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Measurements and analysis of resistivity as a function of temperature are presented for dilute magnesium
alloys with solutes Al, Ag, Li, and Cd over the temperature range 4.2-372°K. It is found that previously ob-
served negative deviations from Mathiessen’s rule occurring in these alloys can be accounted for by consider-
ing the change in Griineisen 6 on alloying and, in fact, a reduced resistivity p/ps is found to have the same de-
pendence on reduced temperature 7'/ as pure Mg for all of the nontransition metal alloys studied. Based on
the above observation, an empirical method is presented for analyzing the temperature-resistivity character-
istic of magnesium alloys containing transition-metal-induced low-temperature resistivity anomalies. This
spin term in the resistivity is found to occur at much higher temperatures than previously thought and above
the temperature of magnetic ordering varies logarithmically with temperature. The magnitude of the
anomaly is found to vary linearly with transition-metal concentration. Both of these findings are in agree-

ment with recent theoretical studies.

I. INTRODUCTION

T is customary to consider the electrical resistivity of
a metal as the sum of two terms—one due to thermal
vibrations (p:), and the other due to impurities (po).
Mathiessen! showed experimentally that po depends on
the solute concentration and is largely independent of
temperature, while p; is temperature-dependent and
independent of solute concentration. This leads directly
to the usual analytic statement of Mathiessen’s rule,
which is

9p(T)
T

_9p(T)
aT

alloy pure solvent

The constancy of po is always assumed and any de-
parture of p;(7) in alloys from its value in the pure
metal solvent is treated as a deviation from Mathiessen’s
rule. 7

In early experiments, Linde? reported only small
positive deviations from Mathiessen’s rule for the noble
metals containing nontransition element solutes.® The
polyvalent metals, aluminum and tin, have been studied
by Robinson and Dorn* and by Alley and Serin,® where
positive deviations from Mathiessen’s rule were found
for nontransition element solutes. Salkovitz et al.% were
the first to report negative deviations from Mathiessen’s
rule in alloys of magnesium containing nontransition
metal impurities and measured in the temperature range
(20-35°C). Deviations from Mathiessen’s rule have been

* This research was supported by the Aeronautical Systems
Division under contract AF33(657)-8744 and the U. S. Office of
Naval Research under contract NONR-3644(00).
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discussed from a theoretical point of view’” by numerous
authors. All conclusions seem to point to the fact that
positive deviations would be expected ; however, Jones
has pointed out that a change in the phonon scattering
due to alloying could possibly produce a negative
deviation from Mathiessen’s rule.

Salkovitz et al.® found it possible to explain their
observation of negative deviations from Mathiessen’s
rule for dilute binary magnesium alloys by using the
Jones overlap model. However, recent determinations®
of the Fermi surface of magnesium would indicate that
all of the suggested Fermi surface overlaps at the zone
boundaries have already taken place in the pure solvent.
This leads to the speculation that the observed negative
deviations from Mathiessen’s rule could be explained by
considering solely the influence of impurities on the
lattice component of resistivity. Such a study required
precise determinations of the resistivity over a more
extended temperature range than previously reported in
binary alloys of magnesium.® We wish to report these
resistivity measurements made from 4.2 to 373°K on
various binary magnesium alloys, and to analyze the
results to obtain the concentration dependence of the
Griineisen @ value.

We then go on to show that a plot of the reduced
thermal component of the electrical resistivity, p/ps as a
function of 7/, is the same for all of the alloys con-
taining nontransition metal impurities. Using this in-
formation, it is possible to separate the anomalous
resistivity term in alloys containing transition metal

7 For discussion and review see H. Jones, in Handbiich der
Physzk edlted by S. Fliigge (Springer-Verlag, Berlin, 1956),
Vol. X

'See (a) W. L. Gordon, A. S. Joseph, and T. G. Ech, The Fermi
Surface (John Wiley & Sons, Inc., New York, 1960). (b) R. W.
Stark, T. G. Eck, W. L. Gordon and F. Moazed Phys. Rev.
Letters 8, 360 (1960) (c) M. G. Prlestly, L. M. Fahcov, and Y.
Weisz, Phys Rev. 131, 617 (1963).
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TasLE I. Nominal composition, resistivity, and average values of § and 7(0) for the alloys studied. Identification numbers for the binary
nontransition solute magnesium alloys are the same as those used in Ref. 6.

104 (dpa dp,,)
Nominal Resistivity — -\ T < ar A _

Specimen conc. 273) pp(273)\dT 4T 104—[ :l 0

number Solute at.% 4Q-cm Ref. 6 (°K™Y) dT{_p,(273) (°K) (r(0))av
728 Pure Mg 4.052 340 cee
406 Ag 0.49 4.382
409 Ag 1.95 5.479 —1.340.2 —1.040.2 312
117 Li 4.42 6.676 +0.4+0.2 +0.2+0.2 319
725 Cd 8.64 9.285 —2.6+0.2 —3.2240.2 264
400 Al 0.29 4.545 —1.140.2 —0.940.2 328
402 Al 0.80 5.624 —1.4+0.2 —1.3+0.2 314
405 Al 241 8.333 —3.940.2 —3.6+0.2 300
500 Mn 0.056 4.40 325 0.058
501 Mn 0.089 4.51 318 0.087
502 Mn 0.19 4.87 320 0.157
503 Mn 0.4 5.88 295 0.284
504 Mn 0.8 7.03 290 0.452

impurities,® making appropriate allowance for the high-
temperature deviations from Mathiessen’s rule. This
separation results in a spin-dependent resistivity com-
ponent having a concentration and temperature de-
pendence in agreement with the recent theoretical
predictions of Kondo.?
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Fic. 1. Resistivity cryostat and temperature control system.
The shielding of the bridge is shown in detail including the trans-
former (5) which isolates the 200 cps generator (4) from the bridge.
It should be noted that the bridge balance condition will be fre-
quency and capacity-independent provided Ci/Ca=R3/R1, where
C1 and C: are the shielding capacitances shunted across R; and R,
respectively.

9 The observation of so-called low-temperature resistance
“minima and maxima” in magnesium and identification with
transition metal impurities has been discussed by F. T. Hedgcock,
W. B. Muir, and E. Wallingford, Can. J. Phys. 38, 376 (1960).

10 1. Kondo, Progr. Theoret. Phys. (Kyoto) (to be published).

II. EXPERIMENTAL PROCEDURE

The magnesium alloys studied are fully described in
the work of Salkovitz ef ol., and the specimens used in
the present work were kindly supplied by these authors.
To obtain resistance samples, pieces were cut from the
supplied ingots, rolled into 0.01-in. strips, etched, cut
into specimens $X4 in. long and annealed in a helium
atmosphere at 7 cm of Hg at 450°C for 12 h. Table I
shows the concentration, resistivity and original iden-
tification number of the specimens.!

The double chamber cryostat and its temperature
controller are shown in Fig. 1. The inner chamber,
containing the resistance samples, is filled with a few
millimeters of helium exchange gas, and the outer
chamber is pumped hard after obtaining measurements
at the boiling point of the refrigerant. The temperature
is controlled by driving the bifilarly wound heater (1)
from the amplified output of a Wheatstone bridge having
the resistance thermometer (2) as one of its elements.
By adjusting the value of Rj, the temperature in the
inner chamber can be maintained between 4.2 and
78°K when liquid helium is the refrigerant, and between
78 and 273°K when liquid nitrogen is the refrigerant.
(Care must be taken that overshoot does not occur
otherwise the feedback becomes positive.) The gain and
stability of the temperature control system are sufficient

1 Since the specimens were cut from the ends of the supplied
ingots, it was anticipated that inhomogeneities in the ingot might
lead to a specimen resistivity different from the value quoted by
Salkovitz et al. for the ingot. In order to obtain a more re-
liable value for the resistivity of the specimens, a graph of
[1/p(273)10p/9T Ja1a as a function of 1/p(273) was plotted for
each alloy system using the data given by Salkovitz ef al. The
value of the resistance ratio 7(7)=R(T)/R(273) was then plotted
as a function of temperature and the value of (ar(T)}gT)m,
determined. Since

(M| _ 1 IR(T)] _ 1 9p(T)
AT |ais R(273) 9T |as 273 oT

The resistivity of the specimens was determined from the graph
and is listed in Table I,

213 "
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TasLE II. Resistance ratio as a function of temperature for the binary nontransition solute magnesium alloys listed in Table I.

7(T) 7(T) r(T) r(T)

T°K 406 117 728 T°K 725 409 T°K 400 402 T°K 405
427 00773 0.373;  0.00246; 424 0537, 0.2595 424  0.1242  0.289; 428  0.5445
634 00774 0.373; 0.00246; 6.34  0.537; 0.259, 12.47 01245  0.290; 772 0.5444
14.15  0.0782 0.373;  0.00297; 10.79  0.538, 0.259 1524  0.1248  0.290; 10.61  0.544,
20.10  0.0798 0.374, 0.00401, 1405  0.538, 0.259 18.38  0.1256  0.291, 1237 0.544,
2476 00817 0.376, 0.00544, 20.35  0.5405 0.2613 2038  0.1260 0.291, 1530  0.544,
34.8;  0.0905 0.381; 0.01250 249,  0.542; 0.263s 233, 01272 0.292 1871  0.544;
4132 0.0999 0.388, 0.02107 350,  0.550, 0.272, 2715 0.1294  0.294; 20.74  0.545,
590.39  0.1410 0.417; 0.0634; 41.6; 05565 0.280; 330, 01341  0.299, 2345  0.546,
79.9 0.2036 0.461, 0.1307 50.8;  0.583, 0.317; 42.0; 01457 0.309; 2735 0.547,
80.3 0.2467 0491, 0.1776 77.9 0.616;  0.367; 5795  0.179s  0.338, 333 0.5505
107.4 0.322; 0.543; 0.259, 90.2 0.6415  0.405, 779 0.242,  0.389 425,  0.557,
124.3 0.394;  0.5915 0.338; 108.9 0.682;  0.468, 95.3 0.307,  0.442 53.0,  0.569,
146.5 0.448,  0.654, 0.440; 125.9 0.717,  0.525, 110.8 0.368,  0.493, 723, 0.601,
1771 0.614, 0.741, 0.577, 147.2 0.761;  0.597, 127.8 0.437,  0.549 77.8 0.611,
198.3 0.703  0.800  0.674, 179.3 0.825  0.703; 151.3 0.531;  0.620, 92.8 0.641,
230.5 0.833 0888  0.817 204.0 0.872  0.783, 186.8 0.668s  0.7335 110.8 0.6795
273.1 1.000  1.000  1.000 273.1 1.000  1.000 215.5 0.782;  0.822 129.7 0.717,
202.2 1073  1.045 1.078 297.8 1.041 1074 273.1 1.000  1.000 153.7 0.7675

309.6 1.137  1.088  1.149 312.2 1065  1.115 295.9 1.083  1.064 191.4 0.843

320.8 1213 1140  1.233 335.0 1.103  1.182 316.1 1153 1.121 220.0 0.898

351.0 1292  1.196  1.321 353.3 1134 1.234 320.4 1171 1.135 273.1 1.000

371.2 1.370 1244 1405 373.6 1165  1.291 331.8 1.208  1.167 208.2 1.044

352.2 1.285  1.225 314.8 1.074

372.7 1.358 1287 334.0 1.109

355.2 1.149

372.7 1.179

to insure constancy of temperature to 0.19 or better for
periods of at least 15 min throughout the entire temper-
ature range. Temperatures above 273°K were obtained
by immersing the cryostat, with the outer shield re-
moved, in a well stirred water bath.

The temperature of the specimens was measured with
thermometers located on the rear of the contact board
(3). All temperatures above 20°K were measured using
a platinum resistance thermometer. Temperature values
were obtained from the published values of the relative
thermal component of the resistivity as a function of
temperature.’? Between 4.2 and 20°K, the temperature
was measured using a carbon resistance thermometer
which was calibrated®® ¢» situ. Three known calibration
temperatures were obtained by observing the supercon-
ducting transition temperature of lead, tin, and rhenium
specimens in the cryostat.

A current potential method with knife-edge pressed
contacts was used to measure the resistance of the
specimens. The voltages were measured using a galva-
nometer amplifier having series inverse feedback to
increase the input resistance and stability.* The speci-
men current was adjusted manually and kept constant
within 0.019, during any set of measurements. Provision
was made to reverse the current so that the effect of
stray thermals in the potential leads could be reduced.

12 G. K. White, Experimental Technigues in Low-Temperature
Physics (Oxford University Press, Inc., New York, 1959), p. 115.

137, R. Clement and E. H. Quinnell, Rev. Sci. Instr. 23, 213
(1952).

“ D, K. C. MacDonald, J. Sci. Instr. 24, 232 (1947). See also W.
B. Muir, Rev. Sci. Instr. 35, 408 (1964).

The estimated accuracy of the resistance ratio measure-
ments is 0.29,.

The cryostat described above was designed so that
three specimens could be run simultaneously. In prac-
tice, measurements were made on two alloys and pure
Mg, thus enabling the resistance ratio of the alloys and
pure Mg to be compared at a given temperature without
recourse to interpolation. Since the accuracy of presen-
tation is limited when the results are presented graphi-
cally, the temperature dependence of the resistivity is
shown in tabular form. Table II shows the data for
alloys containing nontransition metal solutes, whereas
Table III shows the data for alloys containing transition
metal solutes. We will postpone discussion of the alloys
exhibiting resistance anomalies until Sec. IIL.2. For
alloys containing nontransition metal solutes deviations
from Mathiessen’s rule A(T) can be expressed as the
difference between the ideal resistivity of the alloy
psa(T) and the ideal resistivity of the pure metal p;,(7).
Since the total resistivity p(7) is given by

o(D)=potpi(T),

AT:[Pd(T)‘_POa]_[PP(T)_PW]' (1)

Experimentally, it is more convenient to measure the
resistance ratio R(T)/Reis=7(T). Assuming thermal
expansion can be neglected, Eq. (1) can be written as

A(T)/ps*™ = poa— pop/ p»*™
=7a(T) (pac2rs)/pp®) —75(T). (2)

We know that A(T) will be zero at =0 and in practice
will be zero for T=4°K. Thus, the right-hand side of

then
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TABLE III. Resistance ratio as a function of temperature for the binary transition solute magnesium alloys listed in Table I. These
data are from the thesis of E. Wallingford, University of Ottawa, 1961, and we gratefully acknowledge his permission to quote these

results.
500 501 502 503 504
T°K »(T) T°K 7(T) T°K 7(T) T°K r(T) T°K 7(T)
1.95 0.08387 1.94 0.1219 1.88 0.2102 4.65 0.354 4.60 0.537
2.66 0.08162 2.96 0.1186 2.96 0.2094 6.80 0.351 6.22 0.539
2.96 0.08069 3.84 0.1162 343 0.2082 8.92 0.346 7.62 0.540
3.43 0.08064 4.20 0.1156 3.84 0.2072 13.85 0.338 10.7 0.537
3.84 0.07860 5.37 0.1130 4.20 0.2063 21.7 0.328 19.8 0.525
4.20 0.07796 6.49 0.1108 5.40 0.2034 321 0.325 28.8 0.511
5.59 0.07555 7.27 0.1094 6.50 0.2002 36.1 0.327 34.6 0.513
7.20 0.07320 13.0 0.1041 7.35 0.1981 40.2 0.329 38.4 0.514
11.2 0.07093 27.4 0.1043 14.2 0.1873 43.3 0.332 42.0 0.515
254 0.07071 33.7 0.1079 30.3 0.1843 46.4 0.335 45.5 0.516
32.8 0.07540 37.9 0.1130 34.7 0.2025 49.3 0.339 48.0 0.518
37.0 0.08035 419 0.1183 38.8 0.1910 51.7 0.343 50.9 0.520
41.2 0.08566 48.3 0.1291 45.2 0.1992 54.3 0.347 53.2 0.522
47.8 0.09687 55.0 0.1438 53.4 0.2139 56.1 0.350 55.5 0.524
52.4 0.1075 62.5 0.1635 62.7 0.2337 59.1 0.355 58.1 0.527
57.9 0.1212 77.0 0.2116 69.7 0.2551 68.1 0.381 64.3 0.537
64.6 0.1410 89.4 0.2595 77.0 0.2780 81.9 0.420 75.1 0.556
69.7 0.1575 93.6 0.2756 87.5 0.3159 96.6 0.466 89.4 0.585
81.9 0.2040 100.4 0.3033 96.7 0.3474 109.7 0.508 103.7 0.617
91.6 0.2409 111.8 0.3531 105.1 0.3796 133.5 0.576 125.5 0.665
104.1 0.2974 124.6 0.4082 112.5 0.4094 156.0 0.647 151.0 0.722
1114 0.3248 133.5 0.4443 125.5 0.4600 183.0 0.733 178.5 0.787
123.9 0.3804 142.5 0.4839 134.5 0.4933 198.0 0.778 195.0 0.824
132.5 0.4162 1514 0.521 143.0 0.529 273.1 1.000 273.1 1.000
141.6 0.4580 161.3 0.562 152.0 0.564
150.5 0.4976 168.3 0.592 162.0 0.600
160.4 0.540 178.4 0.634 168.0 0.627
167.9 0.571 189.2 0.679 180.0 0.665
177.7 0.613 197.6 0.712 190.2 0.706
188.4 0.660 208.0 0.755 209.0 0.775
197.0 0.695 273.1 1.000 273.1 1.000
206.8 0.738
273.1 1.000

Eq. (2) gives (poa—pop)/pp® at temperature below
4°K. Hence, the relative deviations from Mathiessen’s
rule can be obtained by plotting 74(T)pacrs/prers
—rp(T) as a function of temperature. Figure 2(a) shows
the results of doing this for the most concentrated alloy
from each group using data taken from Tables I and II.
Since

(8p/9T) | a— (ap/aT)]pz_d_[A(T)]
dTLpp(ars) ’

the high-temperature slopes in Fig. 2(a) can be com-
pared with the values of (9p/d7T)|anoy— (9p/37T) | pure
quoted by Salkovitz et al. These quantities are listed in
Table I, and good agreement is found for the various
alloys.

The results in Fig. 2(a) show graphically the sur-
prising feature of negative deviations from Mathiessen’s
rule.

Pp(273)

III. ANALYSIS OF RESULTS

1. Alloys Containing Nontransition
Metal Impurities

The Griineisen formula for the resistance of a metal
can be written

pi(T)/p:(6)=1.056(T/0)5(6/T),

where G(6/T) has been tabulated by Griineisen and p;(6)
is the ideal resistivity of the metal at temperature 6.
Kelly and MacDonald'® show how a value of § may be
deduced from resistivity data provided the value of 6 is
assumed independent of 7'. They write

do(T)/dT  dp(T)/dT  dy(1)/aT
piT)/T  (p(D)—=po)/T  (¥(T)—v0)/T

x dG(x)|

o @ | ®)

where x=60/7T. The function on the right-hand side of
Eq. (3) has been evaluated as a function of % so that by
evaluating the left-hand side of Eq. (3) for a particular
alloy, a value of 6 can be found at a given temperature.
Figure 3 shows 6 as a function of temperature for the
most concentrated alloys measured. The value of 6
remains constant over a 100°K temperature interval
with large deviations occurring at both the high and
low-temperature limits,'® and therefore, the average
value of the characteristic temperature 8 in this temper-

15 F, M. Kelly and D. K. C. MacDonald, Can. J. Phys. 31, 147
(1953).
16 The fit appears to be good in the region expected, i.e., 0—30.
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phonon spectrum due to alloying. Included in Table I
are average values of 4 for the alloys measured.

If the observed deviations from Mathiessen’s rule are
due to changes in 6 on alloying, then p;(T)/p:(6) plotted
as a function of 7/8 should yield a curve which is in-
dependent of solute and solute concentration as is shown
in Fig. 4. A more accurate presentation of the results in
Fig. 4 can be achieved by noting that

Pia(T)/Pia(éa)"'Pip(T’)/Pip(ép):O> (4>

when T”/6,=T/8, Equation (4) can be expressed in
terms of the experimentally more convenient resistance
ratio as

ro(T)—B8(T)=74(0), ©)

7oL (8p/02)T]—17,(0
B(T)=[r4(8.)—74(0)] H / i ()-
"11(01’)_711(0)

Figure 2(b) shows a plot of 7,(T)—B(T) as a function
of temperature for the alloys measured. There appears
to be no significant trend away from the value 7,(0) for
any alloy thus indicating that the deviations from
Mathiessen’s rule observed in these alloys can be
satisfactorily accounted for by a change in 8 on alloying
and that the reduced thermal component of the re-
sistivity, plotted as a function of reduced temperature,
is independent of solute and solute concentration for
binary nontransition metal alloys having magnesium as
solvent.
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2. Results for Alloys Containing Transition
Metal Impurities

We assume that what we will now call “normal
deviations from Mathiessen’s rule” in alloys containing
transition metal solutes are identical with those alloys
formed with nontransition solutes, and can be accounted
for solely by a change in the Griineisen 6 value. Thus, we
propose that if 6 can be determined for the paramagnetic
alloy from the high-temperature resistivity, we should
be able to estimate p;(7) for a given 6 since

pi(T)=p:(0)(T/6),

where f(7/6) is determined from the empirical curve of
Fig. 4. In terms of the resistance ratio, this means

ri(T)=r(T)—r(0)
=[r(6)—r0)1/(1/0). (6)

Thus, values of § and 7(0) are required to estimate (7).
It follows that the spin-dependent part of the resistance
(7s) can be obtained by simply subtracting #;(7T") from
the measured value 7(T).

The method of calculating # and 7(0) can be con-
sidered best under two classifications:

(a) Extremely dilute alloys where the anomalous
resistivity would be expected to be negligible at $6.17

(b) More concentrated alloys where the anomalous
resistivity extends above 36.

Case (a)

A value of 7(0), say 74(0) is assumed and the pro-
cedure for deriving 6 as outlined in Sec. ITL.1 is carried
out. The value of 6, say 61, so obtained is used to calcu-
late a value of 7(0), say 7.(0), in the following way:
Using the measured values of 7(T) at two temperatures

17 The choice of 46 is made empirically.

AND W. B. MUIR

Ty and T,,'® Eq. (6) is solved for r(0) by noting
H(T)—r(0) f(T4/0)
r(T)—r(0) f(T1/6)

n(@)r (T1)—7(Ts)
n@)—1

where 7(0)= f(T5/6)/f(T1/6). The above procedure is

carried out reiteratively until a value of 8 is found which

makes 74(0) and 7,(0) equal. Since the value of 6 is

usually above the maximum temperature of resistivity

measurement a value of 7(6) —7(0) was derived in the

following manner. From Eq. (6) at temperatures 75 and
T, differences can be taken such that

r(To)—r(T4)
F(T3/6)— f(T1/6)
1'—'7’<T1)
F(Ty/8)n@)—1]

We now have 7(6)—7(0) and 6, and hence from Eq. (6),
7:(T) and 7(0) can be evaluated and the separation of
7s(T) carried out.

or

7(0) , (7

r(0)—r(0)=

Case (b)

Since the spin-dependent term extends above 6/3, the
method of Kelly and MacDonald used in case (a) can no
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Fi1G. 4. The reduced thermal component of the resistivity plotted
as a function of reduced temperature for the nontransition solute
binary magnesium alloys.

18 Ty and T'; are chosen to be 130 and 273°K, respectively, where
T1=6/3 and T is the maximum temperature of measurement.
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longer be used conveniently to estimate 6. In this case
7(0) is estimated by extrapolating a plot of 7(0)/[1—7(0)]
versus7(4.2)/[1—7(4.2)]. The value of r(4.2)/[1—7(4.2)]
is a measure of concentration so that an extrapolation
of the above curve can be made into the region of higher
concentration and values of 7(0) determined from the
known values of 7(4.2). With this information and using
temperatures 75 and 7’5, where Ty and T; are, re-
spectively, 273 and 200°K, a value of #’(f) is derived
from Eq. (7) which is equal to

F(T3/6)  £(273/0)

F(T3/8)  £(200/6)
7(273)—7(0)

N 7(200) —7(0)

From known values of 7(0), 7(273), and 7(200), a value
of 6 can be estimated using a graph of #’(f) as a function
of 6. Again, 6 is higher than the highest temperature of
measurement ; thus, 7(6)—r(0) is obtained from Eq. (6),
since we already know 7(0), and 7(T") and 7(273.1°K).
We now have values of 8, 7() and 7(0) so that 7,(T) can
be evaluated as before, and the separation of 7,(T)
made. Figure 5(a) shows 7,(T) as a function of tempera-
ture for the various alloys listed in Table I.

In recent theoretical work on the resistivity minimum
in dilute alloys, Kondo® has carried out a calculation of
the scattering of conduction electrons by magnetic
impurities to the second Born approximation. He pre-
dicts that the resistivity due to spin scattering p,
should have the form

ps= CPM[1+ (3ZJ/EJ') 10gT] s (8)

where z is the electron/atom ratio, E; is the Fermi
energy, J is the s—d exchange integral, ¢ is the concen-
tration of paramagnetic ions (atom fraction), and
pau=23rmJ2S(S+1)(V/N)/2e*hEy, where S is the spin
value of the ion (assuming an S ground state), N/V is
the number of atoms per unit volume, and e is the
electronic charge. The term in logT is the “minimum”
term, and the constant term py is the Yosida-Kasuya
term.’* In the presence of a cooperative magnetic
interaction pys will decrease below the Néel temperature
and at absolute zero will have a constant value. In the
preceding analysis of the resistivity curves, the constant
term par has been included in the residual resistivity and
has not been specifically allowed for above the Néel
temperature.

Figure 5(b) shows a logarithmic plot of T versus p,(T’)
where it can be seen that good agreement with the
theoretical prediction is obtained. The inset of the figure
shows the concentration dependence of p;(1°K) as a
function of concentration, and as is expected from Eq.

' (8)=

1 (3) K. Yosida, Phys. Rev. 106, 893 (1957); 107, 396 (1957).
(b) T. Kasuya, Progr. Theoret. Phys. (Kyoto) 22, 227 (1959).
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Fic. 5. (a)The relative spin resistivity as a function of tempera-
ture for the various Mg-Mn alloys listed in Table I. (b)The
reduced spin resistivity as a function of InT". The inset in the figure
is the magnitude of spin resistivity at 1°K plotted as a function of
concentration.

(8), it varies linearly with ¢. From the slopes of the log7
graph, values of J can be estimated which yield an
average value of 0.76)X1072 erg, which is in fair
agreement with the previously reported? value of 0.48
X 1072 erg. This previously reported value was derived
from magnetoresistivity and zero-field resistivity results
in the region of the resistivity maximum. The calculation
ignored the contribution due to the minimum in the
presence of a maximum and would therefore be expected
to underestimate a value for J.

IV. CONCLUSIONS

It has been shown that provided appropriate allow-
ance is made for a change of the Griineisen 6 value in
dilute alloys, containing nontransition element solutes,
the temperature dependence of the thermal component
of the electrical resistivity is independent of the nature
or concentration of the solute. Furthermore, the adjust-
ment of the 6 value is all that is required to obtain
agreement with Mathiessen’s rule.

Assuming that transition element solutes only in-
fluence the lattice scattering above the temperature of

2 I, T. Hedgcock and Y. Muto, Phys. Rev. 134, A1521 (1964).
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the low-temperature resistance anomalies it is possible
to separate, over an extended temperature range, the
spin-dependent resistivity occurring in these alloys. The
temperature dependence of the spin-dependent resis-
tivity term is experimentally found to vary with log7,
and its magnitude found to vary linearly with para-
magnetic impurity concentration in the solvent mag-
nesium. Both of these experimental findings are in
agreement with recent theoretical predictions of Kondo
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and yield a value of 0.76X107% erg for the s—d ex-
change integral.
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Isotope Effect in Self-Diffusion in Palladium
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The diffusion of Pd'® in single crystals of palladium has been measured over the temperature range of
1050-1500°C by the tracer-sectioning technique. The results are

D =0.205_0.04"0%5 exp[ — (63 600==650)/RT Jem?/sec.

Four measurements of the isotope effect for diffusion of Pd'% and Pd?in each of four single crystals of pal-
ladium have been made between 1450 and 1500°C. The measured isotope effect Eg as defined by the equation
Eg= (1—Dp/Da) /[1— (ma/mp)'"*], where Dg/Ds and ma/mg are the ratios of the diffusion coefficients and
masses of the two isotopes @ and 8 was found to be 0.8134-0.0424. This value is consistent only with dif-
fusion by the vacancy mechanism, and indicates that the translational kinetic energy of the activated state
in the jump direction is possessed entirely by the jumping atom as it crosses the saddle point.

INTRODUCTION

IT is generally agreed that diffusion in crystals takes
place by a series of jumps of individual atoms from
one site to another throughout the crystal. For random
jumps, the diffusion coefficient D for isotropic diffusion
is given by

)

where T' is the jump frequency and 7 is the jump
distance. If the direction of a given jump depends on
the direction of a previous jump, then!—3

D= %Frzf )

D=1r7,

@

where the correlation factor f takes into account the
correlation between the directions of successive atom
jumps. For self-diffusion, f is a geometrical factor
determined only by the crystal lattice and the diffusion
mechanism, and it can be calculated mathematically.—®
For impurity diffusion in an isotropic crystal, f depends
on the jump frequencies of both the solute and solvent

17. Bardeen and C. Herring, in Afom Movements (American
Society for Metals, Cleveland, 1951), p. 87; also, in Imperfections
in Nearly Perfect Crystals, edited by W. Shockley (John Wiley
& Sons, Inc., New York, 1952), p. 261,

2 A. D. LeClaire and A. B. Lidiard, Phil. Mag. 1, 518 (1956).

3K, Compaan and Y. Haven, Trans. Faraday Soc. 52, 786

1956).
( 4K. Compaan and Y. Haven, Trans. Faraday Soc. 54, 1498
(1958).

5 J. G. Mullen, Phys. Rev. 124, 1723 (1961).

species.®®7 For impurity diffusion by the vacancy
mechanism, 0< f<1.

Since f depends only on the mechanism of diffusion,
the crystal structure and, in the case of impurity
diffusion, on the relative jump rates, much information
can be obtained about diffusion in crystals if we can
measure f. For either impurity diffusion or self-diffusion,
f can be obtained from accurate measurements of the
relative diffusion rates of two different isotopes of the
same element. Schoen,® and later Tharmalingam and
Lidiard,® derived the relation

(1—Dg/Do)=(1—Tp/Te) /s, 3)

where the D’s and I's are the diffusion coefficients and
jump frequencies of the two isotopes « and 8 of the same
chemical element. Using the relation T' = w172, we have

Tg/Ta= (ma/mp)'*, 4)
for a mechanism involving the motion of only one
atom, and

Ts_ [(n— 1)m+ma:|”2 )

a (n—1)m~+mg

s
6 J. R. Manning, Phys. Rev. 116, 819 (1959).
7 J. R. Manning, Phys. Rev. 128, 2169 (1962).
8 A. H. Shoen, Phys. Rev. Letters 1, 138 (1958).
9 K. Tharmalingam and A. B. Lidiard, Phil. Mag. 4, 899 (1959).



