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This process can be repeated-until the predicted and
corrected values of $;&"+'l differ by less thari a prescribed
value. However, the procedure adopted was to make
trial runs on the system of 864 particles with one and
with two repetitions of this predictor-corrector pro-
cedure. A comparison of the results in terms of the
correlations discussed in this paper showed no observ-
able difference. As a further check, the motion .of a
diatomic system was calculated with one and with two
repetitions of this procedure. The two particles were
initially at a distance p» ——1.9 and were allowed to
oscillate; their positions at 2000 successive intervals Au
were recorded covering a little over three periods of
oscillation and the following is a summary of the results
to show the degree to which the approximations in-
volved in using the difference equations affect the
motion.

(a) At the end of three successive oscillations the
separations were: 1.8958, 1.8932, 1.8890, when the
predictor-corrector procedure was used only once and
1.9018, 1.9016, and 1.9044 when it was used twice, thus
giving improved results.

(b) The distance of closest approach was successively

1.0039, 1.0040, 1.0041 in the first case and 1.0038,
1.0038, 1.0038 in the other.

(c) The mean-square velocity in 'K while going
through the Ininimum of the potential was 36.65, 36.61,
36.60, 36.59, 36.59, 36.54, in one case and 36.65, 36.67,
36.67, 36.68, 36.67, 36.70, in the other.

(d) The period of oscillation was (in units of 10-"
sec) 6.27, 6.22, 6.17, in one case, and 6.31, 6.32, 6.33 in
the other.

This gives an idea of the errors involved in using the
diRerence equations given above. The results given in
the paper were all obtained in a run with two passes
through the predictor-corrector procedure.

There are five factors which determine the time for
computing one step Au, namely, X, E., the number of
predictor-corrector cycles, the manner of writing the
program, and the computer used. For LV =864, R= 2.25o-,

using floating point arithmetic each cycle takes 45 sec
on the CDC-3600 computer. For /=250, 8=2.0(T,

using fixed point arithmetic each cycle takes 40 sec on
the IBM-704 machine. For the most time consuming
part the program was written in machine language and
in FoRTRAN for the rest.
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Interactions between elastic waves in an isotropic solid are studied in the elastic-continuum approximation.
The analysis is carried out completely in a wave-packet formalism, i.e., scattering of wave packets by wave
packets. The maximum amplitude (or intensity) and width of the scattered wave packet are expressed in
terms-of the maxilrIum amplitudes, frequencies, widths, polarizations, and relative propagation directions of
the primary-wave packets. The polarization relations and frequency ranges for the allowed interaction proc-
esses are obtained; these are essentially identical to the ones given by Jones and Kobett. The results are
shown to be in good order-of-magnitude agreement with the experiments of Rollins. Possible application
of elastic-wave scattering to the determination of third-order elastic constants is discussed.

I. INTRODUCTION

~ LASTIC waves in solids have attracted much theo-
~ retical and experimental interest; but surprisingly,

the interaction between elastic waves (phonon-phonon
scattering) has been investigated experimentally only
~ecently. Last year, Rollins' observed directly the
production of "sum" and "difference" frequency waves
from the interaction of two ultrasonic pulses in alu-
minum. Somewhat earlier, Gedroits and Krasil'nikov'

~ Part of this work was submitted by C. G. H. in partial ful611-
ment of the requirements for the M, S. degree at Louisiana State
Unlvel'slty.

f Present address: Department of Physical Sciences, McNeese
State College, Lake Charles, Louisiana.' F. R. Rollins, Jr., Appl. Phys. Letters 2, 147 (1963).

'A. A. Gedroits and V. A. Krasil'nikov, Zh. Kksperim. i Teor.
Fiz. 43, 1592 (1962) (English transl. : Soviet Phys. —JETP 16,
1122 (1963)j.

demonstrated the effects of such interactions on the
attenuation and harmonic distortion of an ultrasonic
wave interacting with itself. Mahler, Mahon, Miller,
and Tantilla' and Shiren4 later reported observations
of the same phenomena by different experimental
means. At about the same time, Jones and Kobett'
(classical approach) and Childress and Fried'
(quantum-mechanical approach) discussed elastic-wave
interactions and found that such processes should
indeed be experimentally observable.

3 R. J. Mahler, H. P. Mahon, S. C. Miller, and W. H. Tantilla,
Phys. Rev. Letters 10, 395 (1963).

4 N. S. Shiren, Phys. Rev. Letters 11, 3 (1963).
s G. L. Jones and D. Kobett, J. Acoust. Soc. Am. 35, 5 (1963).

An erratum notes the omission of a term
—(E——;p+&)[(Aok)(ki k2)BO+(BO k2)(k 4)Aoj

in the expression for I~ below Eq. (4) (their notation).' J. D. Childress and Z. Fried, Bull. Am. Phys. Soc. 8, 16 (1963).
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Elastic waves in a lattice interact one with the other
through the lattice potential expansion terms of cubic
and higher order in particle displacements, the an-
harmonic terms. Similarly, terms nonlinear in the
deformations obtained in the general theory of elastic
continua allow interactions, i.e., scattering of elastic
waves by elastic waves. In the following, the develop-
ment is based on the continuum approximation; this is
not much of a restriction since the highest frequencies
available experimentally are well within the region of
validity of the approximation. The same reason justifies
neglect of dispersion. Additional approximations limit
the validity of the present study to interactions in which
the scattered-wave amplitude is small relative to the
primary wave amplitudes.

The present study considers the interaction of two
elastic-wave wave packets in an isotropic solid. Results
are obtained in terms of quantities of direct experi-
mental interest. Ke choose the wave-packet treatment
as most suitable for comparison with the experimental
results of Rollins. ' A similar treatment is indicated for
comparison with Shiren's work; however, the "strong"
effects and particular experimental conditions of Shiren'
cannot be handled directly in the present analysis.
Further, the wave-packet approach avoids the awk-
wardness, particularly in amplitude and intensity
expressions, inherent in the plane-wave approach of
Jones and Kobett. '

Since many experiments in solid-state physics, either
for convenience or from necessity, use pulse excitations
and consequently would be described most naturally
and faithfully in the wave-packet formalism, the present
study is perhaps of some interest as an example of a
treatment completely in terms of wave packets.

II. APPROXIMATE SOLUTION FOR THE
SCATTERED WAVE PACKET

A. The Wave Packets

The two incident wave packets are assumed for
mathematical convenience to have the spherically
symmetric Gaussian form

(hereafter called the scattered wave) is a sum wave, i.e.,
angular frequency ~&+cv2, the interaction involves an
absorption of energy from both primary waves and
requires use of the (+) sign for both ui and u2. If the
scattered wave is a difference wave, angular frequency
co&—co2, the interaction takes energy from the co& wave
and delivers part of that energy to the co2 wave; thus,
the (+) sign must be taken for ui but the (—) sign
taken for u2.

The scattered wave in the interaction region is
written by means of the four-dimensional Fourier
transform as

u~(x, t) =
(2ir)'t'

d k~ de~
4(4',~+')

240'
Xexp[i(k~' x—(a~'t)7, (2)

where the 2'~ is introduced in the denominator to give
C+ the same dimensions as A, and the (+) and (—)
subscripts label sum and diGerence wave quantities,
respectively. Outside the interaction region, the scat-
tered wave is another free wave in the medium and,
in the Gaussian approximation, should have the form
of Eq. (I), i.e.,
C+(4',~+') (4'—4)'~ C~b[(o~' —(u~(k~') jexp-

2coy 2A'

The directions of A, and C~ vectors give the directions
of the respective deformations. These can be expressed
as

A, =A,e,, C~=C~e„,

B. The Equation of Motion and the
Principal Approximation

where s; and at are the polarization vectors (unit
vectors) of the corresponding waves.

Suitable factors could be introduced into the wave-
packet expressions so that the propagation of each
wave packet would be displayed explicitly; then
time-of-Qight results would be obtainable. Since these
results are essentially trivial, we omit such factors.

u;+(x, t) = (2m-) 't'AP d'k, ' exp[ ——,
' (k —k;)'6, ']

The equation of motion for a wave in an isotropic
elastic medium is

Xexp[~i(k, ' x—&v;(k )t], (I)
Ap= UP/6, 3,

where u; is the deformation vector, U; is the maximum
of u, , k is the wave vector of the wave of angular fre-
quency ~;(k,'), and 6, is the k-space width of the ith
wave packet with mean wave vector k;. As a convention,
we take the angular frequency of the first wave &u&(k&)

to be greater than or equal to that of the second wave,
c02(k2); this involves no loss in generality, being merely
a labeling for the waves.

The (&) superscript on u and the corresponding (&)
signs on the right-hand side of Eq. (I) have the follow-

ing significance: If the wave produced in the interaction

82s; 82N,
po —Zt I +&

CItt2 BXj2 BX;BXj

O'I; BN; O'I; BN; O'I; BN;—
+ +2-

CjXtmt BX& CIST BXj BX&BXy BSp

CI I; BQj 8NI, BQ; BQ; BNj
+v + +(v P)

CI&i.~&k Cp&jt, Cw~j~~& Cp&j- ~~& ~&j

CW NI„- CISj 8 Sj BNI,+(v- ) '+
-BSjCIXy BX; 8$&CIXJt; 8Xj

8 QI, 8N
+8

BXz8$lt; Qgj
(3)
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approximation is that ~ is small relative to u&+ and u2+.
Further, second-harmonic terms of the primary waves
are omitted; these interactions have been treated by
Gol'dberg' and are not considered here.

to third order in the deformation. Here po is the density
of the undeformed solid; p is the shear modulus; and
the coeflicients cr, p, y, and 5 are defined

n=E+ ',ti, -
P=ti+&A,
y =K+ roti+ sr-A+8,

b=B+2C,

C. The Secondary Approximation anl
the Solution

We substitute Eqs. (1) and (2) into Eq. (3), multiply
both sides by exp[ —2(k~" x—oo~"t)], integrate over
all space and time, then integrate over k~" on the left-
hand side by means of the Dirac delta functions which
result from the previous step, solve for C+(k+',&oz'), and,
finally, substitute that into Eq. (2) to obtain

where E is the modulus of compression and A, 8, and C
are the third-order elastic constants. ~ The linear
equation of motion results if the left-hand side of Eq. (3)
is set equal to zero.

For an approximate solution of the nonlinear equa-
tion, Eq. (3), we write the total deformation as iA g+A2+ d'kg'd~g'd'kg'd'k2'

ug(x, t) = P(k, 'Wks' —k~')
(22x)'po [~g"—~p'(kg')]

h[oii(ki')aio2(k2') —or~']6(ki', +k2', ei, e,) e~

exp[ ——', (ki' —ki)'Ai '—-'(k2' —k2)2A

Xexp[2 (k~' x—or't)], (4)

u= ur++u2++uy.

The principal approximation for this calculation
consists of the following: (1) ui+ and u2+ are taken to
be solutions of the linear equation, hence vanish in the
left-hand side of Eq. (3); and (2) terms in u~ on the
right-hand side of Eq. (3) are neglected. Clearly the where

6(ki,ak2, er, e2) =p(2(er e2)[(akt'+kr k2)k2+ (k2'akr k2)ki]
—(~kr'+ki k,)(e, xk, ) xe,—(k2'~k, k,)(e, xk, ) xe,}

+(2y —rx)[(et e2)(ki k2)(+kt+k2)+(ei ki)(ki k2)e2+(e2 k2)(ki k2)ei]
+ (y P)[(el'kl)k2 e2+ (e2'k2)kl e1]
+ (y —rx)[a (er ki)(e2 x k2) xki+ (e2 k2)(ei xki) xk2+ (ei xki) (e2 xk2)(akt+k2)]
+5(er k1)(e2 k2)(akt+k2).

oos(k) =cPk' cP= (ti+n)/po

for a longitudinal wave.

(7)

The form of the 6 function obtained directly from
the right-hand side of Eq. (3) is identical to the cor-
rected expression for I+ below Eq. (4) of Jones and
Kobett. ' The above expression for G, obtained by
straightforward vector manipulations, is especially
easy to interpret for different wave polarizations.

The terms on the left-hand side of Eq. (3) from which
oi, (k,) is defined are

(ti/Po)k' e + (rrlpo) (e' k*)k'.

Since only transverse and longitudinal polarizations
need be considered in an isotropic solid, the above is set
equal to a&2(k)e, where

o~2(k) =CPk2, CP=ti/po (6)

for a transverse wave and

We can now integrate Eq. (4) provided we assume
(the secondary assumption for the approximate solu-
tion) that quantities slowly varying relative to the
singular functions and the Gaussians can be taken
outside the integrals. This is essentially an assumption
that the wave packets are "sharp" in k space, i.e.,

a,~«k;2.

Details of the integration and additional necessary
approximations are given in the Appendix; the final
result in terms of maximum amplitudes is

22+(x,t) = 4 (22r)'i'po '&1+U2+G(ki, +ko, ei&e2) e+

X [oii(ki) +&o2(k2)] '

X (+/+1+2) (cl A1 +c2 62 ) exp[ ox jg]
Xexp[i((kiwks) x—[oi, (k,)~oi2(k2)]t}]. (8)

Here the width in k space of the scattered wave packet is

(CP—2cic2 cose+c2 )Ai'A2'
g2

7.;(1-(1/...,)[(.;-,~.:-,)/(-.~-.)]- 0} (~+A.)
'The notation for the elastic constants is conventional. The A and C elastic constants are not to be confused with the A;+

and C~ amplitude notation.
'Z. A. Gol'dberg, Akust. Zh. 6, 307 (1960} LEnglish txansi. : Soviet Phys. —Acoust. 6, 306 (1961}j.
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where
cos8=kg k2/kgk2,

A&1.
The derivation of Eq. (9) necessarily excludes the
cos8=&1 values. Hereafter all &v's are co(k)'s; therefore,
the functional notation is omitted in the following.

ID. POLAauAnOm RELATIONS Amo THE
ALLOWED SCATTERING PROCESSES

A. Interaction Cases

Inspection of the expression for G(k~, &k2,e~,e2) given
in Eq. (5) shows that the interaction between the two
wave packets depends strongly on their polarizations.
For analysis of this dependence, we de6ne a convenient
coordinate system with respect to the scattering plane,
the plane in which the (mean) wave vectors k~, k2,
and ks. lie, as

ng ——kg/&g,

n~ ——n3 xn„
»=» ~k2/lk~ «2I .

The three unit vectors n~, n2, n3 form a right-handed
Cartesian system.

%ith reference to the scattering plane, each wave has
the following three possible polarizations:

(1) longitudinal (denoted by /)

e=k/k,

(2) transverse in the plane (denoted by t)

a=ns ~k/k,

(3) transverse normal to the plane (denoted by w)

The three polarizations taken together with the
convention &e, &&o2 yield nine interaction cases (a
measure of redundancy exists here but the clarity and
de6niteness is worth the slight cost in elaboration). The
interaction cases with the corresponding G vectors
(expressed in most convenient terms) are—

Case I:
pg ——l, p2 ——l,
Gr ——cg '~~~2[{L(2E+5/3p+A+48+2C)+ (E+7/3p+A+28) cos'8j~2 cos8

&DE 3p+28+2—C)+2(E+7/3p+A+28) cos'8)&v~) nq+ {[ (E+3p+28+2C)
+(E+7/3p+A+28) cos'8(~2+(E+7/3IJ+A+2'J3)co~ cos8) sin8n2]; (10)

Case II:
pe=I, p2=&,

Grz ——(c(cg) '(og(o2[{
—f(E+3p+ 2A+—J3)+ (E+7/3p+A+2B) cos'8jc( 'a&2

%2(E+7/3p+A+2B)c~ 'coq cos8) sin8n—q

+{L(E+3y+ sA+&) —(E+7/3p+A+28) sin28/c~ '&u2 cos8

+P(E+3p+2A+&) —(E+7/3@+A+28) sin'8)cq 'cgq}n,]; (11)

Case III:
py= t, p2---l,

GIII (&l&t) ~1~2[{i(p+gA++)+ (E+7/3@+A+28) cos'87&(—'s),

~ (E+10/3@+5/4A+28)c& '&o~ cos8} sin8n~+{L(E+34p+-', A+/)
+(E+7/3I"+A+28) sin'8jc(-'(o2cos8a[(E+3v+-,'A+&)+(p+-,'A) sin'8/c (ug)n, ]; (12)

Case IV:

pi=~, p~=&,

.[{L('A+73)+(E+7/3 +A+») -"8j-,...8
(P 8)+ (E+10/3p+5/4A+28) cos'8$»)n, +{L—(~ 8)+(E+7/3P+A—+2g) cos28)

+ (p+~A)cvq cos8} sin8n, ]; (13)

Case V:

pl 'ry p2 'r)

Gv= ~& '~I'd2[{E(s+4A)+ (E+—,p+A+3&) cos'8jco2~ (E+7/3IJ+5/4A+3jp) ) cos8}n,
+L(E+kv+A+3&)~2 cos8a(p+-', A)~ ) sln8n ]; (14)
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Case VI:

Pl I P2.
GvI (clct) MIM2{[(E sft+B)+ (ttt+ tlat) cos 8]ct M2+ (E+sp+2A+B)ct MI cos8)I12 t

Case VII:

PI= r, Ps=I,

GvII (clct) M1M2j (E+sit+ 2A+B)cl M2 cos8~L(+ sp+B)+ (44+ ~) cos 8]c M )II

Case VIII:

PI= rt P2= ft

GvIII=ct MIM2L —(ttt+4A)(M2&MI cos8)$ sln8112, (17)

Case Ix:
P1= I, P2= r,

GIx= c MIM2( tt+4A) (M2 cos8&MI) sin8n, .

B. Polarization Relations
t

Since the scalar product 6 e+ appears in Eq. (8), the
direction of the 6 vector determines the polarization of
the scattered wave. For cases I to V, 6 lies in the
scattering plane; hence the possible polarizations of the
scattered wave are p~=l and p+ ——t. For cases VI to IX,
6 is normal to the scattering plane and the only possible
polarization of the scattered wave is p~= r.

The above polarization relations are understandable
in cases I to IV. In these cases, both a& and e2 lie in the
scattering plane and that e+ also lies in the plane seems
reasonable. Cases VI to IX are harder to understand.
These cases have one, but not both, of s~ and c2 normal
to the plane and e+ normal to the plane. Case V appears
surprising at first; both e~ and e2 are normal to the
scattering plane but a+ lies in the plane. Were the
wave-packet labels interchanged, the similarity of this
case to cases VI to IX would be evident.

TABLE I. Forbidden scattering processes. Processes forbidden
by the polarization relations are marked with an X, by the
exclusion of cos8= &1 values with a V, and by energy-momentum
conservation with a Z (some are forbidden on more than one
ground but only 6rst is indicated). The quantities p1, p2, and p~
are the polarizations of the waves of angular frequencies co1, co2,

and co+=cvI+~2, respectively; l denotes longitudinal polarization,
t transverse in the scattering plane, and r transverse normal to
the scattering plane.

C. Allowed Scattering Processes

The requirements of energy-momentum conservation

Ry =M y& Gag )

IIS.=lrlalr2 (20)

must be satisfied by the scattered wave (see the
Appendix). From these relations, we derive an expres-
sion for cos8 in terms of the c's and co~ and ~~

TABLE II. Frequency ranges for allowed scattering processes.
The quantities p1, p2, and pz are the polarizations of the waves of
angular frequencies co1, or&, and u+=u1&u2, respectively; l denotes
longitudinal polarization, t transverse in the scattering plane,
and 7. transverse normal to the scattering plane.

cos8= c~ (crc2+ 2 pc2MI(cIM2) (cl cy )
+CIM2(C2MI) I(C22 —C~2))}. (21)

Since —1&cos8&1, analysis of Eq. (21) for each inter-
action case gives conditions for the allowed scattering
processes. The exclusion of cosg=&1 values in the
present analysis results in the following restriction:
The two primary waves and the scattered wave cannot
all be longitudinal or all be transverse.

Use of the polarization relations, the above restric-
tion, and the energy-momentum conservation condition

Interaction
case

I:PI=l) pg=l
II:p1=l, p2=t

III: p1 =t) p2=l
IV: p, =t, p, =t
V: PI =~)P2=V

VI: PI=l) p2=v
VII: p1 ——7,p2 ——l

VIII: py=r, pq=t
IX:p1=t, pg=z-

V Z X P
Z X
Z X Z Z
Y X Z Y
V X Z Y

X X Z X X
X X Z X X
X X Y X X
X X V X X

X

X
X
X

Scattered wave
P+=l p+=t P+=& p-=l p-=t P-=&

Allowed process

p1=l p2=l p -t
P1=l P2=t P+=l

P1=l~ p2=t~ P-=l
p1=l, p2=t, p =t
p1=t, p2=l, p~=l

p1 ——t, p~
——t p+-—l

PI =v)p2=r)p+=l
P1=» P2=t2 P+=&

Frequency range

1&cc2/tet) (cl —ct)/(cl+ct)
1)cat/ddt )0

for 2ct/(cl c,) &art/ctt—)0 if cl&3c,j
2ct/(cl+ct) &cu2/tc»0

(cl+ct)/2cl &tot/tot & (cl ct)/2cl—
1)td2/tet) (Cl Ct)/2Ct

t or process forbidden if ct & 3ctg
1&ttt/tet) (Cl Ct)/(Cl+Ct)—
1 &Mt/tel& (Cl Ct}/(Cl+Ct)—

(Ct+c )/2ct )tt/ )c(ccl—tctct)/2cl
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reduces greatly the number of possible scattering
processes (see Table I). The convention oII ~&ol2 and the
material property c&&c& are employed for these results.

The above considerations show that only eight
scattering processes are allowed. These processes and
the allowed frequency ranges are given in Table II.

For an allowed process with given oII, p„and o12, p2,
the required angle 0 between the incident wave-packet
propagation directions is given by Eq. (21). The angle

62+ (relative to nl) at which the scattered wave packet
emerges from the point of interaction is

frequencies of the order of 10 Mc/sec and pulse lengths
about 10 @sec, the above is about one order-of-
magnitude less than the estimate obtained by Jones
and Kobett, ' i.e., for U&+, U2 10 ' cm, we find
U 2(10 ") cm.

The intensity estimate corresponding to the above is

I 5(10 ')Il+I2 (oII—ol2)2E2

X LrlT2(T '+ T2')/T'7(pp'CI'CI6) '

2 (10 ")(sec cm2/erg)I, +I2 (ppl —ol,)2

X LTIT2(TI2+ T22)/T3)2; (26)

s1111P~=&cyol2Lc2(PPI&PP2)) S1110.

IV. IHSCUSSION

(22) for the same frequency and pul. se length magnitudes as
before, I is of the order of (10 ' cm'/W) I +I

A. Maximum Amplitude and Peak Intensity
of the Scattered Wave Packet

The maximum amplitude U+ of the scattered wave

packet is obtained from Eq. (8) as

Uy 4(22r) pp Ul U2 (oll~ol2) G(oil)~ol2ypl)p2) '&+

X (161/AIA2)3(c
—II1 2+C2 Ig22) (23)

where the notational changes are self-evident and where

8, is given by Eq. (9). We use the peak intensity-
maximum amplitude relation I=-,'p~'eU to express
the peak intensity I+ of the scattered wave packet as

Iy= lpllpp Il I2+(ollol2) t G(oil, &ppp, pl, p2) Ry)

X (+/+I+2) 6(c /clc2) (cl IA 2+c2 lg22)2 (24)

where I~+ and I~+ are the peak intensities of the co&

and ~2 wave packets, respectively.

B. Order-of-Magnitude of the Interaction Effects

We estimate the order-of-magnitude of the elastic-
wave interactions for aluminum with

pp= 2.7 g/CI11,

cl ——6.4(10') crn/sec,

c,=3.0(10') cm/sec,

p= 2.4(10") D/cm',

K=8 1(1011)D/cm2

and the other constants assumed to be of the same
order-of-magnitude as p and E. We take Case I (pl ——I,
p2 I, and p = i) and approximate the factor (GI 2 )
roughly as

~
GI &—( 3ollol2(ppl cp2)+/cl ~

The maximum amplitude is then

U ~ Ul+U2 ollo12If TIT2(TI'+ T2')/60ppcl'T

2(10 ') (sec/cm) Ul+U2 p&lpp2TIT2(TI'+TZ)/T',

(25)

where the T's are pulse (time) lengths, T;=22r/ch;. For

C. Comparison with Experiment

Of the few available experiments, only those of
Rollins' ' are suitable for comparison with the present
calculation. Rollins reports' a measurement of the peak
intensity of the scattered wave in a magnesium sample.
The experimental results were the following: Two
transversely polarized wave packets (corresponding to
case IV or V) of roughly half-sine shape, of 6-psec pulse
length, of mean frequency 5 Mc/sec, and of peak
intensity about 1 W/cm2 gave a scattered wave of peak
intensity roughly 6(10 ') W/cm'. Our estimate for this
result is about 10 ' W/cm', quite good agreement.
Further, the result from Eq. (26) for aluminum agrees
with an earlier measurement of Rollins' although the
datum was qualified as not being very accurate.

The experiment of Shiren' is of great interest although
it cannot be analyzed directly in the present theory.
Shiren employed 9 Gc/sec pulses propagating colinearly
in magnesium oxide. With peak intensities —, W/cm',
the "signal" pulse length —,

' psec and the "pump" pulse
long enough to bracket the signal pulse, Shiren found
as much as 70% of the power in the signal pulse removed
by the interaction. These "strong" effects might be
expected to lie outside the region of validity of the
present approximations; such is not necessarily so. In
effect, the two pulses interact "many times, " actually
continually as they propagate together, so that large
total effects are reasonable although the interaction
itself may still be weak enough to treat in the present
approximation. The experimental details reported are
not suAiciently complete to warrant further discussion
here.

D. Possible Application to the Determination
of Third-Order Elastic Constants

Although the initial plenitude of 54 processes re-
duced to a mere eight, the eight are sufhcient, in
principle, for determination of the third-order elastic
constants A, 8, and C. Study of the relevant G vectors
shows that determination of ten different linear com-
binations of p, E, A, 8, and C should be possible; these

' F. R. Rollins, Jr, (private communication).
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would be much more than suKcient to determine the
elastic constants.

In general, measurements of third-order elastic
constants are quite dificult and the results not very
accurate. "Measurement of these constants by means
of the elastic-wave scattering phenomena would not be
easy but probably would be somewhat less dificult
than and as accurate, at least, as any presently available
method. An elastic-wave scattering method would
involve measurements of scattered wave amplitudes
(intensities) for various frequencies, polarizations, and
relative propagation directions of the input waves. The
major experimental difhculty anticipated would lie in
the bonding of ultrasonic transducers to samples; bonds
would be required with characteristics suKciently
uniform as to allow reproducible measurements.
Absolute measurements would not be required since A,
8, and C could be obtained to good (relative) accuracy
in terms of p and E and p and E are readily measurable
by other techniques. Even if bonds of suitable uni-
formity were not obtainable, this difFiculty might be
circumvented, at least in part, by experimental designs
using correlations between a set of transducers.

All in all, these considerations suggest that elastic-
wave interaction phenomena may find useful and,
perhaps, valuable applications in the measurement of
elastic constants and in studies of lattice dynamics.

V. CONCLUSION

The present study agrees in essentials with the results
of Jones and Kobetts relative to the allowed processes
and their frequency ranges. Several discrepancies in
their Table I are corrected in our Table II. Our maxi-
mum scattered-wave amplitude and theirs differ so
greatly in form as to make a detailed comparison im-
possible. However, one evident and important difference
is that our amplitude is proportional to frequency
squared (distinction between the different frequencies
neglected) but theirs is proportional to frequency cubed.
This particular disagreement would be resolved by the
inclusion of beam width considerations in the Jones
and Kobett analysis.

The present results apply only to maximum ampli-
tudes or peak intensities and widths of experimental
wave packets. Our use of Gaussian shape factors does
not allow more detailed considerations of pulse shapes.

Extension of this work to anisotropic solids is straight-
forward but tediously complex. The effort necessary
for this task may be warranted if and when elastic-wave
interaction measurements prove useful.

APPENDIX

The first step in integrating Eq. (4) is the integration
over ei~' from 0 to +~. This is done in the complex

"A new optical-acoustic technique suggested by J. Melngailis,
A. A. Maradudin, and A. Seeger, Phys. Rev. 131, 1972 (1963),
promises a convenient and accurate method for the measurement
of elastic constants in transparent materials; thus, these comments
do not necessarily apply for such materials.

plane with the contour being closed in the negative
half-plane and only the principal value from the pole
at co~' ——e~~(k+') contributing. The k+' integration is
then carried out by means of the three-dimensional
delta function P(k, '&k2' —k+'). The result after these
steps is

N~(x, t.) =
(2')'po

d'ki'd'ks'5L(ei(ki')aa~s(ks') —ai~(k~') j
X

2ai~ (k~')

XG(ki', aks', ai, es) ep

1 1 2 2

Xexp
26g2 262'

&(exp(iI(ki'~ks'). x—a~~(k~')t]}, (A1)

whe~e kg'= (ki'~ks'~-
Either one of the remaining integrations may be done

next; we chose the ks' one. The slowly varying parts
are taken out of the integral and the integration done
in spherical coordinates, the angular parts first. The
Gaussian is all that must be considered with (ks' —k2)'
written as

exp
Q 2

(A2)

Ke use the remaining delta function for the magni-
tude k~' integration. This requires

a~~(k„') =air(ki') +e~s(ks') (A3')

or

since

c~k~' ——cgk~'+cgkg'

(a, (k,) =c,k,:.

(A3')

An earlier result, the integration with P(ki'&ks' —k~')
ls

Q'= k, 'aks'. (A4)

Simultaneous solution of Eqs. (A3') and (A4) requires

(A5)

where p+ is a real, positive quantity. After these

(k2 ks) ks +k2 2k2 k2 cosK, cosa= ks 'k2/ks k2 y

the relevant integral is

2mh2'
~II2 expLk2 k2 cosK/tIs j

k2'k2

kg'k2-
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manipulations, Eq. (A1) becomes

eg(x, t) =~1 ~2 +2 G(kl)~k2)el)22) 'e+

82rPOc2LM1(kl)+M2(k2)]
exp[2{ (kl&k2) 'x LM1(kl)+M2(k2)]i]]

X d'kr' exp—
(kl' —k,)'- (kl' —kl)'- (kl'+kl)'-

exp)i(kl' —kl) x] exp q—~2 —exp
2~p' 2~g'

(A6)

(k,'—kl)'
=exp

2Dg~

k 1'k1 (cos%'—1)
exp

Q 2

where

cos@=kl' kl/kl'kl.

With the definition

01

, for a given ~&&kg is obtained for k~'= k~ at

Sli12%'~~X =g/2k 1

cos%'~~~1 —K /2k 1 .

Thus, the magnitude of the difBcult term is

1&exp/ —2I+'kl'k1 (cos@—1)/A2'] &exp [1I~V/252'].

Since k~&0 and k~ &0 with the main contribution at
k&, the last exponential quantity above is always

small and, therefore, is neglected.
The calculation is now forced in a credible fashion to

the expected result. The last (remaining) exponential
in Eq. (A6) is the source of difhculty. This is written as:

exp[ —
g~2 (kl' —kl) 2/2&22]

t

The final integral part of Eq. (A6) is now approximately

d'2: exp) —x2/2LV] exp/ix x]= (2x-)'t26, ' expL ——'x'5']

where
g —2(g—2(g —2+ 2g —2 (A7)

Clearly the exact result, were it calculable, would be
almost Gaussian for lP((k~'.

The approximate result is

A,+32+6(kl, ak2, el, e,) .e~
u~(x, t) =

4 (2/2r) pOQM 1 (k1)+M 2 (k2)]
&(LV(cl 'DP+c2 'A2') exPL —-2x'LP]

)&exp[i{(kl+k2) x—[Ml(kl)+M2(k2)]t]], (A8)

where the above expression has been made symmetric
with respect to c~, D~, and c~, D~ by replacement of
cp 'Ap' by

The k-space width 6 of the scattered wave packet is
calculated indirectly as follows: The width 6 is deter-
mined by the length of time T=22r/c+6 that the Ml

and co~ wave packets interact. Since the characteristic
dimenSiOnS Of theSe WaVe paCketS are 22r/6, and 22r/D2,

respectively, a simple geometric analysis gives

(cl —2clc2 cose+c2 )AP62
Q2-

Cy {1 (1/C1C2)L(C2 Ml&C1 M2)/(Ml+M2)] COSH] (Bi+62)

cosa+ ~1.

(9)

The calculation Eq. (9) is not valid for angles nearly equal to 0' or 180'.
Since the wave vectors and frequencies satisfy Eqs. (A3) and (A4), the mean wave vectors and mean frequencies

of the wave packets must likewise satisfy

M~(kg) =Ml(kl)aM2(k2),

+=klak2,
i.e., the energy-momentum conservation condition.

(19)

(20)


