
Z2 AN D Z~ COLOR CENTERS I N KC1 AN D KBr

The half-width of the electron-spin absorption band
of the Z3 center, 39 Oe, is less than that of the Ii center
in KCl which is 58 Oe."This difference can be under-
stood qualitatively in terms of our Z3-center model
since there is no hyperfine interaction between the
electron and the strontium nucleus which has zero
magnetic moment.

ENDOR studies should provide an important test

"A. F. Kip, C. Kittel, R. A. Levy, and A. M. Portis, Phys.
Rev. 91, 1066 (1953).

of the Z3-center model that is proposed in this paper.
Such measurements and photoconductive studies have
been planned.
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The absorption and emission processes of the F center and their relationship to each other are treated using
a model which contains many of the features of an exact treatment. The calculations are based on a formula-
tion in which the total energy of the crystal in the ground and excited states is expressed as a function of the
variational parameters in the F-center wave functions and of the displacements of the neighboring ions. The
Ii electron is treated quantum-mechanically, but classical ionic crystal theory is used for all other terms in the
total energy. A modified method of steepest descents is used to minimize the total energy. The electronic
structure of the outer shells of the first nearest neighbor ions is taken into account in detail in the expression
for the energy of the P-center electron. Simple, one-parameter, vacancy-centered wave functions are used to
describe the F electron. A large Stokes shift is obtained in all crystals. The distortions are small in the ground
state but, in the relaxed excited state, they are of the order of 10%%uz of the nearest-neighbor distance and have
a pronounced asymmetry.

I. INTRODUCTION

'HE F-center lattice defect in alkali-halide crystals
consists of an electron trapped at a vacant nega-

tive ion site. This defect is one of the simplest which can
occur in ionic crystals, and in the physics and chemistry
of lattice defects in these crystals it occupies a position
of importance roughly comparable to that of the hydro-
gen atom in ordinary chemistry. It is not surprising,
then, that many calculations of the electronic structure
of the Ii center have appeared. The most detailed of
these have been made by Kojima, ' Gourary and
Adrian, ' Pekar, ' and Wood and Korringa. 4 Gourary
and Adrian' have given a review of many of the theoreti-
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cal calculations carried out up until about 1960.Most of
the calculations have been limited to an investigation of
the ground and erst excited states of the center in a
rigid, undistorted lattice. The lattice has usually been
treated either as a continuum or as made up of simple
point ions, although in Refs. 1, 4, and 5 an eBort has
been made to take into account the structure of the
lithium ions which are first-nearest-neighbors (1ne) to
the vacancy in LiF' ' and LiC1.' The effect of lattice
distortions on the energy levels has not yet been treated
in a consistent manner, although a 6rst step has been
made in Ref. 4. The importance of lattice distortions
can be inferred from the emission spectra of the Ii

center.
The principal emission band of the P center in alkali-

halide crystals exhibits a large Stokes shift. In these
crystals, the peak of the emission band corresponds to
a transition energy Ae, which is usually about half as
large as the F-band absorption energy Ae .

, that is,
+6 ~0.SAN, . To understand how this large Stokes shift
can come about, we must consider that the electronic
wave function of the ground state of the F-center elec-
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tron is of F&+ symmetry of the octahedral group,
whereas that of the first excited state is of I'4 sym-
metry. The exci.ted state is long-lived compared to the
characteristic time of lattice relaxation ( 10 " sec)
and hence the lattice will adjust locally to the sym-
metry of the excited-state wave function before emission
occurs. During the emission process the Franck-Condon
principle is assumed to apply. It may happen that both
the ground- and excited-state energies calculated with
the excited-state distortions are considerably different
from those calculated with the ground-state distortions.
We shall see that this is, indeed, the case for the F center
in the alkali halides. Evidently, the distortion of the
lattice in the vicinity of the defect is quite important.

Swank and Brown' have found that the lifetime of the
excited state of the F center is considerably longer than
might be expected from the usual arguments applicable
to atomic systems. Fowler and Dexter~ have discussed
this result and several possible explanations of it, some
of which we shall consider later. One suggestion which
has been made by various people is that there is a level
of I'&+ symmetry, lying below the first excited level,
which serves as an electron trap and thus increases the
lifetime. One of the present authors' carried out calcula-
tions on LiC1 which indicated that this is apparently
not the case, although it cannot yet be ruled out com-
pletely. Those calculations indicated that there is a
state of I'&+ symmetry lying just above the first excited
state, but at least part of the K band was attributed to
transitions to this state. It is not inconceivable that,
after lattice relaxation, this level or another one of for-
bidden symmetry lies below the first F4 level. Detailed
calculations are needed on this point.

Pekar, in Ref. 3, has treated the F center in a con-
tinuum approximation in an attempt to understand the
emission spectra and the temperature broadening of the
lines. His approach gives some striking results, but
Fowler and Dexter, ' among others (including Pekar
himself), have criticized it and we shall not discuss it
here.

From the foregoing it should be apparent that the F
center is of considerable interest in its own right. There
are two additional reasons which make it interesting as
a specific center. The first derives from the experi-
mentally well-established fact that F centers can
aggregate to form other defects such as the M and E.
centers. The electronic structure of the M center has
been investigated with reasonably good results on the
basis of the model of two F centers bound together at
neighboring halide sites.""The second reason is that
the F center and its aggregates are somewhat unusual

' R. K. Swank and F. C. Brown, Phys. Rev. 130, 34 (1963).' W. Beall Fowler and D. L.Dexter, Phys. Rev. 128, 2154 (1962).
s R. F. Wood, Phys. Rev. Letters 11, 202 (1963).' W. Beall Fowler and D. L. Dexter, Phys. Stat. Solidi 2, 821

(&962).
~0 Axel Meyer and R. F. Wood, Phys. Rev. 133, A1436 (1964)."R. A. Evarestov, Opt. i Spektroskopiya 16, 361 (1964)

LEnglish transl. : Opt. Spectry. 16, 198 (1964)j.

defects, in that there are no sources of potential at the
vacant lattice sites. Thus, these defects, especially in
their ground states, appear to conform more closely to a
particle-in-a-box model that to that of a hydrogenic im-

purity imbedded in a crystal. While it is not yet clear
that this gives them any distinctive properties, it is pos-
sible that it may do so. For example, it may be that these
centers are unusually sensitive to the movement of
neighboring ions.

For the theoretician, the F center seems destined to
serve as a test case for various methods of calculating
the electronic structure of lattice defects in ionic crys-
tals. The F center is a deep trap compared to those
found in doped silicon and germanium. The perturba-
tion of the host lattice is well localized and fairly strong,
at least in the ground state. Lattice distortions are
present and may be important but, as far as we know,
very little detailed work has been done to date on the
eGects of local distortions on the optical properties of
defects. The F center is a one-electron defect which very
nearly preserves the over-all charge distribution of the
perfect crystal, a characteristic which reduces the im-
portance of electronic polarization effects, although
these effects may become important in the excited
states. The interactions of defects with the phonon field
are important for both optical and thermal properties
and the F center, because of its simplicity, may serve
as a model when investigating these properties.

In this paper, we attempt to treat the absorption and
emission spectra of the F center and their relationship
to each other in a consistent way, using just about the
simplest model which contains most of the features of an
exact treatment, with the notable exception of the
dynamic electron-phonon interaction. We take distor-
tions of the lattice into account in all of the states which
we treat, but the distortions are limited to displace-
ments of the nearest-neighbor ions. We do this by ob-
taining an expression for the total energy of the crystal
in the ground and excited states as a function of the
variational parameters in the F-center wave functions
and of the displacements of the neighboring ions. The
F electron is treated quantum-mechanically, but classi-
cal ionic crystal theory is used for all other terms in the
total energy. A modified method of steepest descents is
used in an iterative procedure to minimize the total
energy. The electronic structure of the outer shells of
the first nearest-neighbor ions is taken into account in
detail in the expression for the energy of the F-center
electron. Simple, one-parameter, vacancy-centered wave
functions are used to describe the F electron.

In the next section, we shall discuss the Hamiltonian
and the wave functions which we used to obtain the ex-
pressions for the energy of the F center in a distorted
crystal. In Sec. III, we expand that part of the total
energy of the crystal derived from classical ionic crystal
theory up to second order in small displacements and
combine the results with those of Sec. II to obtain an
expression for the total energy of the crystal. In Sec.
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IV, some equations for oscillator strengths and life-
times are set forth. In Sec. V, the details of the calcula-
tions and the results are given, and in the last section we
discuss the results.

II. THE E-CENTER HAMILTONIAN AND
WAVE FUNCTIONS

Of course, it is evident from the outset that in treat-
ing this problem of a crystal containing an Il center we

are severely limited in what we can handle. The most
we can hope for at this time is to get at least an approxi-
mation to the Hartree-Fock problem for the crystal
with the Ii center. We approach the problem in the same
spirit in which Landshoff" I.owdin" and Howland"
calculated the cohesive energy of the alkali halides. One
of the characteristics of this approach is that the free
ion Hartree-Fock orbitals of the alkali and halide ions
are assumed to be unchanged when the ions come to-
gether to form a crystal. However, since this assumption
cannot be rigorously correct, we shall not be too con-
cerned about the exact form of the ion orbitals which we

use. The total wave function of the many-electron sys-
tem is written as an antisymmetrized product of the
free ion space-spin orbitals, i.e.,

g(1,2, ,n) =Ay, (1)y,(2) y„(rt) . (1)

A is the antisymmetrizing operator given by

A=(rt!) ' 'P( —1)"I', (2)
P

in which I is the number of electrons and. p is the parity
of the permutation operator P. It is a relatively simple
task to write down the formal expressions for the equa-
tions which determine the one-electron orbitals of the
entire crystal in this approximation. " This is most
easily done for orthogonal orbitals and so we shall

assume that the orbital of the F-center electron can be
obtained from an effective Hamiltonian equation appro-
priate for such orbitals. We further assume that the
electronic structures of the rest of the ions in the crystal
are undisturbed from their perfect crystal forms, and
when it is necessary to take this structure into account
we use analytic approximations to the free ion Hartree-
Fock orbitals as discussed above. This approximation
means that, among other things, we are neglecting elec-

tronic polarization by the F center, but we shall be able
to take into account the effects of the ionic displace-
ments. As was mentioned in the Introduction, the ne-

glect of electronic polarization is probably a fairly good
approximation for a highly localized defect in its ground
state, but it is not clear that it will be an adequate one
for the more diffuse excited states.

"R.Landshotf, Z. Phys. 102, 201 (1936).
'~ P.-O. Lowdin, Theoretical Investigation into Some I'roperties

of Ionic Crystots, University of Uppsato Dissertation (Almqvist
and Wiksells Boktryckeri, A.B., Uppsala, 1948).

's L. P. Howland, Phys. Rev. 109, 1927 (1958).
's See, for example, F. Seitz, Modern Theory of SolQs (McGraw-

Hill Book Company, Inc., New York, 1940).

We split the effective Hamiltonian of the F center in
the crystal into its one- and two-body parts and write

where
h=ht+hs,

N—1 Z„

v=1

(3)

t (2,2) -v(1,2)&to
d72)

p(1,2) = Z Z 4., (1)4.. '(2) .
v=o j=l

(6)

In the above expressions, Q„,; is the jth atomic space-
spin orbital" on the vth ion, Z„ is the nuclear charge,
P~2 is the permutation operator, and r~2 is the interelec-
tronic distance. The wave function of the Ii electron is
referred to a coordinate system with origin at the vacant
ion site given by v =0 and it is denoted by pp, t. The form
of the Hamiltonian given by Eqs. (3)—(6) is appropriate
when a basis set of orthogonal orbitals is being used,
that is, the P„,; should be orthogonal. We have included
finite size e6'ects only for the first nearest-neighbor ions.
Furthermore, we assume that the orbitals on alkali ions
which are 2' to each other do not overlap so that in
order to have an orthogonal set we need only to make
the F-electron function orthogonal to the 1ee ions. To
conform to this condition we take pp, t to be of the
general form

6 np

pp t(r) =lVpl gp(r)+ P P c, ,;p„,t(r —R„)], (7)
v=1 j=1

in which Pp is a vacancy-centered. function and t runs
over only 1ee ion sites, which we number 1 through 6.
The c s in Eq. (7) are determined by the orthogonality
condition

Qo. l~„;)=0,
and they are a function of the orbital parameters, as is
tvtr. Of course, pp, t is automatically orthogonal to half
of the ion functions through the spin coordinate.

Substitution of Eqs. (3) and (7) into the expression

e= (4o, t I
h

I ko, t&

gives
6 n~

=A "{(~olhl~ &+ 2 2 c,. Q.. Ihl~ &

p~lk~1

6 np

+Z Z '.;(~olhl~. .;&
v=1 j 1

6 np, 6 np

+ 2 2 2 2 c, , ', Q. , I hit„, )) (10)
p=l le=I v=1 j=l

'OThroughout the discussion given in this paper, we assume
the spatial part of all of the orbitals, other than @0,1, to be doubly
occupied,

in which p is the Pock-Dirac density matrix defined by
N—1 np
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We examine the term Qp [hi Pp& first and from hi get
just the kinetic energy, which we denote by T, and the
nuclear attraction energy. When finding the expectation
value of h2, we divide p into a contribution po from the
term v =0, and a contribution p —

po from all other terms.
We shall show in the Appendix that the contribution of
Pp to (pp[h[gp), which is a self-energy term, cancels
against corresponding contributions to the other terms
in Eq. (10). We then have to consider here the elec-
tronic structure of only the fee ions, and therefore for
more distant ions the exchange terms vanish and the
first term in h2 combines with the nuclear attraction
terms to give the point ion approximation. Furthermore,
for the 1ee ions it is possible to write the electronic
repulsion part of h2 as a contribution from a point ion
(of charge Z„—1) plus a correction A due to the elec-
tronic structure of the ion. For very compact ions such
as lithium, the correction will be small, but for larger
ions it may be quite substantial. Combining the nuclear
attraction and the electronic repulsion terms for the lee
then allows us to treat them as point ions plus the cor-
rection. It is easily shown that a point ion lattice will

give a potential energy composed of a Madelung con-
tribution plus terms, which we call A terms, and which
come about because the charge density of the Ii elec-
tron extends out beyond the shells of neighboring ions.
We have included these corrections out to 3' in our
calculations. The expectation value of the second term
in hp is the exchange energy E, between Pp and the
orbitals on the neighboring ions. We obtain then

(Pp[ h[Qp)= T—(apr 6)R» —P—R„+PA terms
v=1

where c~ is the Madelung constant, Elo the fee dis-
tance in the undistorted crystal;

3nn

P A terms—=P I (cg»[([r—R„[ ') [pp) —R„'j, (12)
v=1

evaluated when the ions are in their distorted positions.
The terms in e which contain the c's we group to-

gether and call the overlap energy E, , In the Appendix,
we carry out the reduction of these terms and obtain
the expression

in which ej is the Hartree-Fock energy of the jth orbital.
Ii, ,; is a factor which allows us, in eGect, to approximate
some small three-center integrals which enter into the
problem. This is discussed in the Appendix. The term

cancels with the terms containing Pp' in Eq. (16) and for
p we obtain, with E„'=E, -(terms containing pp'),

p=$1'$T (aM—1)R—» ' p-R—-'

aiid

+P A terms++ 6 E,„+E„'j (—17)

6 nv

1Vp' ——(1—Q P cp ')—'.
v=1 j=l

This is the expression which we have used in our cal-
culations. Although we limited ourselves here to a con-
sideration of the electronic structure of the 1m' ions,
the equations above can be easily extended to include
more distant ions. The function pp is still quite general
and it could even be given in numerical form. For most
purposes it is better at this point to sacri6ce some
accuracy for simplicity, and so we have chosen pp to be
of a very simple analytical form. In order to take ad-
vantage of the extensive literature on the calculation of
molecular integrals, we represent the radial part of Pp

by a single term of the form

6 nv

E..= —P P c„, I p;+(2F„,;—1)(a.44
—1)R4p-'j

v=1 j=l
+ (terms containing pp'), (16)

&~—= 2 Z L(A(l)4. ,~(2) Ir» 'I A(l)4. .4(2) &

yp(r) =r"ee"-(19)

and

v=1 j=l
—(o l(lr —R. I ')I&o)3, (»)

6 nvE-—= Z E(A(1)4., (2) lru 'IA(2)4. ,4(1)&) (14)
v=1 j=l

Po'—=Po(2, 2)—Pp(1,2)&lp (15)

v=1

The form of Eq. (11) shows that we have removed from
the Madelung energy the effect of the six fee when they
are in their perfect crystal position and replaced it by a
term

where I is an integer and P is a variation parameter.
An analysis of the potential at the center of the vacancy
shows that this form violates the boundary condition
at the origin. To get around this in a more exact treat-
ment, pp can be expressed as a sum of terms of the form
(19) and a secular determinant set up.

We may sometimes refer to our wave functions as
being of s type or p type in correspondence with the
symmetry of gp. Due to the orthogonalization to the ion
cores the symmetry designations of the irreducible rep-
resentations of the octohedral group are the appropriate
ones, even for the simple wave functions used here.
Thus, our usage of s type and 1'&+, and p type andd 1'4

interchangeably, while not quite correct, should cause
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no confusion and it may aid in visualizing the wave
functions. In fact, in this paper we shall limit our start-
ing functions pp to s and p types and neglect the g,f, etc.,
terms which also contribute to I'~+ and I'4 .

III. TOTAL ENERGY OF THE CRYSTAL

In order to find the distortions around an isolated de-
fect, we obtain an expression for the total energy of the
crystal containing an F center and then minimize it with
respect to small displacernents of the ions neighboring
the defect. Following Ref. 4, we write for the total
energy of the distorted crystal

Here d ~' applies to the two neighbors in the direction of
the principal symmetry axis of the excited state wave
function and A~' applies to the four other neighbors. Dis-
placements of the 2nn ions would involve at least
four 4's.

From Ref. 4, we have obtained the following expres-
sions for the changes in 8&, 82, 8~", and 82" in the ex-
cited state. The ground state expressions follow simply
by putting 5~'= 82'..

Eh'' ——(3/Rgo) L(v2/2+p) h,"+425,'hp'+ —„',h,"j (25)

~ho' = f+iv(& 1)/3%—ojL24"+ho"j, (26)

g, &=g d+h& (20)
68i'"———(2/R&o)L2hl'+ho'+2hz' +h2' j, (27)

Here 81," is the energy of a fictitious crystal in which a
complete halide ion has been removed without permit-
ting any rearrangement of the valence or core electrons
other than those connected with the (still arbitrary) dis-
placements of the ions. 8,"is the energy of the F-center
electron in this fictitious crystal. 81,' was calculated
classically and was written in the form

@r,"=&i+ hp —hP —hp" (21)

V„(R)=b/R". (22)

The values of the parameter X were taken from the
literature. The quantities 8&, 82, 8&", and 82" were ex-
panded in Taylor series in the ionic displacements. All
cubic and higher order terms in this expansion were
neglected.

Two types of deformation were considered:
(a) An isotropic distortion, applicable when the elec-

tron is in its relaxed ground state, and characterized by
a radial displacement irjmard of the 1ee ions by the
amount

~1 ~1~10 ~ (23)

Second-nearest-neighbor displacements can be treated
in this case but they are more dificult to deal with in the
excited state where anisotropic distortions occur. The
work of Ref. 4 indicated that 2ee displacements were
very small in the ground state. We expect them to be
larger in the excited state, but since they are diKcult to
handle we have considered only 1' displacements in all
cases.

(b) An anisotropic distortion, applicable when the
electron is in the relaxed excited state, and characterized
by radial displacements inward of the 1' by the
amounts

~&'= ~~'~io and ~2'= ~2'~io (24)

8& is the Coulomb energy of the complete, but dis-
torted, lattice; 82 is the repulsive energy of interaction
between the ionic cores of that lattice; and 8~", 82" are
those terms in 8~ and 82 involving the removed halide
ion. We assumed that only nearest-neighbor ions ex-
perience core interaction, and this was represented by a
two-body potential of the form

Rg' ——(1—hg') Rgp,

R2' ——(1—bp') Rgp.

(30)

(31)

h, '(R&',R&') is given by Eq. (17) of the preceding sec-
tion, i.e., 8,'(R~', Rp') = &'.

In order to get the energy of absorption, we minimize
B~" for the ground state with respect to hq and P and
then find 8,.Next, assuming the Franck-Condon princi-
ple to hold, we calculate 8,' using the 8~ found for the
ground state. For the emission energy, Eq. (29) is
minimized with the F electron in the excited state and
the new distortions found. With these distortions the
ground-state energy of the F electron is minimized as a
function of P.

Since we have allowed b&'/b2', we have gone beyond
the case dealt with by simple configuration coordinate
diagram theory. In this theory, the total energy of the
crystal is treated as a function of a single parameter
called the configuration coordinate which describes the
position of the neighboring ions. In fact, the total en-

ergy is a complicated surface which may require many
parameters to describe adequately. We thought it would
be interesting to see what results the simple theory
gave for one or two of the crystals. In this case, we have
only to keep 8&'= 82' when allowing the lattice to relax
with the F electron in the excited state.

IV. THE LIFETIME OF THE EXCITED STATE

It was mentioned in the Introduction that the first ex-
cited state of the F center in KCl has a lifetime appreci-
ably longer than might be expected from considerations
appropriate to atomic systems. Fowler and Dexter in
their discussion (Ref. 7) of defects in dielectric media
suggest a number of possible explanations for this. The
most obvious causes are those connected with the large

68,'"= (a~/3Rgp)
QL2hg'+ho'+-, '/+1)(2hg"+82") j (28)

We then write

Bp"——Bp +68g'+Ab2'
—Ahg'" —582'"+ 8,'(Rg', Ro'), (29)

where
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Stokes shift and we are now in a position to investigate
some of these.

The oscillator strength for the transition from level a
to level b is given by

2m l(a i!rib,j)I'
fab= +&ah P

3h' '.i 2J +1
(32)

in which heab= le —ebl, m is the electronic mass,
2J,+1 gives the degeneracy of the ath level, and i and

j are summation indices for the components of levels a
and b, respectively. Equation (32) neglects the shape
function for the line given by the transition u —+b.
This may be rather important for a center which inter-
acts strongly with the phonon field, but we shall use
Eq. (32) as it stands.

In terms of the oscillator strength, the lifetime for a
transition from level b to level u is given by

~ha
Sp

—' A'c'm* ~&ab

A'rlc' (2Jb+1)
ba- f a—1

2e2(~e,.)2 (2J.+ 1)
(34)

and deb, ——Ae b. Roughly speaking, we can say that the
ratio of the lifetime of this two-level system imbedded
in a dielectric medium to its lifetime when it is treated
as an "atomic system" is

hpr b 1 (Ae b)

1 ba '8 8a«(keba) k5eba)

&;,;I(a,ilrlb, j)I' f.
X (35)

8,fi(d, eb.) 2e'n(d e)b(Deb. )'

2',;I(a,ilrlb, j)I'(»b+1)
X fb ' (33)

Z~„l (b,jlr I a, i& I
'(2~.+1)

Here, Bp is the average field throughout the specimen
and 8.fi(deb, ) is the effective field at the defect when it
is in state b. m~ is the effective mass, which we take to
be the true mass; e is the index of refraction; e is the
electronic charge; and c is the velocity of light. (a,i I

r
I
b,j)

is not, generally, equal to (b,jl rl a,i) because of lattice
relaxation.

The principal quantities of interest to us here are the
transition energies ht.,b and deb„ the transition matrix
elements (a,i!rib,j), etc. , and the ratio of the effective
6eld S,~q to the average field bp. This last quantity is
difEcult to treat correctly with any rigor and we will
not consider its evaluation here. We do feel, however,
that it may be a source of some of the discrepancies
which may exist between theory and experiment.

In an atomic system, the lifetime is given by

right-hand side are for transitions from level a to level
b and that, whereas f,b' —f—b, it is certainly not true
that f,b = fb, W. e expect the ratio f,b /f, b™to be
between 1 and 3 for the Ii center in the alkali halides
and here we just put it equal to 2. We also put the ratio
8&/8, «= 1 for simplicity. We then have

2rhe. bye;,; I (a,i!r!b, g&l'

~&~.b.ig, ,, i(b, jlrl a,i&l'
(36)

We shall use our wave functions to calculate the above
ratio in the case of KC1. (a,i!rib,j) will be calculated
with the ground- and excited-state wave functions going
with the ground-state distortions and (b, jl r

I a,i) will be
calculated with the corresponding functions going with
the excited-state distortions.

V. CALCULATIONS AND RESULTS

The minimization of Eq. (29) with respect to bi',
52', and P' is not simple. The greatest difficulty arises in
the calculations of the two-center, two-electron integrals
appearing in Eqs. (13) and (14). These must be re-
evaluated repeatedly in the modified method of steepest
descent which we are using for the minimization process.
We are very grateful to J. C. Browne of the University
of Texas for making available to us his programs for
calculating the two-center integrals. The entire problem
has been programmed for computation on the CDC-
1604 at ORNI, .

The quantities in Eq. (29) which change from crystal
to crystal are E&p, P, the Ii, , s and the orbitals on the
neighboring ions.

The factors P„,, have been set equal to 1 in all of the
calculations reported here. The justification for this is
that e; in Eq. (16) is much larger (by about a factor of
10) than the other terms appearing there, so even a
fairly large error in F,,;will have a relatively small effect
on the energy. This should be a very good approxima-
tion in the case of the lithium halides but somewhat
poorer in the cases of more extended alkali ions. In
truly accurate calculations, however, this factor will
need to be investigated carefully.

We took the values of X from the literature; they are
the ones obtained by Pauling'~ from an approximate
quantum-mechanical calculation of the interaction be-
tween ions in an ionic crystal. It is well known that the
total energy of a crystal does not depend strongly on the
value of A., but it might be that the energy levels and
distortions of a defect such as the F center are aIIfected
rather strongly by small changes in ) . We did not check
this point in any detail, but we did try using a value of
X(X=9.1) obtained from compressibility data in NaCl
and found no very large differences from the results
obtained with the Pauling value, ) =8.

For the nearest-neighbor distances R~p, we took those

We note that both of the oscillator strengths on the '7 See Ref. 15, p. 81, and references therein.
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TABLE I. Values oi R'0 (in atomic units) and X used in the
calculations. Values of the experimental absorption and emission
energies (where known) are also given, in electron volts.

Cl

TABLE III. Some results for NaF, NaC1, and NaBr using 2s
and 3P functions. The excited-state quantities are indicated by
primes. Subscripts e and e stand for absorption and emission,
respectively. All quantities are in atomic units except for Ae
and De„which are given in electron volts.

Ll

R10

hea
~ec

R]p
Na

~~a
~ec

3.80
6.0
4.82

4.37
7.0
3.70

4.86
7.0
3.22

5.31
8.0
2.71
1.03

5.18
7.5
2.74

5.63
8.5
2.30

b,ga
pa

&a
pI

I
&a

NaF

—0.21653
0.7926
0.0013—0.21782
0.7794—0.08975
3.49

NaC1

—0.20345
0.6964
0.0165—0.21758
0.7329—0.11765
2.72

NaBr

—0.19838
0.6670
0.0187—0.21359
0.7087—0.12210
2,49

R10

d, ec

5.05
8.0
2.73

5.936
9.0
2.23
1~ 22

6.22
9.5
1.98
0.94

TABLE II. Some results for LiF, LiCl, and LiBr using 2s and 3p
functions. The excited-state quantities are indicated by primes.
Subscripts u and e stand for absorption and emission, respectively.
All quantities are in atomic units except for 6e, and d, c„which are
given in electron volts.

LiF LiC1 LiBr

listed by Ivey." The values of X and E&0 which we
used are given in Table I, together with the experi-
mental values of the absorption and emission energies
which will be used later for comparison. The values
of the absorption energies are taken from Ref. 18.
There are some rather large variations in the values re-
ported by different investigators, but for our purposes
these are not important. Where values of the emission
energy are shown, we have taken them from Schubnan
and Compton, " and where they are not shown we as-
sume them to be approximately one-half of the absorp-
tion energies.

For the orbitals on the neighboring ions, we have
made the following choices. For the lithium and sodium
ions, we have used the analytical Hartree-Fock func-

gg I

Pe'
B1'

I
I

&e

Pe
&e

Dec

—0.13421
0.3820—0.0998—0.1448—0.07331
0.6755—0.12565
1.42

—0.11747
0,3521—0.0898—0.1297—0.07043
0.5500—0.13095
1.65

—0.11293
0.3651—0.0828—0.1183—0.07038
0.5684—0.13517
1.76

TABLE IV. Some results for KF, KCl, and KBr using 2s and 3p
functions. The excited-state quantities are indicated by primes.
Subscripts u and e stand for absorption and emission, respectively.
All quantities are in atomic units except for d e, and d e„which are
given in electron volts.

tions supplied to us by T.L. Gilbert" of Argonne. These
functions are constructed using a minimal basis set.
The radial part of the Li+ function is simply y~, (r)
=Pe """and the energy s&,

———2.72148 a.u. The
radial part of the Na+ 2s function is given by p2,

026883 X,re ""'+1032—79.E,re '."' and t—he
energy is es (Na+) = —2.89334 a.u. The radial 2P func-
tion is p»=X»re ' "'"and the energy —1.52886 a.u.
Already, in the case of this simple sodium function,
the calculation is very expensive in terms of computer
time. A more accurate representation of the Hartree-
Fock approximation would greatly increase the time
and probably could not be justi6ed in light of all of the
other approximations which have been made. Recogniz-

~&a
Pa
B1
&a

pa'
I

&a

Aea

68,'
Pc'
B1'
B2'

I
&e

Pe
&e

hee

—0.20406
0.9265—0.0120—0.19127
0.4150 (0.9405)'—0.07146 (—0.02247)'
3.26 (4.59)'

—0.13853
0.3790—0.1123—0.1547—0.06390
0.7685—0.08861
0.67

—0.20483
0.7570

+0.0054—0.20965
0.7700—0.09133
3.22

-0.11765
0.3358—0.1016—0.1448—0.06274
0.6393—0.11171
1.33

—0.%138
0.7240

+0.0102—0.21006
0.7510—0.10251
2.93

—0.11225
0.3269—0.0972—0.1399—0.06222
0.6095—0.11505
1.44

a These are the data for the other minima in «', which are discussed in
the text. They appear to be consistent with the LiC1 and 1-iar data.

Ag
pa

&aP'
I

&a

d, e

AG,
'

p, '
B1'
B'

Pe
&c

~wc

—0.17375
0.7393
0.0308—0.20229
0.7576—0.09910
2.81

—0.10237
0.2979—0.1011—0.1341—0.05185
0.6632—0.07596
0.66

KCl

—0.16694
0.6660
0.0205—0.18292
0.6832—0.09497
2.39

—0.09245
0.2737—0,0937—0.1268—0.05037
0.5918—0.09245
1.14

—0.16534
0.6410
0.0203—0.18046
0.6653—0.09738
2.26

—0.08790
0.2648—0.0909—0.1240—0.04997
0.5706—0.09549
1.24

"H. F. Ivey, Phys. Rev. 72, 341 (1947).
'8 J. H. Schulman and W. Dale Compton, Color Ceetusim Solids

(The Macmillan Company, New York, 1962).
I P. S. Bagus and T. L. Gilbert (to be published). We wish to

thank Dr. Gilbert for supplying us with these functions.
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ALE V. Various results for absorption and emission in KF,
KCl, and KBr. The excited-state quantities are indicated by
primes. Subscripts a and e stand for absorption and emission,
respectively. All quantities are in atomic units except for d, e,
and 6e„which are given in electron volts.

TABLE VII. Results for the potassium halides when B1' is forced
to be equal to B2 while calculating the lattice distortions in the
relaxed excited state. 3p and 2s functions are used in the excited
and ground states, respectively. The notation and units follow
those in the preceding tables.

P I
I

6~
Ae (2s~4P)

KCl

(a) 3s absorption—0.16079 —0.15869
0.9770 0.8999
0.0308 0.0205—0.19001 —0.17469

(b) 4p absorption
1.0037 0.8953—0.10740 —0.09763
2.58 2.32

KBr

—0.15792
0.8660
0.0203—0.17305

0.8718—0.09957
2.20

68,'

P'I

—0.10198—0.1126
0.2961—0.05106

0.6632—0.07559
0.67

KC1

—0.09073—0.1052
0.2709—0.04959

0.5914—0.09214
1.16

KBr

—0.08751—0.1019
0.2690—0.04922

0.5682—0.09545
1.26

gg I

Pe'
Bj'
B

'
I

P,

~&e

(c) 4P ~ 2s emission—0.10237 —0.09286
0.3800 0.3380—0.1036 —0.0972—0.1384 —0.1309—0.05452 —0.05191
0.6608 0.5888—0.07385 —0.09017
0.53 1.04

—0.08925
0.3271—0.0947—0.1275—0.05110
0.5682—0.09325
1~ 15

Tmr.z VI. Results for the second minimum in the excited-state
energy surface of the sodium halides. In NaF, the program does
not become stuck in this miniumm if it exists. The notations and
units follow those of the preceding tables.

ing this, we decided to use the simplest possible func-
tions for the potassium halides. We used the orbital
formed by the Slater prescription, namely, p(r)
=iVsr'e ' "'" for the radial part of both the 3s and 3p
functions. For the energies, we chose those used by
Howland in Ref. 14, namely, e3,———j .965 a.u. and
es„=—1.1705 a.u.

We tried 1s, 2s, and 3s functions for the ground state
of the lithium halides and found that the 2s function
gave the lowest value of Br" in all three cases. A 3p
function was somewhat better than a 2p function in the
excited state, both before and after relaxation. In the
sodium and potassium halides, we at first simply used a
2s function in the ground state and a 3p function in the
excited state without searching for the optimum value
of n in Eq. (19), since it seemed likely to us that the 2s
and 3p functions were adequate to give the essential
features of the absorption and emission processes. The
results of these calculations are shown in Tables II—IV.
Most of the quantities appearing in the tables have al-
ready been defined. 68 is the right-hand side of Eq. (29)

minus 8&", 68 is the transition energy. Primes denote
excited state quantities and the subscripts a and e de-
note absorption and emission, respectively.

Because the potassium halides (especially KC1) are of
particular interest to experimentalists and as a study
of the sensitivity of the energy and distortions to the
form of the trial function, we tried using a 3s ground
state function and a 4p excited-state function for the
absorption process in these crystals. The results are
shown in Table V. Also shown in Table V are the re-
sults using a 4p excited state and a 2s ground state in the
emission process. We did not try a 3s function here.

Our calculations indicate that the energy surface
given by 8~"= Bz "(8&',8s',P') is rather bumpy. We en-
countered a number of local minima in the various cal-
culations, but the program, with one exception, never
became stuck in any of these. This one exception
occurred in almost all of the crystals in the emission
state; as an example, we give the data for the sodium
halides in Table VI. The values of 6h, ' for Nacl and
NaBr in this table are actually lower than the cor-
responding values in Table III and would thus seem to
imply that Table VI represents the true state of affairs.
Table VI indicates that this difEculty did not occur in
NaF. We shall discuss this problem further in the next
section.

In Table VII, we show results for the emission states
when 8~' is kept equal to 82' in conformity wi. th the
simple configuration coordinate theory as described in
Sec. III. A 3p function is used in the excited state and
a 2s in the ground state.

In Table VIII, we give some data on the oscillator
strengths, dipole matrix elements, lifetimes, etc., of
Kcl.

d,g,'
Pe'
B1'
B I

I

Pe

d, ec

—0.13421
0.3820—0.0998—0.1448—0.07331
0.6755—0.12565
1.42

NaC1

—0.11947
0.6770—0.0437—0.0177—0.09568
0.6535—0.18348
2.39

NaB r

—0.12156
0.6711—0.0394

+0.0036—0.10524
0.6330—0.18693
2.22

Absorption Emission

4.953 2.316
0.87 0.19

Te~= 60X10 ' sec TthQQr+~20)C 10 ' sec

TmLE VIII. Transition matrix elements, oscillator strengths, and
lifetime data for KC1. rs,' in Eq. (36) is taken to be 10 ' sec.
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We show, in Fig. 1, the picture which emerges from
these calculations in a typical case, namely, that for
KCl. We constructed this 6gure by taking Howland's
results on KCl for the position of the maximum and the
total width of the valence band. We located the bottom
of the conduction band relative to the valence band in
the pure crystal, roughly, from experimental data by
adding 1 eV to the first exciton peak ( 7.6 eV).

VI. DISCUSSION

The absorption energies given in Tables II-IV differ
from the experimental values by about 0-10%%uo except in
the case of LiF, where the error is much larger. In the
LiF calculation, however, there is a local minimum in
the excited state (shown in parentheses in Table II)
which fits in much better with the over-all picture and
we believe that this is the appropriate minimum to con-
sider here. From a comparison of the data in Tables
II—IV with those in Table I, it is apparent that there is
a systematic, nonuniform error in all of the absorption
energies. We do not yet know the origin of this error,
but it seems likely to us that it is caused by one or
more of the following three factors: The first is that the
trial functions used here are too simple and inQexible
to describe all of the details of the center. For one thing,
the radial part of the s function violates the boundary
condition at the center of the vacancy. Also, group
theoretical considerations show that appropriate linear
combinations of g terms, as well as s terms, transform
according to the I'i+ representation and that g and f
terms can contribute to functions which transform like
the F4 representation. We feel that the contribution of

g terms to both the ground and excited states is very
small, but we are much less certain about the contribu-
tion of f terms to the first excited state. Thus, even
within the framework of the simple model which we are
using, our trial functions leave something to be desired.
The second factor which may be of importance is our
neglect of the 6nite size of the 2m' ions. This may be
particularly important in the cases where the interionic
distance is small and the radii of the alkali and halide
ions are greatly different, e.g., in LiF. The third factor
is our neglect of polarization, which is probably quite
all right in the ground state but may not be permissible
in the excited state. The calculations of Gourary and
Adrian in Ref. 2 indicate that polarization is small in
both the ground and excited states, but it seems to us
that this problem needs further investigation.

The ground-state distortions obtained from these
calculations are rather small and in most cases in toward
the center of the vacancy. In Ref. 4, Wood and Korringa
reported a small outward displacement in LiCl. The
only essential differences between the LiCl ground-state
calculation reported here and the one reported in Ref. 4
are that here we have included exchange and Coulomb
repulsion terms with the electrons on the neighboring
ions and the computer has carried the iterative pro-
cedure used to minimize the total energy to completion.

It is most likely the exchange interaction which makes
the biggest difference.

Improvements of our very simple treatmentof the
classical ionic theory part of the calculation will in-
huence the distortions somewhat. We have used the
simplest Born theory with a Coulomb attractive term
and a repulsive term of the form bR ". Of course, the
use of the more accurate Born-Mayer theory with an
exponential repulsive term, van der Waals terms, etc. ,
would be desirable. However, we feel that our result
which shows that the distortions are small in the ground
state is quite valid.

Parts a and b of Table V are included in order to give
some idea of the sensitivity of the calculations to changes
in the form of the wave functions. With the 3s func-

tion, the total energy bz" is higher than it is for the
2s function and so we conclude that the 2s function
is slightly better. It also results in a somewhat lower

energy for e but the values of the distortions are not
greatly aRected by this change in the form of the
function. Taking the distortions given by the 2s func-

tion, we tried using a 4p function for the excited state,
with results which are slightly better than those for a
3p function. Thus, using energy minimization as the
criterion, the 2s—4p description is the best of those
tried here.

Another problem somewhat related to the above is

that of other minima in the energy surface. That such
minima exist might be surmised from the results on
lithium fluoride. We have already mentioned that
there is a minimum in the curve e,'= e,'(p, ') at a value
of 0.9405 for P,' for which e,' = —0.02247 a.u. We studied
this problem in the ground state of the lithium halides

by starting the energy minimization procedure with
values of p, about half as large as those shown in Table
II. The results were no different from those shown in

Table II, so we conclude that, in the ground state, rela-
tive minima pose no great problem for the computer

program.
The most striking result shown by the emission data

is that the theory does indeed give a large Stokes
shift, which in many cases results in the relationship
De~0.5he being obtained. However, a systematic
error similar to the one which occurred in the absorption
energies seems to be operating here, too. We assume that
the origin or origins of these errors are the same, with

the possibility of one additional factor in the excited
state. In general, for a given crystal, the greater the
distortions the larger the Stokes shift will be. This
suggests that in all three groups of three crystals the
tendency is for the distortions to be too great in the
crystals with small interionic distances and too small for
the crystals with large interionic distances. Of if other
factors operate, it may be that the distortions are just
too great for the crystals with small interionic distances.
The causes of excessive distortions could be many, but
it seems to us that the principal one is again that of
oversimplified trial functions. In the relaxed excited
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state, vrhere distortions are large and the vrave func-
tions quite diftuse, 2ee and polarization effects may be
even more important than they are in the absorption
states. Finally, the additional factor, unique to the re-
laxed excited state, is that, because of the large distor-
tions, the Taylor series expansion of the classical part
of the energy expression may be beginning to lose
validity.

The distortions in the relaxed excited state obtained
from the calculations reported here are substantially
different from those reported by Wood and Korringa for
LiCl in Ref. 4. There appear to be three reasons for this,
tvro of which we have already mentioned above in dis-
cussing the ground-state distortions. The third reason is
that the quadrupole terms introduced by the asym-
metrical distortions have been treated much more
accurately here than they were in Ref. 4.

Part c of Table V indicates that a 4p function gives
a slightly better representation of the excited state in
the emission process. We did not try a 3s ground-state
function, since it seemed that little was to be gained
in the way of getting better agreement with experiment.

The data in Table VI illustrate the difhculties en-
countered with the minima in the energy surface. In the
sodium halides, the minima shown in Table VI for NaCl
and NaBr are close to, but somewhat lower than, those
shown in Table III and would therefore seem to be the
appropriate ones. Since they fit in so poorly with the
data for the other crystals and do not agree at all with
experiments, we conclude that the ones shown in Table
III are the appropriate ones. There are corresponding
relative minima in the cases of the lithium and potassium
halides and it may be that they actually do exist and
have some physical significance, but vre have no way of
knowing from these calculations. Experimentally, their
existence would presumably show up as an emission
line shifted only a slight amount from the absorption
line.

From Table VII, we can see the results obtained from
a model vrhich corresponds to that used in obtaining
conventional configuration coordinate diagrams. We
were somewhat surprised to find so little differences be-
tween these data and those in Table IV. Apparently,
fairly large asymmetrical distortions produce about the
same effect on the energy levels as do symmetrical dis-
tortions whose magnitude is the average of the asym-
metrical distortions. Just what implications, if any, this
has for the interaction of the defect with the phonon
field we do not knovr at this time.

To a very limited extent, we studied the eGect of the
form of the core orbitals on the energies and distor-
tions. In the preceding section, we described the orbitals
which we used on the neighboring ions. We note here
that the single term Li+ 1s function is a rather good
analytical fit to the doubly occupied Hartree-Fock
spatial orbital, and that a linear combination of two
such exponentials is a very good fit. We assume then
that, as far as the energy calculations are concerned,

our 1s lithium function is essentially the Hartree-Fock
function. For the sodium ions, we have used fairly ade-
quate representations of the 2s and 2p Hartree-Foci'
orbitals, but we have neglected the 1s core orbitals. In
the potassium halides, vre have made no attempt to
use even approximate Hartree-Fock functions but in-
stead use the very simple Slater functions, albeit with
the Hartree-Fock energies, for the 3s and 3p electrons.
We neglect the inner electrons altogether. A survey of
the results in Tables II-IV indicates that the over-all
accuracy of the absorption calculations is about the same
in all of the crystals. In the emission calculations, how-
ever, the Stokes shift is consistently less in the sodium
halides than in the other crystals, although the magni-
tudes of the distortions do not seem unreasonable. In a
calculation on the absorption process, which we have
not reported here, vre included the 1s orbitals on NaCl
and found that they could affect the transition energy by
about two-tenths of an electron volt. Unfortunately,
their inclusion makes the calculation much more com-
plex and time consuming, and we felt that other aspects
of the work need further refinement before a thorough
quantitative study could be made of the role of the
structure of the neighboring ions.

In this connection, it would be interesting to try a
pseudopotentiaP' type of calculation on the F center.
The last three terms in Eq. (17) tend to cancel each
other somewhat and their resultant contribution,
though by no means negligible, may be small enough to
treat by first-order perturbation theory. A pseudopo-
tential approach might be adequate for the energy cal-
culation, but it is not obvious that it would deal with
the hyperfine interaction, oscillator strength, distor-
tions, etc., in a satisfactory way. A rigorously con-
structed pseudopotential operator is nonlocal and
probably as diflicult to construct as is the solution of
the problem it vras originally intended to circumvent.
It is, therefore, customary to replace the exact pseudo-
potential with some approximation thereof. Once this
has been done, however, the question arises as to
whether or not it might have been easier to make similar
simplifying assumptions in an approach of the type
used here. Actually, a fairly simple model formulation
may be all that is needed in many defect calculations.
Thus, using the approach we have taken here but
assuming a very simple pseudo- or effective potential
for the neighboring ions may give results accurate
enough for most purposes.

The picture of the absorption and emission processes
which emerges from these calculations is indicated
roughly in Fig. 1.The excited state after lattice relaxa-
tion appears to move up into the conduction band, but
this has no significance, for a number of reasons. For
one thing, in drawing the diagram we did not attempt to
locate the bottom of the conduction band with any
great accuracy. This mould have been dificult enough to
"See, for example, B.J.Austin, V. Heine, and L. J. Sham, Phys.

Rev. 127, 276 (1962) and references therein.
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do for a perfect crystal, but even more so for a crystal
containing a defect where local distortions of the band
in the vicinity of the defect may occur. Another reason
for the roughness of the diagram is the fact that our
energy levels for all states undoubtedly lie lower than
we indicate here. Within the framework of our model
and the variation principle, as we make the F-center
trial function pp more flexible, the energy levels will go
down. Subsequent calculations have indicated that a
shift downward of the order of 1 eV may easily occur.
In spite of the approximate nature of the figure, we do
feel that it is instructive and illustrates an effect which
is important, i.e., that the excited state before relaxa-
tion lies further below the conduction band than it does
after relaxation. The interpretation of the Faraday rota-
tion experiments of Liity and Mort" involves the first
excited state before relaxation, and Smith and Fowler"
have given preliminary results on the calculation of the
spin-orbit interaction in the unrelaxed excited state.
On the other hand, luminescence and lifetime experi-
ments give considerable information on the relaxed
excited state and it may be possible soon to do spin
resonance experiments on this state. Therefore, it seems
that eventually a fairly exact treatment of this eRect
may be obtained.

In Table VIII, the data on the oscillator strengths and
lifetimes in KCl tend to indicate that the long lifetime
reported in Ref. 6 is at least partially understandable
through our calculations. The matrix element effect is
not as large as we had guessed it would be, but this may
be a fault of our wave functions. The excited-state wave
function after relaxation is evidently rather diffuse and
therefore probably more affected by polarization effects
than is the ground state. Because the wave function is
already diffuse and much of the charge density lies in
regions of slowly varying, weak potentials, it may be
that the wave functions could spread out much more
without changing the energy greatly. That is, the energy
may no longer be very sensitive to the spatial extension
of the wave function. The wave functions are already

sufficiently diffuse to suggest that a perturbed band
calculation approach to the relaxed excited state might
be more appropirate than the method which we have
used. Unfortunately, very few calculations have been
carried out on the conduction band of alkali-halide
crystals.

We summarize the results reported here as follows:
The distortions in the ground state are small but in the
excited state they are of the order of 10/q of the nearest-
neighbor distance and have a pronounced asymmetry.
The treatment we have given can explain the large
Stokes shift and perhaps the long lifetime, although
further work is needed on this latter point. Our wave
functions are still too inQexible to allow us to locate
the position of the individual levels with any great

"F.Luty aud J. Mort, Phys. Rev. Letters 12, 45 (1964).
~ D. Y. Smith and W. Beall Fowler, Bull. Am. Phvs. Soc. 9,

240 (1964).
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FiG. 1. Energy level diagram of the absorption
and emission processes in Kcl.

accuracy. We feel that the approach to the problem
which we have used is basically sound, but it needs
further refinement. These refinements should be con-
cerned with (1) adding greater fiexibility to the trial
functions, (2) including 2nn effects, (3) including
polarization effects, and (4) improving the classical
ionic theory part of the calculation. At present, we are
concentrating our attention on the first of these re-
finements and we shall report on the results at a later
date.

Note added in Proof. W. Beall Fowler has informed us
of calculations of his which indicate that, because of
electronic polarizatiori effects, which we have neglected,
there occurs a much greater spreading out of the relaxed
excited-state wave function than that which we have
obtained in these calculations. This would tend to con-
firm our own qualitative ideas about the effects of
polarization. However, we prefer to withhold comment
about their magnitude until our own calculations have
progressed further.
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APPENDIX

We continue here the reduction of the right-hand side
of Kq. (10). We have assumed that all free ion orbitals
which appear in Eq. (7) are orthogonal. This will be
true on any one ion because of the symmetry of the
orbitals. A few simple calculations show that, for

p 4v, (P„,s ~ P„;) is much smaller than (pp
~ p„&), pro-

vided the latter integral does not vanish from sym-

metry, and so we put the former integral equal to zero.
This is a good approximation for the lithium ions in the
lithium halides and not at all bad even for the potas-
sium ions in potassium fluoride. It is a good approxima-
tion because the overlap charge density p„,s(1)p„,;(1)is

very small, so that we are justified in assuming the
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condition

~..(1)~,.;(1)=0,
which, of course, is stronger than

(~., l~.,;)=o.

(A1)
in which

(A2) and

Sp

p.(»2) = 2 4, (1)4., *(2)

N-1 nv'

(A6)

As we shall see, the condition (A1) enables us to make
a number of simplifying approximations.

When h operates on p„,;, we separate it into a part
h„,;which is the effective Hamiltonian for the jth orbital
on the vth ion p„„and. the part which remains,

We take

p"(1,2)= E Z ~. .;(1)~",;*(2).
v'=0 j=1
v gv

(A7)

(AS)

h„,; is given by

Z„p„(2,2)—p„(1,2)Pip
/g„= —-'7' — + dao (A4)

Ir —R„l ~12 Q, .~l&le. .~)=o~4;~o.~+8..~17 P I& ~)

(A3) and use the Hartree-Pock energies for o;, although the
use of experimental ionization energies would not affect
the results greatly. We then have that

and h„, by
N—1 gvi

and

Q., lhl~ &=Qol&l~, &

(4'p I
4'„'&+Q p I h„, '

I P„'). (A 10)

rl2

p, (2,2)—p„(1,2)Pip
Because of Eq. (A1) the second term in Eq. (A9) can be
written as

N-1 e.,.*(1)p '~, ,(1)
Q.,~lh, ~'le. ,~&= —2 ~"(e..~l(lr —R" I

') le.~)4, ~~,~+
v' =1

gv

n '

+Z Z
v =1 J 1
V QV

r12

Q„,p*(1)I P„,,(2)P„J*(2)—P„,,(1)P„,,*(2)Pgp/g„, ;(1)
dr pdrg, (A11)

in which po' is the operator defined in Eq. (15).
If we again use Eq. (A1) and the fact that the sums over v' now run over lattice sites which have been assumed to

be occupied by point ions, the exchange integrals in the last term of Eq. (A11) will vanish; the Coulomb integrals
in the same term will combine with the nuclear attraction integrals of the first term to give a point ion approxima-
tion. We then get

N—1 4, ,o*(1)pp'e. . (1)
64,~lb, ~'l&,~&= —E (+)"9",pl(lr —R"

I ) I& ~».'~~~+
v =1
v'gv

Using the same type of arguments we reduce (gp I
h

I Pq, ,) to

N—1 e.*(1)p '~.,;(1)
(q olh, ''l4', '&= & (~) '(go I (lr —R 'I ) l4' . ')+

'
drod&x ~

, (A12)

(A13)
v =1
V gv

t 12

We can get rid of the last term in both Eqs. (A12) and (A13) by remembering that from Q)p I&I Pp& we have the
term

~ *(1)p.'~o(1)
-IT28T1.

When Eqs. (A12), (A13), and this term are substituted in Eq. (10), they give a contribution, which, it is easy to
see, can be written as

eo.i*(1)pp'ep. i(1)
dT1dT2 ~

However, this is identically zero as can be seen by writing pp' in terms of the @"s.
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We then write Eq. (10) as

6 nv

o=lVp'{T (a—qq 1—)R~o '—P R, '+P A terms++ 6 L', —+2 P Q c,,iLc;&4ol4. ,i)
v=1 j=l

6 nv—& (~)"&&ol(lr—R"
I

') le. , )3+2 2 ', 'Lo —2 (~)"&@,l(lr —R"
I

') le, )3).
v' =1
v Qv

v=1 j=l v' =1
V QV

In this expression, we note that p„,, is a highly localized,
very compact, positive-ion wave function, whereas @o

is a much more diffuse function. We can make the sums
over v' go from 0 to S—1 by adding and subtracting a
term due to p'=0. Then we can write the last term in

Eq. (A14) as

N-1

2 (~)"&~. ,;l(lr —R" I-') l~..;)
v =1

gv
= (a~—1)R~ '+P(ionic A terms) . (A15)

The compact nature of the ion orbitals makes the sum of
the ionic A terms very small and we shall neglect them.
Also, because of the small spatial extent of &f „,, we can
put

first square bracket in Eq. (A14) becomes

iV—1

2 (~)"&~ol(l
—R, I-'e. ,;)

V P-V "- (~)"f,~," f,~,o

. =o IR„—R„.
l

IR„—Rol

Now we rather arbitrarily replace the sum over v' in
this equation by the Madelung potential times a factor
F„,; which is meant to account for the factors f, ,;,
The Madelung potential is rather slowly varying in the
immediate vicinity of any ion, so this should be a better
approximation than Eq. (A16). For simplicity we put

f„.o—F„. (A18)

Noting that, because of Eqs. (7) and (8), c„,,= —
&po I p„,;),

we obtain from Eq. (A14)
Q. l~. ,)

&gaol(lr —R"
I ')I4, )=f. "

I R,—R„
I

(A16) o=Xs'{T—(o~ 1)Rio ' —P—R. '+P A terms++ 6
v=1

6 nv

Here, f„;„.is a factor which takes into account the fact
that the overlap charge @o(1)g,,,(1) may not be cen-
tered exactly at the vth ion site as is assumed in the
denominator of Eq. (A16). The approximation given

by Eq. (A16) is actually a device for avoiding the cal-
culation of many small three-center integrals. It is
probably a very good approximation for the lithium
halides but somewhat less valid for the potassium
halides. With this approximation the second term in the

F —Q P c '[—e,+(2F„,; 1)(a~ —1)R, 'j}—) (A19)
v=1 j=l

which is the expression we have used in our work.
Our treatment of the three-center integrals via the

approximation given by Eq. (A16) and the introduction
of f„,„,F„;and the r, elation Eq. (A18) is certainly not
very rigorous, but, in fact, it is probably a fairly good
one. We have not checked it in any great detail simply
because, in any case, the energy ej in the square bracket
is much larger than the other terms therein.


