
to remove the divergence. Thus, if we use the correct
distribution function we get

j('—47raQT 1 Q l p 2+p2 p(p2+2p 2)1/2 P 4/2p2)

=47r anN(1 +(128/15 r7' ')(a' n)' ') (8.21)

which is the result 6rst obtained by I.ee and Yang by
the binary-kernel method.

It is remarked that the divergence in the ground-state
energy is due to the appearance of a term proportional

to 1/r at short distances. Thus, the correct pair dis-
tribution function should not contain 1/r, in conformity
with our result.

Summarizing, we may describe the situation as
follows: the operator (r)/Br)r in the pseudopotential
requires taking diagrams other than chain diagrams
into consideration.

The above observation justifies our result at least for
both small and. large distances. The behavior of g&'l(r)
for the intermediate range requires a numerical evalua-
tion. However, it is interesting to observe that g"'(r) is
less than e' at large, distances. Thus, in a certain inter-
mediate range the g&"(r) curve might possibly come
out above the e' line.

Note added in Proof. The authors thank Professor
Garcia-Colin for informing them of the following im-
portant articles: L. Colin and J. Peretti, Compt. Rend.
248, 1625 (1959);J.Math. Phys. 1, 97 (1960);L. Colin,
ibid 1, 87. (1960).The discussions of these articles will
be given in a later article.
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The existence of multiple-quantum transitions in optically pumped lasers, along with splitting of the laser
line due to the modulation of the wave function at an angular frequency determined by the rate of pumping,
is demonstrated for a certain class of incoherent broad-band sources pumping large pump bands in crystals.
The source consists of a large number of stationary elements emitting wave 6elds continuously at various
arbitrary frequencies and arbitrary phases. The distribution of frequencies and phases among the various ele-
ments is random. The pump band belongs to the class found in laser crystals of the ionic type. The analysis
shows that such sources pumping such bands act like narrow-line sources pumping narrow lines. The eftective
linewidth is directly related to the pump rate.

HE existence of multiple-quantum transitions in
optically pumped lasers and splitting of the laser

line due to the modulation of the wave function at an
angular frequency determined by the rate of pumping
was shown theoretically by the author in "Quantum
Mechanical Effects in Stimulated Optical Emission, '"'
hereinafter called "QMESOE l."

The theory set forth in that article showed that the
splitting would become manifest at threshold when

there are a large number of transitions occurring be-

tween the pump band and metastable level along with
a high pump rate. Since the splitting is dependent upon

*Present address: Physics Department, University of British
Columbia, Vancouver, British Columbia, Canada.' R. C. Williams, Phys. Rev. 126, 1011 (1962).' R. C. Williams, Appl. Opt. Suppl. I, 63 (1962), reprinted from
Phys. Rev. 126, 1011 (1962).

the pump rate, it increases directly with the magnitude
of the electric intensity of the pump field. In addition to
this, it was also shown that at high pump powers most
of the emitted power would be due to two-photon
transitions.

It was not shown in that article if such splittings and
multiple photon transitions would occur if both the
source and the pump were broad bands instead of being
monochromatic lines. Since the source in QMESOE I
was chosen to be a coherent monochromatic source, it is
not evident that incoherent broad-band sources pump-
ing broad-, pump bands will produce the same eGect as
coherent monochromatic sources pumping narrow-
pump bands.

This question will be examined in this paper and it
will be shown that indeed certain classes of incoherent
broad-band sources pumping broad-pump bands do


