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The nonlinear interaction of two ultrasonic waves in a homogeneous, isotropic medium is investigated by
using the 6rst-order time-dependent perturbation theory of quantum mechanics to calculate transition prob-
abilities between available phonon states. Excluding collinear interactions, it is shown that there are two
general types of possible interactions, depending on whether the zeros of the scattered wave displacement
amplitude do or do not depend on the third-order elastic constants. Using correspondences between phonon
densities and classical displacement amplitudes, and between generated phonons and Huygens wave sources,
the theoretical displacement amplitudes for the scattered waves are derived. The amplitudes agree exactly
with those derived from classical theory and are plotted for various materials and interaction geometries.

I. INTRODUCTION

'ANY authors' 4 have considered the absorption
- ~ of ultrasonic waves in an ideal crystal as a result

of the sound quanta interacting, via the anharmonic
terms of the Hamiltonian, with the lattice vibration
quanta. With the advent of recent experimental
techniques, it is now possible to study three-phonon
interactions in detail. This is done by experimentally
generating two noncollinear beams of ultrasonic
phonons and, by standard experimental procedures,
detecting the phonon beam created by the interaction
of the initial phonon beams. ' In this work the experi-
mentalist uses the language of classical waves, whereas
the theorist uses the language of quantum mechanics.
This paper bridges the gap between the two disciplines.

The first section describes the first-order time-
dependent perturbation theory used to calculate the
transition probabilities between diferent phonon states
in a homogeneous isotropic solid. Although this ap-
proach is described elsewhere, ' it is included to make this
paper self-contained and to correct some minor errors
which have appeared in the literature. It is then shown
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that, for isotropic media, there are two general types of
possible interactions, depending on whether the zeros
of the scattered wave amplitude do or do not depend on
the third-order elastic constants. The detailed expres-
sions for the scattered wave displacement amplitudes
are derived using some interesting relationships between
the quantum and classical theories. The results, ex-
pressed in classical terms and agreeing exactly with
those derived from the classical approach of Jones and
Kobett, ' are plotted for various interaction geometries
and for five materials. The theoretical plots are corn-

pared with experimental results in Paper II.~

II. GENERAL THEORY

Following Slonimskii's approach, ' the deformation of
a solid under stress is described by the components z p

of the deformation tensor:

'tOap= s (Na p+ttp, „+Qp,aQv, p),

Ne, p
= BQe/r)Xtt,

(1)

(2)

where u is the displacement of a point in the x direc-
tion, and the Einsteinian notation is used, i.e., repeated
indices denote a summation over those indices. The
deformation tensor defined by Eq. (1) is quite general
and is even valid for finite deformations. In terms of the

6 G. L. Jones and D. R. Kobett, J. Acoust. Soc. Am. 35, 5
(1963).

7 Fred R. Rollins, Jr., Lyle H. Taylor, and Paul Todd, following
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=
s Cuaa + (&+sE —sts)uap ups+ (s&+ts)uapupyuva

—(-,'E—sts)u„v-.pvp tsu pv—p, v, , (6)

where the symmetry properties of I p and e p have been
used. Using time-dependent perturbation theory, Xo
is the unperturbed Hamiltonian density, and X' is the
perturbation Hamiltonian density which produces
nonzero probabilities for transitions between available
phonon states.

In general, the displacement vector u(r) is the sum of
the displacement vectors associated with each harmonic
wave:

3

u(r) P e (g eika r+g v e-tkv r) (7)

where e„is a unit vector in the direction of polarization,
g is the amplitude of the ttth phonon, and k„ is the
propagation vector. It follows that

uap uap +uap +uap 1 Vap Vap +Vap +Vap & (8)

where the superscript refers to the number of the phonon
state (for typographical convenience the phonon state
number will appear as a subscript when tensor com-
ponent subscripts do not appear). The perturbation
Hamiltonian density can now be written as'

K'=2Cu 'u 'u s+(28+E ——s'ts)

X (u&7 Sap up» +u&& uap upa +uv& uap upa )
+ (22+6ts) u p'up, 'u, '+ (E——,'.ts)

X (ups VaP VaP +uvr Vae VaP +ups VaP VaP )I 2 3 i 2 1 3~ 3 1 2h

+2tt (uaP VPy Vay +uaP vPy vay +uaP vPy~vay ) 1 (9)

where all terms containing two or three functions with
the same superscript have been discarded since they do
not pertain to three-phonon interactions.

In quantum theory, the amplitudes of Eq. (7) are the

'L. D. Landau and E. M. Lifshitz, Theory of Tsfastt'city (Perga-
mon Press, Inc. , New York, 1959).

9 Several perturbing Hamiltonian densities that appear in the
literature are in error.

deformation tensor, the elastic energy density BC of an
isotropic solid is written' as

K= tswap + (sE sts)waa + sAwapwppwpa

+Bw p'w~, +sCw ', (3)

where p, is the modulus of rigidity, E is the modulus of
compression, and A, 8, C are the third-order elastic
constants. For the purposes of this paper, all terms of
fourth order or higher are assumed to be negligible.

De6ning two new tensors:

uaP S (ua, P+uP, a) ~ VaP S (ua, P uP, a) )

the Hamiltonian density can be written as a sum of two
Hamiltonian densities:

~o=tsuap + (sE sts)uaa p

annihilation and creation operators of the linear har-
monic oscillator whose only nonzero matrix elements
are

(10)

where lV is the initial number of phonons, Ace is the
phonon energy, t is the time, and m is the mass of the
volume of interaction V. To conserve space the large
parenthesis notation is used where the upper term is
taken when the upper signs of the equation are used,
etc.

The matrix elements of the components I p and v p

are obtained by di6erentiating the displacement
components:

(1V+1Iu pI JV)

=+—e "'(e kp+epk )(iV&1I ItV), (11)
2

(V~llv-pl~ )

e"'"'(—e kp
—epka)(V+1I X). (12)

2 8

Since eXk=0 for longitudinal phonons and e k=0 for
transverse phonons, (tV&1Iv pI V) and (tV+1Iu IiV)
vanish, respectively, for longitudinal and transverse
phonons.

Assuming that the initial phonons interact for a
suKciently long time, the transition probability (the
rate of occurrence of a process per unit time) I' between
the initial i and final f states is given by"

I'= (2sr/It)H, r"Sr(B,), H, r's=
I (fIH'It') I', (13)

where 8, is the energy of the initial state, and Sr(h;) is
the density of 6nal states about 8,. The perturbing
Hamiltonian H is obtained by integrating the perturb-
ing Harniltonian density over the volume of interaction.
The integration yields a V factor provided the total
momentum is conser ved and zero otherwise.

III. GENERAL INTERACTIONS

From Kq. (11) and the conservation of momentum,
it is apparent that the first t.erm of Eq. (9) represents
three collinear longitudinal waves. Although Shiren"
has observed this interaction, it is generally forbidden
if dispersion is present and will not be considered
further.

Investigating all possible three-phonon interactions
satisfying the conservation laws of energy and momen-
tum and recalling that the speed cg of the longitudinal
phonons (I) is always greater than the speed e, of the

' J. M. Zunan, Electrons and Pttonons (Oxford University
Press, New York, 1962).

"N. S. Shiren, Phys. Rev. Letters ll, 3 (1963).
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transverse phonons (T), the only nonzero interactions
are given by

The S„ terms emphasize that the interaction geome-
tries of Fig. 1 do not specify which are the initial and
final phonons. When this specification is made, the
h~„+1 terms are used for the created phonons and the.V„ terms for the annihilated phonons.

It is apparent from Fq. (16) that the zeros of pH, f'
depend only on the interaction geometry. In fact, the
matrix element vanishes whenever the polarization
vector is perpendicular to the plane of interaction or
whenever the longitudinal phonons intersect at right
angles. It is even more interesting that the zeros of
H 'f depend on the material as well as the interaction

g INTERACTION

k~

P INTE RACT ION

FIG. 1. Phonon vector relationships.

"Conyers Herring, Phys. Rev. 95„9S4 (1954).

These interactions will be called the n and P inter-
actions, respectively, with the corresponding matrix
elements labeled, H, f' and pH;~'. (In anisotropic solids,
Herring" has shown that the T~L+T interaction
also exists and must be considered. )

To evaluate the foregoing equations, use rectangular
Cartesian coordinates, let u~ be a longitudinal wave
traveling in the x~ direction, let ua be a transverse wave,
and define the x2 direction to be in the plane of inter-
action formed by the three propagation vectors. With
these restrictions and letting 8 be the polarization
angle between e and the plane of interaction, the
matrix elements can be evaluated from the interaction
geometries of Fig. 1 to give

&gHjf 2 (0/cg ){cose2cos03

&(f(E+~~p)+(2B+E+A+7p/3) cos(24'+2%)$
+sin02 sin03I (B+E—3p)2 cos(4'++)

+ (A+4@) cos4 conj), (13)

BH,~'= (0/cP) (2B+E+A+7p/3) cos03 cos4

&(Lcos4 sin2++sin4 cos2+j, (16)

where

5'cogor2(o3 Xg 1 E2 1 E3 1.

I IG. 2. Interaction
geometry.

geometry. This presents the possibility of determining
the third-order elastic constants of isotropic solids by
experimentally determining the geometry that produces
the zeros of this interaction. This determination would
be very accurate since it does not depend on any multi-
plicative factors such as Q. It is expected that in aniso-
tropic solids the P interaction zeros will also depend on
the material constants.

IV. SCATTERED WAVE DISPLACEMENT
AMPLITUDES

Of all the interactions occurring between the qr
phonons and the q2 phonons, only a small number, given
by the transition probability, will generate g3 phonons.
Each newly created pa phonon may be visualized as the
center of a Huygeos' spherical wave which interacts
with adjacent Huygens waves to produce a diffraction
pattern. In other words, diffraction from a small volume
element, or single aperture, is produced and the appro-
priate classical equations can be applied. For example,
if the scattered beam has a circular cross section of
diameter d, the classical expression 15.3 c3/~3d gives the
angular beam width of the main lobe. We will determine
the displacement amplitude at the center of the main
lobe in the far field.

Integrating the Huygens' spherical waves over all
angles, the transition probability per unit time is
evaluated as

.P=4xr'qsc3, (2o)

It is now convenient to change the above notation for
labeling the phonon states and their interaction geome-
tries. As diagrammed in Fig. 2, let the first- and second-
phonon states represent the experimentally generated
input phonons interacting at an angle y. The third-
phonon state then represents the created phonon
emitted at an angle y.

Envisioning a classical elastic wave as being an
ideally dense homogeneous beam of phonons, the beam
intensity I„is given by

I =10'Ac„&a q„, I =-', 10'pc„~„'X ', (18)

where c is the phonon speed, q„ is the phonon density,
and the 10' factor is the conversion factor from the
mks to the cgs units used in this paper. The second
equation is the classical expression where X„ is the
displacement amplitude. Consequently, the relationship
between the phonon density and the displacement
amplitude is
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TABLE II. Elastic constants and c,/c~ for five materials.

Material
p

10'P dyn/cm' 10"dyn/cm' c =c(/ci
E 'J3

10"dyn/cm' 10"dyn/cm' 10' dyn/cm'

REX-535 Nickel-
Steel"
Copperb
Armco iron'
Polystyrene'
Pyrex'

78.00
46.00
82.00

1.381
27.50

90.90
131.0
110.0

2.889
13.53

0.562
0.454
0.547
0.495
0.633

142.9
161.7
164.7

3.810
31.86

—730—1590
1100

10
420

—225
170—1580

8.3—118

a See Ref. 15.
"See Ref. 16.
o See Ref. 14.

depicted in (14). The factors determining the inter-
action geometries (see Fig. 2) are also included in
Table I. Cases I and V are a interactions and cases II,
III, and IV ate P interactions. (Note that cases II, IV,
and V could be ut. ilized to make an ultrasonic amplifier. )
It can be shown that for case I, Eq. (25) is completely
symmetric in co& and ~2, i.e., for this case the scattered
wave displacement amplitude is independent of the
labeling of the two input waves. It can also be shown
from Eq. (25) that case V is just the reverse interaction
of case I and that cases II, III, and IV are all reverse
interactions of each other. This is as it should be.

Jones and Kobetts investigate this same problem by
~ising the classical wave approach and applying the
Fourier transform method for solving the inhomogen-
eou s vector wave equation. However, the following
term, in their notation,

—(E—sp+8)[(Ap'kr) (kr'ks)Bp+ (Bp'ks) (kr'ks)Ap],
(26)

where Ap and Bp are the input wave displacement ampli-
tudes, was inadvertently omitted from their I+ vector.
Including this term and calculating the scattered wave
displacement amplitudes from their results, Eq. (25) is
again obtained. This is most gratifying.

Only the absolute value of Eq. (25) should be calcu-
lated since the sign has been ignored in the deriva-
tion and since only Xa' is pertinent to experimental
measurements.

Figure 3 is a plot, for the five materials listed in
Table II, of

~
Xs~ versus pp for case I with Ot=8s=90'.

In order to present all of the calculations in a readable
manner without circuitous explanations, the values of

~
Xs

~

are given in arbitrary units and each curve has
been arbitrarily shifted in the vertical direction. In
other words, only the shapes of the curves are accurately
retained. This is also true for Figs. 4 and 5. The actual
values of the displacement amplitudes for all inter-
actions in iron, copper, polystyrene, Pyrex, and nickel-
steel, are available from the authors.

Case I is an 0. interaction and it is quite apparent in
Fig. 3 that the zeros of the displacement amplitude do
indeed depend on the material constants. It is interest-
ing that the curves for polystyrene and iron do not have

V. NUMERICAL RESULTS

There are only five isotropic materials for which
the third-order elastic constants have been pub-
lished. ""The diAiculties encountered in these meas-
urements can be appreciated by the large experimental
errors —on the order of 100% for some of the constants. .

The available third-order elastic constants and other
pertinent data are tabulated in Table II.

Using the data in Table II, the value of
1 Xs~ as given

by Eq. (25) can be calculated as a function of the inter-
action angle y. The only unknown is the value of the
volume of interaction V. We will use, as an approxi-
mation, the volume common to two completely inter-
secting cylinders, each of diameter l, i.e.,

IOX
2

V= -', Pcsc p. (27)
'4 D. S. Hughes s,nd J. L. Kelly, Phys. Rev. 92, 1145 (1953)."D. I. Crecraft, Nature 195, 1193 (1962)."A. Seeger and O. Buck, Z. Naturforsch. 15a, 1056 (1960).
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Fro. 4. Interaction case II (ep=0') for three solids.
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dominates each curve shape near interaction angles of 0
and 180'.

Figure 5 is a plot for iron of the displacement
amplitude curves for several additional interaction
cases. All of these figures illustrate the strong de-
pendence of the scattered wave displacement amplitude
on the properties of the solid and on the interaction
geometry.

VI. SUMMARY

K

I-K

lS
LL

A
X 2-

o / /
~e "xX !I! j'eli

0' 20' 40 60 80' l00' 120' l40' l60' I80'

Fzo. S. Five interaction casesforiron: (A) easel (ez (4=0'=);
(B) case III (82 =0'); (C) case IV (6—0 ) (D)
(S2

——iz&
——90'); (E) case V (&s=-&a =0').

zeros but do exhibit minimums. However, zeros may
exist for a diferent choice of polarization angles. The
end points of each curve essentially represent the angu-
lar relationship at which the conservation laws of energy
and momentum can no longer be satisfied. These points
can be easily found from Table I and the requirement
that

~
cosy

~

&1.
Figure 4 is a plot, for iron, polystyrene, and steel, of

case II with Hs ——O'. This case is a P interaction and, of
course, the zeros of the curves are independent of the
material. Caution must be exercised in interpreting
these curves since the approximation in Eq. (27)

The nonlinear interaction of two elastic waves in a
homogeneous, isotropic solid has been investigated by
using the fii st-order time-dependent perturbation
theory of quantum mechanics to calculate transition
probabilities between available phonon states. Exclud-
ing collinear interactions, it has been shown that there
are two general types of possible interactions, depending
on whether the zeros of the scattered wave displacement
amplitude do or do not depend on the third-order elastic
constants. The former type could be used to evaluate
the third-order elastic constants. A relationship be-
tween phonon density and displacement amplitude was
then derived. Using the concept that newly created
phonons are sources of Huygens waves, the exact
scattered wave displacement amplitudes were then
derived for all possible interactions. The resultant dis-
placement amplitudes agiee exactly with those derived
from the classical approach of applying the Fourier
transform method for solving the inhomogeneous vector
wave equation. The predicted displacement amplitudes
were then plotted for various materials and interaction
geometries. The results will be compared to experi-
mental measurements in paper II.~
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