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The temperature variation of the Debye-%aller factor is calculated for copper on the basis of the aniso-
- tropic dispersive continuum model. The results are compared with x-ray measurements of Fhnn-et a/. and the

other theoretical calculations of this. factor from diGerent Born—von K6,rxnin force models. The Debye-
Waller factor is not very sensitive to the details of the frequency spectrum. The frequency distribution func-
tion for vanadium is also calculated on the basis of the anisotropic dispersive continuum model. The results of
this calculation, as well as many other force-model calculations, yield a poor representation of the frequency
'spectrum, for which experimental measurements from the inelastic incoherent neutron scattering techniques
are available.

I. INTRODUCTION

ECENTLY it was shown' that the anisotropic
dispersive-continuum model gives a reasonable

description of the lattice dynamics of solids and is
convenient enough for a calculation of a physical
property governed by the details of the phonon spec-
trum. This model provides a satisfactory explanation of
the temperature variation of the Griineisen parameter
for copper. ' It was thought worthwhile to compute the
Debye-Wailer factor on the basis of this model and to
compare it with the values predicted for it from various
other models and also with experimental results in the
case of copper. We have also presented a calculation of
the frequency spectrum of vanadium on the basis of
this model and have compared it with an experimentally
determined frequency spectrum.

II. DEBYE-WALLER FACTOR

The Debye-Wailer factor enters into a large number
of solid-state phenomena such as the Mossbauer effect,
neutron scattering, x-ray diffraction, electrical con-
ductivity, etc. , and can also be correlated with the
thermodynamic data, like specific heat. Recently, Flinn
et u/. ' reported on the x-ray determination of the Debye-
Waller factor for copper by making x-ray intensity
measurements from 4—500'K. They were able to inter-
pret the experimental results in terms of a central-force
model with first- and second-neighbor interactions.
DeWames et u/. ' have discussed the Debye-Wailer
factor of copper predicted by various force-constant
models in the face of the experiments of Flinn et at. It
would be interesting to compare the Debye-Wailer
factor calculated on the basis of the simple anisotropic
dispersive continuum. model with the earlier experi-
mental and theoretical findings.

A. Theory

In the expression giving the intensities of the non-
resonant elastically scattered waves (of slow neutrons,

' K. C. Sharma and S. K. Ioshi, Phys. Rev. 13~, 559 (1963).
~ K. C. Sharma and S. K. Joshi, Phil. Mag. 9, 507 {1964).
'P. A. Flinn, G. M. McManus, and J. A. Rayne, Phys. Rev.

123, 809 (i961)."4 R. E. DeWames, T. Wolfram, and G. %.Lehman, Phys. Rev.
131, 528 (1963).

For a monatomic lattice of cubic symmetry, the ex-
ponent 2' is completely determined by the lattice
vibrational frequency spectrum and is proportional to

AGO gg'

X(T)=——g —coth
3Ã e, z' k~q, 2kT

(2)

In these expressions X is the total number of unit ce11s
in the crystal, s and so the wave vectors of the scattered
and incident waves, e„ the polarization vector of the
vibrational wave with frequency or„. and average popu-
lation m„, k the Boltzmann constant, 2 the absolute
temperature, A the Planck's constant divided by 2+, and
the summation is over all the wave vectors g and polari-
zation branches j. Replacing the summation over q by
an integration, Eq. (2) reduces to
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coth —da)dQ. (3)
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Here 0 is the solid angle in wave-vector space. In the
anisotropic dispersive continuum model the frequency
wave vector relation is of the form

ce„=C, (2Q/~) sin(m, /2Q),

where C; are the velocities of sound with different-
polarizxtions, given by the three roots of the third-order
ChristoKel equation and the Brillouin zone is replaced
by a Debye sphere of radius Q. Therefore,
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x rays, etc.), from scatterers which are bound in crys-
tals, the eÃect of the zero point and temperature motion
of the scatterer is contained in the Debye-Wailer factor
which multiplies the Axed scatterer intensities, and is
given by
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TanLE I. The values of X(T) for copper (in eV 'X10').

Temperature
('I)

Experimental

X(T)

X(T')
(Houston's
method)

Anisotropic dispersive
continuum model

X(T)
(Debye-Wailer

frequency
integral)

Xn(T)
(Debye

approximation
with 0=335'K)

30
50

100
200
300
400
500

317.7m 10
317.7~10
319 +10
330 ~10
315 &10
300 +10
307 &10

0.547+0.017
0.638+0.026
0.861+0.042
1.373+0.078
2.170+0.135
3.127+0.209
3.733~0.240

0.626
0.684
0.955
1.658
2.387
3.173
4.019

0.551
0.597
0.844
1.479
2.239
3.080
3.973

0.520
0.595
0.796
1.335
1.922
2.523
3.)41

Here a=2C,Q/s. . X(T) can also be written directly
from (3) in terms of the frequency-distribution function
G(co);

X(T)=
AGO—coth G(co)dto,

AG0 2kT
(6)

hereafter called the "Debye-%aller frequency integral. "

B. Results and Discussion

X(T) was evaluated from (5) and (6) separately. In
the evaluation of X(T) from (5), the integration over to

was performed numerically and the integration over 0
was carried out by using a modi6ed Houston's spherical
six-term integration procedure as developed by Betts
et al. ' The six directions used in this procedure are
[001], [101],[111])[102]) [112])and [212]. In this
particular method we have taken account of anhar-
monicities in an approximate way by considering the
temperature variation of the elastic constants and the
thermal expansion of the lattice in the computation of
lattice frequencies. The pertinent elastic data at
different temperatures are due to Overton and Gaffney'
and the lattice parameter values at various temperatures
are from Pearson. ' To compute X(T) from the Debye-
Waller frequency integral (6), use was made of the
frequency distribution function for copper correspond-
ing to O'K calculated in an earlier paper, ' and the inte-
gration was performed numerically.

The values of X(T) calculated in the above-men-
tioned two ways have been given at different tempera-
tures in Table I along with the experimental data. The
frequency distribution function G(cd), calculated by
sampling method can not be very accurate at the ex-
treme 1ow-frequency end because of the coarseness of
the mesh used. It is therefore thought-that at low
temperatures where lower frequencies have a pre-
dominating inRuence, Houston's method will yield more

6 D. D. Betts, A. B. Bhatia, and M. Wyman, Phys. Rev. 104,
37, (1956).' W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955).

7 W. B.Pearson, A Handbook of Lattice Spacings and Structures
of SXetuls and Alloys, (Pergamon Press, Inc. , New York, 1958),
p. 5'M.

reliable values of X(T). This is evident from the better
agreement with the experimental results of X(T) values
deduced from Houston's method in comparison to those
obtained from the Debye-%aller frequency integral.
On the other hand, Houston's method becomes un-
reliable at high frequencies. Therefore the high-
temperature X(T) values given by this method will not
be accurate. But at high temperatures (say greater than
300'K) anharmonicities will have a slightly vitiating
inhuence on our 6ndings. ' As pointed out above we
have considered anharmonicity when using Houston's
procedure. For the sake of comparison we have also
given X(T) values calculated on the basis of the Debye
model using P=335'K. The de&ning equation for
X(T) in the Debye approximation is

with x=P~/T. Our results indicate that the Debye
model does not yield satisfactory results. If we compare
the values of X(T) deduced by DeWames el al. 4 from
various other Born-von Karman force models, we find
that the Debye-%aller factor is quite insensitive to the
details of the frequency spectrum and can yield little
detailed information about the actual frequency
spectrum.

III. FREQUENCY SPECTRUM OF VANADIUM

Eisenhauer et al." and Stewart and Brockhouse"
have used the inelastic incoherent neutron-scattering
technique to measure the lattice vibration spectrum of
vanadium. Recently the frequency spectrum has again
been measured experimentally at 206, 300, and 806'K
by Turber6eld and Egelstaff. "The neutron-scattering
cross section of vanadium is almost entirely incoherent

' A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529 (1963).
s H. Hahn and W. Ludwig, Z. Physik 161, 404 (1961).' C. M. Eisenhauer, I. Pelah, D. J. Hughes, and H. Palevsky,

Phys. Rev. 109, 1046 (1958).
"A. T. Stewart and B. N. Brockhouse, Rev. Mod. Phys. 30,

250 (1958)."K.C. Turber6eld and P. A. Egelstaff, .Phys. Rev. 127, 1017
(1962).
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and the frequency-distribution function G(oI) can be
obtained directly from the measured energy distribution
of the neutrons scattered from a polycrystalline sample
of the material. Uanadium is one of the most aniso-
tropic cubic (body-centered) crystals, and the various
Horn-von Karman force-constant models yield a very
poor representation of the frequency distribution of
vanadium. " '6 It would be interesting to see how the
anisotropic dispersive continuum model works on
vanadium.

The procedure for calculating the frequency spectrum
based on the anisotropic dispersive continuum model is
exactly the same as has been already described in detail
in an earlier paper. ' Figure 1 shows the smoothed calcu-
lated frequency distribution curve together with the
experimental curve of Eisenhauer et al." For com-
parison we have also shown the curves calculated by
Hendricks et a/. "for a noncentral three-force-constant
model and by Clark et ul. ,

" for a noncentral four-
constant model. The curves have been normalized to
the same area. Because of the uncertainty in the upper
end of the experimental curve, we have arbitrarily cut
it off at 5.65X 10"rad/sec for normalization. The room-
temperature elastic constants for vanadium are those of
Alers" and are given below together with other per-
tinent data:

Ccc——22.795X10"dyn-cm ',
C&2= 11.870X 10"dyn-cm=",

C44=4.255X10"dyn-cm ~,

density, p=6.022 gm-cm ',
atomic volume, 0= 13.879 A'.

Several features of the frequency distribution curves
are of interest. The calculated and experimental fre-

quency distributions are quite different with regard to
the location of the two peaks, with the calculated fre-
quency distributions having more widely spread
maxima. In addition the high-frequency peak of the
experimental curve is more intense than the low-

frequency one, whereas all the calculations lead to just
the opposite result. The maximum frequency of our
calculated spectrum is in fair agreement with experi-
ment, although the experimental value is not very well

defined. Our calculation is somewhat nearer in results

's C. B. Clark, J. Grad. Res. Center 29, 10 (1961)."J.B. Hendricks, H. B. Riser, and C. B. Clark, Phys. Rev.
130, 137'7 (1963)."B.Sharan, J. Chem. Phys. 36, 1117 (1962)."B.C. Clark (private communication). We are indebted to
G. A. Alers for bringing the work of Clark, Gazis, and %allis to
our notice."G. A. Alers, Phys. Rev. 119, 1532 (1960).
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I'LG. 1. The frequency spectrum of vanadium. The smooth solid
curve is the spectrum calculated using the anisotropic dispersive
continuum model; the dashed curve is the spectrum calculated
by Hendricks et al. using a noncentral three-force-constant model;
the dash-dot curve is calculated from the four-constant model of
Clark et al. ; and the dotted curve is obtained from the neutron
scattering experiments of Eisenhauer et al.

to calculations based on de Launay's three-constant
model than that from the four-constant model of Clark„
Gazis, and Wallis. It appears that vanadium has some-
thing special about its lattice dynamics. The interesting
experiments of Turberfield and Egelstaff" show a tail of
the frequency spectrum at high frequencies, and also
that the spectrum does not obey the Debye cv' law at
the lowest frequencies at which they were able to make
measurements. No explanation of these effects has been
given at the present time. An experimental investigation
of the dispersion curves for the lattice waves through
diffuse x-ray scattering would be revealing and would
throw much light on the lattice dynamics of vanadium.
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