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The results of our earlier work on the quantum theory of electron-gas plasma oscillations in a magnetic
field are extended here to take account of the difference in masses associated with the orbital and spin parts of
the individual electronic motions in the presence of a lattice, and allowance is made for an anomalous elec-
tronic g factor. Tractable expressions for the complete plasmon dispersion relation and damping constant (at
arbitrary temperature and arbitrary magnetic field strength), which are obtained using a Green s-function
formulation of the random-phase approximation, are reported. The low-wave-number (p) approximation
of the dispersion relation is investigated in detail. Forp=0 the usual result obtains, 1/a&„'=sin'8/0, '
+cosse/(ft, '—cv,'), with two plasma modes; these are shifted to order P' by terms that are oscillatory in the
de Haas —van Alphen (DHVA) sense in the degenerate case. Another plasma resonance in the vicinity of 2'„
which is active to order p, exhibits such DHVA oscillatory behavior, and the same may be said for a gap in
the frequency spectrum for propagation perpendicular to the magnetic Geld in the interval t co„2at,7. The
relative amplitudes for the plasma modes are reported also. The terms which are oscillatory in the DHVA
sense are exhibited in terms of an appropriate Fourier series, with no restriction on temperature or magnetic
Geld strength, save that 1P))1 (that is to say that no restriction is placed on Ace,tt). Moreover, the spectral
composition of the DHVA oscillatory terms is thereby explicitly shown to be a sensitive function of g (m/m, ),
and this result may be useful for the experimental determination of the product of anomalous electronic
g factor and effective mass m. A considerable improvement over other recent work on this subject has been
achieved through a careful and correct determination of the role of the DHVA terms as a whole in the plasma
oscillation spectrum.

I. INTRODUCTION

'HE development of a quantum-theoretical plas-
mon dispersion relation for the electron gas in a

magnetic field has been the object of considerable atten-
tion recently. ' ' In a publication on this subject by
Gartenhaus and Stranahan, 4 it was suggested that cer-
tain modifications are induced in the plasmon disper-
sion relation by recognizing a distinction between the
spin part of the Hamiltonian and the part describing
orbital motion due to the presence of a lattice. Specifi-
cally, this suggestion is based on the qualitative argu-
ment that the orbital part of the electronic motion in a
magnetic field is coupled to the lattice so that one must
at least introduce the effective mass m in the corre-
sponding part of the Hamiltonian, whereas this is not
the case for the spin part of the motion so that the
ordinary mass mo is retained in the Pauli spin term of
the Hamiltonian. In addition, allowance is made for
an anomalous electronic g factor. A result of these con-
siderations is that parts of the plasmon dispersion rela-
tion in the degenerate case which are oscillatory in the
de Haas —van Alphen (DHVA) sense depend rather
sensitively on the parameter g(srt/rtts).

The purpose of this paper is to report the results of
extending our earlier work' on the plasmon dispersion
relation to take account of the modifications indicated

$ Supported by the U. S.Air Force OiGce of ScientiGc Research.' P. S. Zyryanov, Zh. Eksperim. i Teor. Fiz. 40, 1065 (1961)
(English transl. :Soviet Phys. —JETP 13, 751 (1961)7.' M. J. Stephan, Phys. Rev. 129, 997 (1963).

s N. D. Mermin and E. Canel, Ann. Phys. (N. Y.) 26, 24/
{1964).

4 S. Gartenhaus and G. Stranahan, Phys. Rev. 133, A104
(1964).' N. J. Horing, Ann. Phys. (to be published).
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above. In particular a careful determination of the role
of DHVA oscillatory terms as a whole in the plasma
oscillation spectrum for the degenerate gas is presented.
(These results are in disagreement with the corre-
sponding conclusions of Gartenhaus and Stranahan. '
Specifically, the latter authors obtain a zero-wave-
number limit for the plasmon dispersion relation which
is substantially different from the usual result, 1/coo'
=- sin'8/Qs'+coss8/(Qss —co,s), which we find to be
valid within the scope of the random-phase approxima-
tion for the degenerate gas as well as the nondegenerate
one, even with the indicated modifications. ] In addi-
tion, the terms which are oscillatory in the DHVA
sense are exhibited in terms of an appropriate Fourier
series, with no restriction on temperature or magnetic
Geld strength save that the condition of degeneracy be
fulfille, fp))1 (that is to say that no restriction is
placed on hto,p). The spectral composition of the
DHVA oscillatory terms is thereby explicitly shown to
be a sensitive function of g(m/ms).

II. PLASMONS IN A MAGNETIC FIELD

An analysis of the inverse longitudinal dielectric
function for an electron gas in a magnetic field was
presented by the author recently, ' and the concomitant
plasmon dispersion relation was studied within the
scope of the random-phase approximation using the
Green's-function method. There, a relatively tractable
expression of the plasmon dispersion relation was ob-
tained, and particular attention was given to the low-
wave-number approximation of the dispersion relation,
which involves terms that are oscillatory in the DHVA
sense in the degenerate case, and involves quantum
corrections through the parameter Ace,p in the non-
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degenerate case. ' Of course, the relative amplitudes of
the various plasmon modes considered were calculated,
and a thorough discussion of the natural damping was
given.

There is no need to rederive the plasmon dispersion
relation in detail here since the modifications contem-
plated in the introduction involve only slight changes
in the formal structure of our earlier worl». A thorough
discussion of the calculational techniques is given there,
and the interested reader will find detailed derivations
of results which are analogs of all those which will

be presented here. With this in mind, it is sufFicient for
our purposes here to note that the appropriate Green's
function involved in the derivation of the plasmon dis-
persion relation satisfies the Eqs. (1a) and (1b) below,

G(r, t; r', t') = expL-,'ier H && r' i &t (r—)+i q (r') ]
X6'(r —r', t—t'), (1a)

P'R'/2' —-', duo, s(X'+ F')+,'&o,-I.z —
&a&&Ho s

+(+'(&I»)lg'(R, T) =~(R)~(T) .(»)

All gauge dependence &o and dependence on r+r' is

embodied in the factor

C (r,r') = expL-', ier H x r' i &t&—(r)+i &t&(r') j.
LThe quantity I.zg'(R, T) = (I.,+I.;)6'(r r', t ——t')
measures the loss of orbital angular momentum in the

direction of the magnetic field suffered by an electron

as it propagates between the points (r,t) and (r', t');
since this component of orbital angular momentum is

conserved, I.zg'(R, T) =0, and there is a considerable

simplification of (1b).j A closed solution may be ob-

tained for (1b), and the resulting grand-canonical en-

semble averaged Green's function is given by

dp
dT'e'" ' e's "exp( i(fr&—&Has+(p, '/2m)5T')

(2w)s
Xsec(s&o,T') exp( —iL(p, '+p„')/mo&, j tan(s&o, T')) . (1c)

The notation of Ref. 5 is maintained here. ' The only new notation arises from the fact that our considerations are

somewhat extended here; g is the anomalous electronic g factor, m the effective electronic mass, and neo the ordi-

nary electronic mass. These enter Eq. (1) ln part exphcitly and in part through the quantities

o&,= eH/inc; t&&&
——g(e&rt/2m&&c) .

With the result (1c), a Green's-function formulation of the random-phase approximation leads to a tractable

plasmon dispersion relation which takes the form

4xe' 1
1— —ImI AyI A,Q—+is] =0,

p2 A/3 7r

while the damping may be expressed as y=Zj. , where

4z-e' 1 t' r
I'(y, Q) =- —2ReI( Ay, —LAQ+iej [,

y' &its

(2)

and Z is the amplitude weight function which measures the relative importance of the various plasmon modes in

' The interested reader will also find (see Ref. 5) that the many plasmon resonances for propagation nearly perpendicular to the field

were analyzed in detail in the semiclassical and classical limits, and their behavior in the asymptotic case P'(I or I/P)/r&&co, '»1
was considered in order to achieve an understanding of the manner in which the nonuniform zero-field limit is attained.

' We briefiy recount the notation of Ref. 5 which is relevant to the plasmon dispersion relation and damping constant LEqs. (2),
(3), (4), and (5)g;

Q =plasmon root; co„= (4vresp/m) v'

-= p*
y =wave vector =

p
8=angle between y and the plane perpendicular to H.
The magnetic Geld is taken to be directed along the s axis and has strength A.
r = &tP = s/kT; —(k =Boltzm—ann constant, T=absolute temperature),
f=chemical potential,
fo(co) =Fermi function=L1+e&" r&S) '.

1
Note that in Eq. (4b) the notation dT is simply meant to indicate that dTe '&"+"'&r=.

L i(0+a)') '

[Note that in Eq. (4), PJ' indicates that the principal value of the integral is to be taken. ]
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results of the latter authors seem to be erroneous even in the simpler situation when m= mp and g= 1. /This error
may be traced to the incorrectness of Eq. (12) of Ref. 4.]

The p2 terms of the dispersion relation (7) shift the roots (9), and to order p' this shift is described by the
formula

where

(p&„'+p&,'—2p&, ' sin28) p&„'F(Qo &()
Q &'= Qo &'+22P24o„4~(Qo y) ap'

2L(p& 2+p&,2)2 —4p& 2p&, 2 sin'8]'"
(10)

P(Q) =3 sin40 1 3 cos40 1—+
ms2 Q' msl (Q' —(2p& )')(Q' —p& ')

sin'8 cos'8( 1 3Q' —po. ' 1 3Q'+4o ' )
m ks Q'(Q' —p& ')' s (Q' —p& ')'//

In addition to shifting the roots Q p' the dispersion rela-
tion (7) dictates the presence of another root in the
small interval iQ' —(2p&,)2i =p'/msl. The location of this
root is readily seen to be given by

cos'8P'
Qlp &'=(2p& )'+

m$1

x . (»)
chic

——m sin 0——co cos 0

Of the three plasmon modes Q&, Q&, Q(2„,) discussed so
far, one lies in the interval L4o„2p&,]. It may be either
Q& or Q(&„,) and we will denote it by Qt„„&„,i=Q& or
Qlp„,&. Part of the interval L4p„2pp,] is inaccessible to
Qt„, 2„,i, and this "gap" in the frequency spectrum may
be calculated for 0=0, with the result

2po —Q[ 2,&)3P /4m4o sl. (13)

The relative amplitudes of the plasmon modes Q&

and Q& may be approximated as follows. For or„))co,
we have

Z(Q)) = 22p&~; Z(Q&) = (pp, o/2p&„2) sin8 cos28, (14)

~= (III)/, (17b)

are exactly preserved, and so there are no changes
arising from the fact that m/m* and g&1. The situa-
tion is quite different in the degenerate case. Separating
p, 0., 0. into branch line and isolated pole contributions
as usualq

(/ ~,~) = (/ r,«,~r)+Z(/ .,~...~..)
one finds that the branch line contributions are ap-
proximately,

m i 3/2 2

22ri I'(5/2) A'
(19a)

m 3/2 2 g5/2

22r I'(7/2) A'
(19b)

ner indicated above are transmitted to the description
of low-wave-number plasmon propagation in a mag-
netic field through the integrals p, r, o.. In the non-
degenerate case the relations

p = ('2Ap&, /tanh'2A4p, tl) p, (17a)

whereas for ~,))or„we have

Z(Q)) = (p&„2/2p&, ) cos'8; Z(Q&) = 2p& sin8. (15)
m 3/2 2 f 5/2

22r I'(7/2) A3
(19c)

The root Q(~„,) has corresponding weight

p24p. cos48
Z(Ql2~, &)

=
i

—
24 sin'8 —

3 cos'8 . (16)
4mp&& sl —kp&&

III. SPIN EFFECTS AND THE SPECTRAL COMPO-
SITION OF DHVA OSCILLATORY TERMS

The effects of distinguishing the spin part of the
motion from the orbital part of the motion in the man-

LOne should not confuse the subscript I' on the left-
hand side of (19) which refers to the branch line with
the I' function appearing on the right-hand side of
(19).] Roughly speaking, this shows that o=a=t p in
the degenerate case Lwhereas a =r2= (1/p) p in the non-
degenerate case]. The isolated pole contributions yield
terms that are oscillatory in the de Haas —van Alphen
(DHVA) sense,

&Cn

mp/2(A~ ) l/2

mp/2(Apo )3/2

22rpjSA3

cosr 2m(2/4pH/Ap&. )]cost (22m/Ap&, )f —32r/4]
Z (—1)"
n=l n'/' sinh(22r pn/Ap&. tl)

(—1)"cosLprn(2/4pH/Ap&, )] f 22rpn //22rpn f 22m 52r—
i

-', +—tanhi cos i

n l n /' sinh(22r'n/AM, P) i Ap&,P (AM, P (AM, 4

(20a)

f22m 32r) 2/4pH f 2/4pH) (22m
+22m cosi f' ——i+pm tani pm i cosi f , (20b—)—

A4pg iAp&g 4) Ap&g k Ap&g I EAp&g 4

m3/'(A~. )'"
22rppA'

cosLprn(2/4pH/A4o. )]cosL(22m/Ard, )f'—52r/4]2 (—1)"
n~1 np/2 slnh(22rpn/Apo, p)

(20c)
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These Fourier series representations of the DHVA oscil-
latory terms explicitly show that the spectral composi-
tion depends rather sensitively on the parameter
g(m/mo) through factors such as cos/em(2ppH/A~, )$
= cosLing� (m/rrso) j. In fact, p,„and n,„differ from their
counterparts in the simpler situation (when nz=mo and
g=1) just by factors of (—1)"cosLvreg(m/mo)]; the
more complicated nature of o-,„derives from the fact
that these terms arise from second-order poles in the s
integration of (Sa), whereas the poles responsible for
p, and u,„are simple poles. The sensitive dependence
of DHVA oscillatory terms on the parameter g(m/mo)
is not at all an unfamiliar phenomenon. An account of
such behavior in the DHUA oscillatory terms of the
magnetic susceptibility may be found in Wilson's book. '
One may feel encouraged by the fact that such DHVA
oscillatory terms should be observable under the same
conditions of field strength as the de Haas —van Alphen
effect itself is. However, the shortcomings' of a simple
electron gas theory of the latter in explaining data
(even with provision for taking account of effective
mass in the orbital part of the motion and an anomalous

g factor in the spin part of the motion) may be expected
here too. Such shortcomings must be reckoned with in
attempting to use the sensitivity of the DHVA oscilla-
tory terms to variations in the parameter g(m/mo) as a
mechanism for measuring the product of the anomalous
electronic g factor and eGective mass m.

The role of the DHVA oscillatory terms as a whole in
the low-wave-number plasma oscillation spectrum is
determined by the occurrence of the quantities si ——p/0
and s2= p/n in the plasmon dispersion relation, and t.he
ramifications of this with respect to the plasmon modes

0&, 0& and 0(~„,) have been discussed in the preceding
section. It is appropriate at this point to give a few
qualitative statements about the natural damping of
these modes. (Detailed natural damping formulas and
derivations may be found in Ref. 5, and will not be
presented here. ) The natural damping of 0& and 0& in
the degenerate case is exponentially small in a manner
that is formally similar to the nondegenerate natural
damping expression of Landau, the latter being appro-
priately modified to take account of the presence of
the magnetic field. The same may be said for the
natural damping of the mode 0(2„,) provided that
the direction of propagation is confined to the ang-
ular interval 8& (p'f/mrs)'" For p. ropagation outside
this angular interval, the natural damping of 0(~„,)
ceases to be exponentially small, and the increase
in natural damping is accompanied by terms that are
oscillatory in the DHVA sense, but with a, modified
DHVA oscillation frequency. t Although the natural
damping formulas of Ref. 5 a,re given for the case
m=mo and g=1, it is clear that the spectral composition
of the I)HVA oscillatory teriiis in the natural damping

A. H. Wilson, Theory of 3IeIels (Cambridge University Press,
CaInbridge, England, 1953), 2nd ed. , pp. 164-175.

will depend sensitively on the parameter g(m/neo). j It
should be noted that DHVA oscillatory terms are com-
pletely absent from the natural damping as long as it
is exponentially small.

rv. comCr. USrOms

Tractable expressions for the complete dispersion re-
lation LEqs. (2), (4), and (5)$ and damping constant
t Eqs. (3), (4), and (5)j for plasmons in a magnetic field
have been obtained using a Green's-function formula-
tion of the random-phase approximation. These general
results are valid for all magnetic fieM strengths as well
as all values of temperature, and are applicable to both
the degenerate and nondegenerate cases. Moreover,
they are not encumbered by unwieldy summations over
Landau eigenstates. The dispersion relation has been
investigated in the long-wavelength approximation in
detail, with special attention given to determining the
role of de Haas —van Alphen (DHVA) oscillatory terms
in the degenerate case. In the long-wavelength limit,
(P=O), the usual result of two plasma modes is con-
firmed here exactly )Eq. (9)). These two modes are
shifted to order p' by terms that are oscillatory in the
DHVA sense in the degenerate case LEq. (10)$. An-
other plasma resonance in the vicinity of 2'„which is
active to order p' $Eq. (16)$, exhibits such DHUA
oscillatory behavior )Eq. (12)), and the same may be
said for a gap in the frequency spectrum for propagation
perpendicular to the magnetic field in the interval
[or„2~,j (Eq. (13)].The distinction between the masses
associated with the orbital and spin parts of the indi-
vidual electronic motions in the presence of the lattice,
and the anomalous electronic g factor, give rise to a
special sensitivity of the DHVA oscillatory terms. A
representation of the latter in terms of an appropriate
Fourier series Lwhich is valid for all magnetic field
strengths and temperatures as long as the condition of
degeneracy is fulfilled fP»1; that is to say that no
restriction is placed on h~,P; Eq. (20)], explicitly shows
that the spectral composition of the DHVA oscillatory
terms is a sensitive function of g(m/mo). This is
manifested by the appearance of factors such as
cosLirng(m/mo)$ in the Fourier coeflicients, and the
small shift in g(m/mo) from integral to half-integral
values produces significant changes in the spectral
composition.

It has already been pointed out' that one may hope
to observe effects of the type discussed here in n-type
InAs and InSb, since the properties of these materials
are in accord with the conditions under which the
present analysis is valid. Specifically, the considerations
taken here are valid only as long as a, "one band"
description is reasonable. Therefore, it is at least neces-
sary that the plasmon energy A~~ be too small to excite
interband transitions, A~~(((energy gap). Moreover,
the collision time 7 must be large compared to co, ' as
well as iv„' so that the free and collective aspects of
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the electronic motions, which are an integral part of
the description given by the random-phase approxima-
tion, are not destroyed by collisions. In addition, it
should be noted that the results given by Eq. (20) indi-
cate that the DHVA oscillatory terms arising from the
Landau quantization of orbits are most strongly felt
when hop, P) 1. Finally, one must bear in mind that the
validity of the random-phase approximation is re-
stricted to long wavelengths in the sense that ppi/mpp„2

«1, (degenerate case). The long-wavelength approxi-
mation as it is formulated here, in the presence of a
magnetic field, also requires that p2f'/m/o, 2«1.

The results here show that the suggestion of Garten-
haus and Stranahan, ' concerning the possibility of
determining the product of anomalous electronic g
factor and effective mass m by using the sensitivity of
DHVA oscillatory terms associated with plasmon phe-
nomena to order p' (zero wave number), can be con-
sidered a meaningful scheme only if one takes account
of plasmon phenomena to order P' rather than PP. This
will be the case for reQection experiments as well as
any other plasmon excitation experiments (fast particle
energy loss, etc.). The implication is that the effects
will be small in the same sense that p' is small. In the
presence of a magnetic field, "small p"' has different
meanings in connection with different phenomena, and
while p2 must be smail in all possible senses it may be
larger in some contexts than others. For example when
4o„)4p, the p2 shifts of the roots Q &&, (Qp&2 ——4p~2+ cos204o,2;
Qp&2 ——sin28pp 2), may be estimated as

Q&—Qp& Ppfcp„4 Ppf

mQp) m(o„'Op)

Q&—Qp& pp f4o„4 4o,2 pp f pp~4

~p& m~p& My may Mc

V/hile the shift of 0) is governed by the small pa-
rameter p f/mpp~2, the shift of Q& is governed by the
parameter (p f/m4o~2) ( ~ 4/o4, p)pw4hich must still be small
but is larger than ppi/mio„2 by a factor pod/pp,

4 100
for 4p„2 10pp,2. (It is not advisable to consider magnetic
field strengths for which ao, is very small because the
amplitude for exciting Qp& would then be very small;
moreover, the magnetic field must be sufficiently large
that p2$/m4p, 2&1.) The plasma resonance in the vi-
cinity of 2', may be estimated as

Q(2(g ) 2cpg P f pp~

2~c mes„coc

and the gap in the frequency interval [po„24p,j for
propagation perpendicular to the magnetic field may be
estimated as

~f+c 2rdc~ 2c

2a) c

p2f 4p
2

mG)~ coc2 2

These results for the branch-line contribution obtain
under the condition Apo, «f, whereas the results for the
oscillatory parts are free of this restriction. The small-
ness of oscillatory effects which was anticipated in
Ref. 3, on the basis of the fact that the energies Tlf
= 1/2S2 ——42/2p and W= 1/Si ——o/p COntain termS WhiCh

are independent of or linear in H (which do not appear
in the susceptibility), is thus explicitly demonstrated
under the condition App, «i. However, the oscillatory
terms can be of greater importance in the physically
realizable quantum strong field situation, when I'84p,

The estimates for the oscillatory parts given above are
still reasonable, but one must reconsider the branch-line
contributions. An estimate of the latter may be ob-
tained by inspecting the p2 terms of Ref. 5, Eq. (AIII.6),
[or equivalently the 28=0 term of Ref. 3, Eq. (3.21)].
This results in

pr ( m/3I/2)A 83@'4/p, 2

o. ~ (m3/ //23) (fico )'f'/

nr (m8/2/I88) Appgp/2,

and in view of the fact that 54o, l the oscillatory parts
are of comparable importance in the quantum strong
6eld situation. This is simply to say that the presence
of terms in the energies Tl 1 ancl 8"which are independent
of or linear in H cannot be taken to mean that the
oscillatory parts are small when I'8cp,

Again, the "small p"' parameter is somewhat larger
than ppl/m4p, 2.

The formulas which we have presented here show that
the oscillatory parts of p, 0-, u are small compared to the
branch line contributions, since the latter are given by

p ~ ( m3 /2/P 3)g
8/2

o i (mp/2/A8)P/2,

~ (mp/2/PP)f 8/2

whereas the oscillatory parts are given by (happ, P))1),

p.„(m /2/rip) (I2(d,) '/',

o,„(mp/2//28) (I24p, ) '/'(1+t /A4p. ),
a.„-(mp/2/53) (hpp. ) '".


