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Light and sound emissions due to nonlinear fluctuations of an electron-plasma Geld are investigated from
the viewpoint of interaction phenomena. The method of solution is similar to that of a forced-oscillation
problem, where the equivalent force term couples the diGerent order of the field amplitudes, and is also
responsible for the energy conversion from transverse Geld to longitudinal and inversely. For the general
solution, an nth-order perturbation theory is initiated, based on the nonlinear equations of the plasma field,
and a formal solution for the nth order is derived. Analysis is performed for the lowest order nonlinear
Quctuations; radiation Geld intensities and scattering cross sections for all possible types of interactions are
obtained. Furthermore, it is shown that the scattered waves radiate with combination frequencies.

r. DrTRODvc Trom
" 'N recent years a considerable amount of attention
- ~ has been given to the radiation phenomena from
plasma fields. ' ' The radiation by a large amplitude
oscillation from a cold plasma, ' radio emission from
nonuniform plasmas, ' scattering radiation due to the
propagation of electromagnetic waves in a plasma
medium have been investigated. Methods of approach
to the study of the phenomena have been varied. For
example, the problem of the propagation of electro-
magnetic waves in a plasma, where there existed a com-
bination scattering of these waves by density variations,
was treated by a technique which considered the varia-
ions of a conductivity tensor operator. ' The scattering
of electromagnetic waves from randomly distributed
free electrons was investigated by Gordon, ' and the sub-
ject has been separately treated by a number of
authors. ~"

In most of these works, it has been assumed that
electromagnetic or acoustical type radiations arise when
incident waves are propagated in a medium. Alterna-
tively, a varying current may be injected into the
medium to generate such radiations. " Once the free
propagation of possible waves is completely understood,
it is usually a stiaightforward process to construct a
model wherein the source can be either an incident
wave or an injected varying current. In the present

' Continuum theory of waves and radiation in a plasma and dis-
cussed by M. H. Cohen Lsee Phys. Rev. 123, 711 (1961); 126,
389 (1962}j,and the problem of density fluctuations in plasma
has been investigated by E. E. Salpeter Lsee Phys. Rev. 120,
1528 (1960); 122, 1663 {1961)and J. Geophys. Res. 68, 1321-
1333 (1963)g.' V. L. Ginzburg and V. V. Zhelezniakov, Soviet Astron. A. J.
2, 653—668 (1958).

Radiation and Waves in Plasmas, edited by M. Mitchner
(Stanford University Press, Stanford, California, 1961).

4 D. A. Tidman and G. H. Weiss, Phys. Fluids 4, 866 (1961).
' D. A. Tidman and G. H. Weiss, Phys. Fluids 4, 703 (1961).
'A. I. Akhiezer, J. G. Prokhda, and A. G. Sitenko, Soviet

Phys. —JETP 6, 576 {1957).
r W. E. Gordon, Proc. Inst. Radio. Engrs. 46, 1824 (1958).
s J. P. Dougherty and D, T. Farley, Proc. Roy. Soc. {London)

A259, 79 (1960}.
s J. A. Fejer, Can. J. Phys. 38, 1114 (1960}.
@M. H. Cohen, J. Geophys. Res. 67, 2729 (1962).
"R.Karplus, Phys. Fluids 3, 800 (1960).

@rory, hovrever, Bn entirely Iierv argumelit vriH be de-
veloped, in which it will be shown that light and sound
types of emissions can result from the self-interactions
of possible plasma waves in the plasma field which can
support large density Quctuations. Consequently, these
interacting waves play the role of an equivalent source
term for the generation of radiating waves in higher
orders.

The field under study is an unbounded, collisionless,
isotropic electron plasma, described by a set of nonlinear
hydrodynamic and Maxwell equations where no ex-
ternal electric and magnetic fields are assumed. Since
it. is not necessary to directly solve this set of nonlinear
equations, a perturbation method of nth order is initi-
ated, and a systematic solution for multipole acoustical
and electromagnetic radiations (from plasma fiuctua-
tions) is developed. The most essential features of the
general nonlinear problem will be clearly revealed by
means of quite simple mathematics, involving only
second-order perturbation calculations. First-order ap-
proximation of the 6eld equations defines the linear
theory in which longitudinal and transverse waves
propagate independently. It is in these second-order
terms that coupling of plasma waves occurs. Conse-
quently, if longitudinal and transverse waves propagate
simultaneously, in the second order they will interact.
It can be assumed that coupling of various plasma waves
is due to the density inhomogeneities, and the inhomo-
geneity plays the role of conversion mechanism of
energy from a longitudinal wave field to a transverse
wave field, and inversely. It is shown that in the second
order, the partial differential equation for the electric
held vector will become an inhomogeneous one, of
which the inhomogeneous part consists of the fiist-
order variables. Generally, for an mth-order equation of
the electric field vector, the source (inhomogeneous
part) consists of (e—1)th and lesser order terms. The
source term couples not only the diferent orders of the
field amplitudes, but is also responsible for the coupling
of longitudina1 and transverse plasma wave fields. The
basic problem is to determine the lowest order nonlinear
amplitudes (second order) which can be expressed by
quantities calculated from the hnear (first-order) equa-
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tions. Similarly, higher order 6eld variables may be
obtained by terms of lesser orders. "

Light- and sound-type energy radiation intensities
will be defined by one general expression which will be
proportional to the second power of the volume of
interaction, fourth power of frequency, and inversely
proportional to the equilibrium density and the fifth
power of the characteristic radiation velocity. An ad-
ditional term will enter into the intensity expression
of the radiating longitudinal wave 6eld.

Depending on the nature of scattered waves, the
characteristic radiation velocity and frequency terms
will be diGerent. For instance, in sound-type radiation,
the characteristic velocity is adiabatic sound velocity;
in light-type radiation, it is the velocity of light. A
combination of interacting wave frequencies with the
electron plasma frequency will appear in light-type
intensity expressions, whereas sound-type radiation in-
tensity expressions will contain a combination of the
two interacting wave frequencies as well a,s the com-
bination frequencies of light type.

In Sec. II, we discuss the plasma equations and give
a general solution for the mth-order equation of the
electric field vector. Section III contains the derivation
and a discussion of the generalized Poynting theorem.
In Sec. IV, a description of the method used in this
investigation is given, and the radiating held com-
ponents are obtained. Radiation intensities and scat-
tering cross sections are derived and analyzed in Sec. V.
Finally, a summary of results is given in Sec. VI.

II. PLASMA EQUATIONS

The plasma equations are obtained by applying the
combined sets of hydrodynamic and Maxwellian equa-
tions to a completely ionized polarizable electron Quid.
Equations are assumed to be valid for a system of
charged particles which have electrical neutrality in
the mean and sufficiently high-particle density to justify
the passage from a discrete set of particles to a Quid
medium. The plasma field is assumed to vary slowly
enough in space and time for Lorentz equations to be
replaced by Maxwell equations. Furthermore, the ions
are considered to be fixed in space, so that their only
effect is to electrically neutralize the pla, sma. A funda-
mental property of the plasma described here is that it
exhibits a "screening" property. By screening, we mean
that the plasma has the property of cancelling any ex-
ternally imposed 6eld and reducing it to zero for a
distance of the order of Debye length. If the usual
averaging process is carried out to replace the Lorentz
equations by Maxwell equations (that is to say that the
averaging region has its mean dimensions larger than
Debye length), the plasma may be represented as an

~ A similar method is used by D. Montgomery to study non-
linear, time-dependent plasma oscillations with Boltzman's equa-
tion. See D. Montgomery, Phys. Rev. 123, 10'17 (1961).See also,
D. Montgomery and D. A. Tidman, Phys. Fluids 7, 242 (1964).

electrically neutral polarizable Quid. Therefore„ the
plasma model to be investigated assumes electrical
neutrality in the mean, hydrodynamic continuity of the
medium, and validity of Maxwell's field equations.
Electrical neutrality implies that we cannot consider
distances smaller than Debye length, and we place
limitations on the particle density, their velocities, and
the rapidity with which the fields vary in time and
space. Ke should have these assumptions in mind when
the results are elaborated.

We are thus considering a one-component, collision-

less, isotropic, electron Quid; the parameters associated
with ions do not occur in the equations. The governing
equations are:

(p"'+p)L(»/~&)+u Vul
+VP+(c/m)( "'+p)LE+(Ilc)uxH3=o, (I)

VP =e'Vp,

cV x E= —88/el(,

cV xH= —4~(e/m)(p' '+p)u+(8E/Bt), (4)

V E= —4~(c/m)p,

where the space (r) and time (i) variations of the elec-
tron Quid density, electron Quid pressure, electron Quid
velocity, electric field, and magnetic field vectors are
represented by p, p, u, E, and H, respectively. The five
variables are assumed to have large amplitudes in the
oscillations of the electron plasma. No drift velocities
are assumed. p"' stands for the constant equilibrium
density of electrons; e is the adiabatic sound velocity
in plasma medium; c is the velocity of light; e and nz

are the charge and the mass of electron, respectively;
((e/m)pg is the varying charge density. The above
equations are self-consistent for the five field variables,
and the equation of conservation of charge density
which is missing in the equations above can be derived
from Eqs. (4) and (5).

By manipulations in Eqs. (I) to (5), we obtain the
following equation:

I O'E n' G)g

vXvXE+- —v(v E)+—E
C2 Bt2 C~ f2

4m (e/m) tip c e
u——ps —p"& u guy —uxH)

c~ — Bt vn SEC

e—
pi u Vu+ —uxH, (6)

mc

where oi,=(4s.ptei)'I'(e/m) is the plasma Langmuir
frequency. It is to be noted that p& & represents a uni-
form background of charge and is assumed immobile.
The field variables can be represented to arbitrarily
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high orders as'

p(r t)=Z p'"'(r t) p(r t)=Z p'"'(r t)
n 1 n 1

u(r, t) =g u&"& (r,t), (7)
n~l

E(r, t) =g E&"&(r,t), H(r, t) =P H«" (r,t),
n=? m=1

where it is no loss of generality to assume that the
amplitudes of the variables will be decreasing as the
orders of perturbation are increasing, i.e., p('~&p( ~

P p(3) « ~ ~

Using vector identities, for each order of perturbation
we are able to write from Eq. (6)

1 && f v)
V2 ———+&o,' E&"&—

~
1——

~V (V E("&)= S&"& (8)
c' at2 I c'i

where the inhomogeneous part S(") is composed of
terms up to order (22—1) only, and reads

42r(e/m) ~i tt' c&p(» e & « i(-
S(«&)— pl —«&"-& +—«&'&2&"-« ~+«»& r

~

«& &. v«& -&+ «»& «Hr. -»)
c' ~~ & @ m );=i& mc

S(«) 0

for n&1,

for n=1,

+—2 n—j—1 e
++p&i& Q «& &. «&«&"—' '&+—«& & «a»—'

) ((J)
j'=l s=l SEC

so that Eq. (8) is homogeneous for the first order. This shows that a fluctuating plasma generates the same varia-
tions as those produced in a linearly oscillating medium by a system of externally applied forces, represented by
S'"). This treatment of the radiation, as generated by the plasma Ruid in the manner of a forced oscillation, is
suitable since not only the mathematics involved become straightforward, but the interaction picture will be
automatically accounted for in the equivalent applied force system S&"&.

Furthermore, relationships between plasma field variables are needed. Substituting Eqs. (7) into Eqs. (1) and
(5), the following relationships between plasma variables will be in order:

&tH(")
(n) V. Eg(«&) p(«) = V. Eg(«)

4n (e/2&2) 42r(e/2)2)

1 e ~i( 1 c&u(~') e (e/2)2)
Vp( ) —E( )—p ~

u( ') Vu(B+ p( ') — +—u ( & xH & )+ p&" ')E&

p(o) 2&2 t-i 5 P &o& Bt tnc P &o& i
n—2 «&—j—1( e
p p(t) p ~

u( ).Vu( -t—)+ u &«) 2CH (»-t- &

~, (10)
P& & 2' 1«-i E 2&2C

where subscripts I.and T are used for longitudinal (irro-
tational) and transverse (divergenceless) parts of the
vector Geld.

By taking the Fourier transform of Eq. (8) with
respect to time, we obtain

(V'+br')E„&"&—(1—k '/k ')V(V E„&"&)= S„&"& (11)

where

&o 2&»2 ( oo 2)1(2
kr= (&o/c)( 1——[, and k~= (&o/v)( 1——

[

~2 i '
k ~2)

are the propagation constants for transverse and longi-
tudinal wave Gelds, respectively, where the subscript m

refers to the Fourier-transformed component of the
field variables.

We shall define the tensor Green's functions associ-

ated with a region of the field wherein the equivalent
source is assumed to be located. Consider, therefore,
that E„&"'(r) is produced by S„&"'(r). We therefore
introduce the dyadic I'(r, r') defined by"

(V'+kr') I (r) r') —(1—kr'/k~') VV F(r, r')
=~i) (r—r'), (12)

where 3 is the unit dyadic, and l)(r—r') is defined by

S(r—r')Z. =1, S(r—r')=O ~r —r'~WO, (13)
To

in which integration is to be extended over a region en-
closing the point r'. The dyadic Green's function for
"Solutions to similar vector wave equations are given by P. M.

Morse and H. Feshbach, Methods of Theoretica/ I'hyszcs (McGraw-
Hill Book Company, Inc., New York, 1953), and by H. Levine
and J. Schwinger, Coin. Pure Appl. Math. 3, 355 (1950).
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an unbounded medium, defined by Eq. (12), can be
constructed by imposing the requirement that all of its
components vanish at infinity. If the source function is
known, the electric field vector is given by

E„i"&(r)= — r(r, r') S„i"&(r')dn',
Vg

where the integral is taken over the volume in which
the source term is located. The dyadic Green's function
for such an unbounded medium can be expressed by

I (r, r') = (k~/kr') ri, (r, r,id)+rr(r, r', u)),

1 exp{ik~
(
r —r'

~ )
i'&(r, r') =--

k~' 4n )
r—r'[

( 1 exp{ikr [r—r'f)
I"r(r r')=I 8—-- VV'

4 (r—r'[

where Fr, (r, r') and Fr(r, r') stand for longitudinal and
transverse wave fields; r and r' represent the vectors
from the origin to the observation point and point of
source, respectively. r lies in the inside of the volume
of interaction, whereas r extends to the outside of the
volume of interaction.

The field vector E„'"'(r) of any arbitrary order can
be evaluated by computing the lower orders first. %e
start with the lowest order (e= 1), in which the vector
wave equation (8) is homogeneous and its solution is
known. The next and higher orders are solvable, since
the inhomogeneous part of the vector wave equation
will contain terms of lower orders. Time domain solu-
tions will be obtained by simply taking the inverse
Fourier transform of the field vector E„&"&(r).

III. GENERALIZED POYNTING THEOREM

In classical electromagnetic theory, the Poynting
vector represents the amount of energy which crosses
per unit area per second, whose normal is oriented in
the direction of the Poynting vector. This definition is
generally used for the transverse electromagnetic field.
Possible ambiguities or arbitrariness in the interpreta-
tion of the theorem can be eliminated by applying the
definition cautiously, such as applying averages over
small but finite regions of space and time.

The classical Poynting theorem needs to be general-
ized for the present compressible plasma model, so that
the total Qow of plasma energy in radial direction
through a closed surface will be properly defined. The
Poynting vector for this case will include a longitudinal
component added to its known transverse component.
Similar to classical procedure, from Eqs. (4) and (5),
%e write:

BE 1 BH
V ~

—ExH = ——E ——H -E J, (16)
~4n 4n Bi 4n Bt

where J„„=—(e/m) (p&0&+p) u represents the convec-
tion current due to the motions of electrons. In ordinary
electromagnetic theory, the last term is interpreted as
the one which expresses power expended by the con-
vective Qow of charges against the impressed field
vector E. If all material bodies in the field were abso-
lutely rigid, no possible transforma. tion of electromag-
netic energy into the longitudinal wave energy would
occur. Since the plasma medium is not assumed to be
rigid but compressible, energy conversion from trans-
verse waves, and inversely, will be eGective. Conse-
quently, a Qow of electromagnetic energy across the
boundary will be accompanied by the energy Qow due
to the longitudina1 field.

To define this new term, we consult the governing
Eqs. (1) to (5). After multiplying both sides of Eq. (1)
by u and using necessary vector identities, the following
expression is obtained:

E A. = (p'n&+p)u Bu/Bt+(p&'&+p)u L(u V)u]
V ' (Pu)+PV'u. (17)

It is to be noted that the velocity vector u contains a
longitudinal component as well as a transverse one, so
fhat the two waves are coupled.

It is due to the term E J„„that the two directional
energy conversions (from transverse waves to longi-
tudinal waves, and inversely) can easily be explained.
Combining Eq. (17) with (16), the following expression
will be in order:

C

V —E&CH+pu
i)4x

1 BE 1 BH Bu=——E ———H +(p&'&+p)u. —
k' Bt 4x Bt Bt

+(p"'+p)u P(u V)uj+PV u, (»)
where the Qows of transverse and longitudinal energy
appear under the divergence operation on the left side.
The terms including velocity vector u, on the right-
hand side, are significant to the description of the plasma
flow, such as turbulence. Indeed (p"'+p)u Bu/Bt is
comparable to Reynold stresses of the c1assical hydro-
dynamic theory, which make possible direct transfer
of momentum components by velocity components.
They are responsible for the momentum transport.

These terms can be interpreted in a similar manner
here. Since density variable contains the static part
pin&, p&"u Bu/Bt will b. e the rate of change of lower
order Reynold stresses, whereas the rate of change of
higher order Reynold stresses will be due to pu Bu/Bt.

The generalized expressions of the Poynting vector
for higher order perturbations are written as



where the asterisk denotes the complex conjugate. The
physical importance of this general form of the Poynting
vector lies in the fact that aside from expressing the
energy Qow resulting from the same orders of the dif-
ferent components, the energy Qow resulting from
coupling between different orders of the field variables
is also included. However, this most general expression
will be used in rather a simplified form. Contributions
from coupled terms between different orders will dis-
appear when time averages are taken, since cross terms
will contain periodic time multipliers.

1 82
P———+(e,2 Er ('& =0,

g2 /f2
(20)

1 82
P———+(0 ' Ei, (') =0, (21)

'v BP

which are homogeneous Klein-Gordon type differential
equations. The plane waves which may exist in the
plasma are determined by assuming solutions to the
above equations of the form v cos((dt —x r). The prop-
agation vector r. is &t((e/v)L1 —((0,2/(em)]'" for longi-
tudinal waves and r(((o/c) $1—(co.m/„2) j)12 for transverse
waves; ~ is a iinit vector in the direction of propagation
and r is the vector to the point of observation. v= voP

is either parallel or perpendicular to the propagation
vector x; that is, the primary wave is either longi-
tudinal or transverse.

In these first-order perturbation solutions, one solu-
tion corresponds to a longitudinal wave which has no
magnetic Geld associated with it the remaining solutions

Df. DESCRIPTION OF THE METHOD USED AND
RADIATING FIELD COMPONENTS

Ke assume that Quctuating electron Quid occupies a
limited part of a very large volume of the plasma field,
of which the remainder oscillates with small ampli-
tudes. Fluctuations of higher order amplitudes can be
looked upon as resulting from the interactions of
linearly oscillating plasma waves. We shall develop a
systematic solution by keeping this model in mind.

The equations describing the higher order Quctua-
tions will be constructed from the field variables of the
linear oscillations. One can assume that an element of
the plasma Quid, subjected to the equivalent force
term, will suffer both compressional and rotational de-
formations to generate light and sound types of radia-
tions, The linearly oscillating 6eld would experience a
pressure field, varying with small amplitude from a
simple hydrostatic pressure field. Thus the variations
of the pressure field would be proportional to the varia-
tions in density; the constant of proportionality will be
the square of the adiabatic sound velocity v2.

Consistent with the method of approach described
above, we shall start with the solution of the homo-
geneous equation. Separating longitudinal and trans-
verse wave 6elds, from Eq. (8), we write E('&(r,t)=g v; cos(co;t—x; r), (25)

which also defines the other four field variables in the
6rst-order perturbation, by the help of relationships
given in Eq. (10).

Substituting the first-order field variables into Fq.
(9), and after some lengthy calculations, the following
expression is obtained:

S('& (r, t)

(e/m)
P S,p„sinL((e,a(e„)t—(x,Wx„.) r$, (26)
e+e

where a summation rule is adopted. The subscript
(s+I) takes the value of (1+1), (2+2), (1—2), and
(1+2), where (1+1) and (2+2) refer to the self-
interactions of the same primary waves; whereas, (1—2)
and (1+2) refer to interactions between the two dif-
ferent primary waves. Hereafter, these four difIerent
modes of S.p will be called interaction modes, and it
will be understood that when sWe= 1+1,(e,W(e„reads

correspond to two transverse waves of perpendicular
polarization which have no density variations associ-
ated with them.

We now turn our attention to the problem of 6nding
the second-order 6eld components. To analyze the sub-
ject clearly and relate it to emissions of sound and light
as they are produced by an externally applied force
field, we define the term S"'(r,t) as the source term
per-unit-volume, which will be simply written as:

4n.e/m Bp ('& e
S(2) (r t) „(i) + E().)

!9$ flS

e&«)
+p(e)no). /n(i)+ n(i)yH(i)

~
(22)

)tC
As mentioned before, this vector source expression
couples transverse and longitudinal wave fields.

The medium is assumed to be unbounded, and at
points far enough from the location of the interaction.
The radiation field variables will be computed by using
the far-6eld approximation. Hy this approximation, the
dyadic Green's functions simplify into the following
fol ms:

Fl, (r, r', &u) = n„n„exp{i(r—n, r')k~)/4nr, (23)

Fr(r, r', (0) = (Q —n„n„) exp{i(r—n, r') kr)/4)rr, (24)

where r is chosen so large that k~
~

r —r' ))1,k"
~
r —r'~

))1 for all r; and in addition, since
~

r' &&
~

r~ we have
~r —r'~ r n„r', where n—„ is the unit vector in the
direction of r, i.e., n„= r/r.

The lowest order source term S(2&(r,t) will be com-
puted by assuming that two primary plane waves
(which are solutions of the homogeneous equation) with
different frequencies and amplitudes are interacting.
Therefore, we write
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roc+co~,. x,Wx, reads L(+x~, and thus S,~„becomes S&+~. The four components of S,v~ are given by

COg

rt& (n2 +v )+ L(92 '&c )e2 +(t2 + 4 )i ~(1 ~ )
Sx COqQ) n

X &&ln(rt2e+va)+ L(rt2n'&s)g2s+(Q2n &c $2s)g p (2t)
Sx

gyp= Vg' fCt, ~

rtmg= ('V /cOg ) (Vg ' 1cr)'KI+ V

$25 = '&c~ x vs )

gin= +n' @n,

'g2e (v /cc&s )(ve' Ln)La+ Ye

(p„=L„&cv„.

Here, s and e indices are used separately with numbers 1 and 2 preceding them. The summation rule is valid again,
and 6."is 1 when s= n, and otherwise zero. It is furthermore worthwhile to remember that throughout this analysis,
co, co+)co, is assumed.

The source term S"&(r,t) is determined by the parameters of the primary waves in Eq. (26). By using, now, Eqs.
(23), (24), and (14) the following expressions of longitudinal and transverse Geld components can be written:

E~(2) (r t) = Q E~ (&) (r t)

1 e/r&t

8+n

exp{ ii k—,~„'r (~,—W~„)tj} exp{iLk,~„'r—(~,W~„)tj}
0'sP n

~ ~

cc,p„'—-- -- — a,p„* I, (29)

E ")(,t)=Z E ...(,t)
s+n

1 e/rrc exp{—iLk,p„rr—(u&,W(o )tj}
C8+ n ~sy n

exp {iLk,p „rr—(cd,au). )t$ }
(3O)

r

where the summation rule is used again. When s&e= j.—2, k,p„~ reads k~ 2~,.e,y„~ reads e~ 2~, etc, , - . Sum-
mations are therefore understood to be taken for four diferent interaction modes. New parameters, which appear
in Eqs. (29) and (30), are given by the following:

exp(ccrc p„' 'r )(E(& cc p„=n„n„' S p„,

g,~ ~ r=k,~„~ rn„—(x,ax ),
COtt&GOnI~8+n ~8+ n y

s~~n
- T=k,~

cc,p„r——(3—n,n„) S.~. ,

~ 2 -1/2
(Og

&e+n =
((1)s~&n)-

(31)

By using the relationships between the various plasma held variables, pressure, longitudinal component of the
velocity vector, and magnetic Geld component, the following expressions are obtained:

p"'(r, t)= Q p,~ ("(r,t)

i cc,p„ t'8 cv '&&

Sap('& .+~ (cv,&co„)(Br' n' )
t'exp{ —iLk,~ ~r—(~,W&u )t]} exp{iLk,~„~r—(co,%co„)t]}

l r

ur, (') (r, t) = Q nr, „„('&(r, t) =—

i 8 (exp{ iPk,~„~r (~—,&co„)tj} — exp{i$k,v„~r—(~,W~ )tj}=—Z n'~~-' —
I

g
8~.+ arE r r

(32)

4m

+ T~„(exp{L(x,ax )r—(co,ace„)tj}+exp{iL(x,ax„)r—(co,~ra )Q}), (33)
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Hr&»(r, t) = P Hr, ~„&'~(r,t)

e/m n„Xa,~„r cr (exp( —i[k,~.rr —(co,+&u.)tj} exp(i[k, ~.rr —(cv,W&o )t)}
2c + (o,W~„ark r r

T,p„=[g„rt,„W (1—8.")gg„qg.j—Sl„~„~». (35)

Once the field components are defined, the Poynting vector will be determined according to the rules previously
adopted.

P(2) is the Poynting vector due to the primary waves. The next nonvanishing component of the Poynting vector
will be P&", since P&" vanishes when time averages are taken. indicating time averages by ( )&, due to the lowest
order nonlinear terms, the Poynting vector reads:

P«~ = P,«&+ P, «& = Re((c/8~) E&~» ~ H&&»'), + Re(-'p&'&u, ~'~'), (36)

where the first and second terms on the right-hand side represent the transver'se and longitudinal parts respectively.
By using Eqs. (30) to (34), the two components of the Poynting vector are obtained:

Pr,~„'~——Re((c/Sm) Er,~„"&x Hr„„&'&*)
&

—— T~f T T*
&s+n+s+n X (nr +s+n J @spn ~s+n

16m-c'r'
(37)

(e/rN)' (co,War ~) ' &r'0'sPnI I I+~
&sP n+s+ n ~s+ n ~sP n ~s n

16m v'r' k o&, ) 16m.r' (co.w(v. )

X([(k,q r) &"'a,~„~+&'&a,q ~] cos(g,q„r"r) [&'&u,q—P—&'&a,qP(k, q„r)] sin(g, q„~ r)}. (38)

The left superscripts (r) and (t') refer to the real and
imaginary parts of the integral variables attached.
Scattering radiations for longitudinal and transverse
wave fields will be realized if g~ and g~ expressions
become identical to zero. That is to say, if such an n„
dll ection ls defined Gsp n esp ) ~s+ n p ~s+ n. ) and
&"&u,~„~ will each become proportional to the volume
of interaction (Vo); whereas Ma, ~ ~ and sin(y. ,~„~ r)
terms will vanish from the expressions given above.
For other values of n„, the amplitudes of waves will be
oscillating; for these directions, waves do not scatter
but behave as diffracted waves.

As will be seen later, the directional condition for
scattering described above is a necessary, but not a
sufficient condition for scattering radiation. It only
informs us if such a scattering occurs in a definite direc-
tion. Relative position of the propagation vectors of
the interacting primary waves, or in the case of polarized
primary waves, the relative position of polarization
planes are other important deciding factors on the
occurrence of such scatterings.

V. INTENSITY ANALYSIS OF LIGHT AND SOUND
FIELDS AND SCATTERING CROSS SECTIONS

The significant radiation quantities which, under cer-
tain conditions, can be estimated by human eye and
ear, are the intensities of light and sound type radia-
tions at any point of the field and their frequency spec-
trums. Being more descriptive, we named acoustical and
optical (or electromagnetic) type radiations as sound-
and light-type radiations which are to be used more

der, p„«& = n„Pr.p„«~r'dQ,

dr„,„& &= n„.Z„„«)rdn.

(39)

(40)

To obtain the total sound and light power outputs, one
must integrate these expressions of over a sphere.

Intensities of energy Aux per unit solid angle at a
point of the plasma field are obtained by dividing both

cautiously otherwise. As it can be seen later, the in-
tensity expressions of sound and light emissions at any
point will contain either adiabatic sound velocity or the
velocity of light (or a combination of both velocities)
to the fifth power in their denominators. We shall call
pure sound and pure light those radiations. where the
intensity expressions contain only the fifth power of the
adiabatic sound velocity and light velocity, respec-
tively. Furthermore, these velocities are taken as the
characteristic velocities of the associated radiations.
Intermediate radiations between the pure radiations
will contain the two velocities, such as third power of
the light velocity and the second power of sound ve-
locity. Visibility and audibility of these radiations are
problems of a different type, and will not be discussed
here.

Before we formulate the radiation intensities, sound
and light radiation energy densities will be derived from
the Poynting vector expressions. This will be done by
taking the components of the time-averaged Poynting
vectors in the n„d'irection, and multiplying them by
r'dQ. Thus, the time averaged energy densities per solid
angle dQ are written (for each interaction mode):
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sides of Eqs. (39) and (40) by d0:
Vp' (e/m)'

Irs~n= »s+nnr' L(Isa n X ( nrX (Ksp n )]r

16m c'

Vpp (e/m)2 (M, WM. )2
» Psn(nr ' (2 +sn)

V, /r~+ I

—I»,p„(n„(»,p„)(n, T„p„),16,(o) &v)
(42)

where scattering resonance conditions g,~„L ~=0 are
assumed to be satisfied.

Unlike the intensity expression of transverse field,
the intensity of the longitudinal held contains an addi-
tional term, whose appearance is due to the existence
of first-order terms in the velocity vector u(2)(r, t).
When the pressure terms p"'(r, t) are multiplied by the
velocity vector u"&(r, t), cross multiplication between
first- and second-order terms yields this additional

term. In our subsequent discussions, it will be seen that
these radiations are of quadrupole type, within the
limits of second-order perturbations.

The scattered intensity expressions refer only to the
energy which actually escapes from the fluctuations as
light and sound. However, depending on the type of the
interacting waves, there will be diGerences in the in-

tensities of emitted light and sound. Here, we have
three diferent possible combinations of interacting
waves, namely, longitudinal-longitudinal, transverse-
transverse, and longitudinal-transveI se types.

Case I. Two Longitudinal Primary Waves

For this case, the general expressions for the longi-
tudinal and transverse components of intensity undergo
certain simplifications. Since the Ructuating force term
contains only waves of a longitudinal type, cross product
terms vanish in source terms, and the intensity expres-
sions take the following forms:

Vp Ms (M. —Ms ) fv)(II)—
I I

(1» 2)—1» v 2v 2I S (IL) Izsin20 (II)
(8zr)4p('&c' kc)

(43)

(LL)
Lgpn

Vpz (M,2 —M.2) (M,WM. )2

(1—» ') '(1—» ') '» v(&
') 'I S.~ 'LL'I' cos'0

2 (8zr)pp(P) v'

Vp(Ms Ms )'r
+ (1—»') '(1—» ') '» ) 'v() 'IS,p. LL IIT,".LL'Icose,,~. L cos(t.p. L", (44)

2(8zr)'p'"v'

M ) M M M M2 M2 (M
2 M2 1/2

S,p (LL) = 1+ I- + I
(K ' K)K.W (1—

, b,") 1+— I + (K K) K. '

2i 2)
Gent) r C08GOzt CO& GAP. r Q)~ Q)~Q) rL w Q)~ Q)~

T (LL)—
~~

~~

M2 M
2 M2)1/2

I
(K. K.) K.~(1—b.-) I,

—
I

(K, ;„);..
2 2i

Ms MnMs) Ms —Ms r —&Mzt, INsCOzL Ms Mg r
(46)

Superscripts refer to the primary waves whereas the subscript defines the type of the radiating wave, and 0LL and
p)LL are the angles between the scattering direction and S,,p (LL', T,p„(LL) source vectors, respectively. It is to
be noted that S.y„(LL) and T,.~„(LL) vectors lie in the plane of propagation vectors (241,242).

As a basis for the construction of the type of radiation expressed above, we assumed that the resonance scattering
conditions are satisfied. These latter conditions deserve further comment. Squaring the terms in the resonance

conditions g,~,L=0 and g,p„~——0:

I

—I24.
I

—I24 I *2124II24 Icos('z, „

(47)

(48)

are obtained, respectively. From Eqs. (47) and (48), we conclude that light- and sound-type radiations are uniquely

defined by the interaction angles pr „,'LL& and (lL,„„(LL).These angles are different for a given set of plasma

parameters.
An important conclusion can be drawn from the expressions above. 7Vhen the propagation vectors of the inter-

acting primary waves are perpendicular to each other, Eq. (47) is never satisfied, since Ih,.p„L I'—
I

24, I'—(24 I2/0
always. Therefore, when propagation vectors of two longitudinal primary waves intersect each other at right angles,

sound type radiations w-ill not be generated For the same .condition, however, light-type radiations can be generated.

The above theorem is valid regardless of whether the primary waves are unpolarized or polarized. Furthermore,



LIGHT AND SOUND EM ISSIONS

it is to be remembered that the relative positions of the scattering direction vector n„with plane (24„24„)are neces-
sary conditions to be considered in the generation of scattering the two types of radiations.

It is possible to see from the resonance scattering conditions that the resonance interaction of two longitudinal
waves, propagating in the same direction, can lead to the appearance of scattered waves of sound and light types.
Indeed, in this case, the resonance conditions g,+„~~=0 yield

o) 2 1/2 ~ 2)1/2-

o)4 or~ J

I)2) -I)2 ( ~ 2 1/2
Or 2y 1/2-

Mg co, ~)

( '+»' ~')(1, I+» ~. —,—11
C -f 0) tt 07TI,

(50)

respectively. Scattered waves will radiate with combination frequencies, and their amplitudes will increase during
propagation.

In the case of waves propagating in the same direction with the same frequencies, Eq. (49) becomes meaningless,
whereas Eq. (50) is satis6ed. That is to say, two longitudena/ pr2mary wanes propagating in the same direction with
the same frequencies, when interacting, do not generate sound type, -but generate light type emi-ssions.

An eGective cross section do will be obtained by dividing the energy density of the scattered wave with the energy
Aux of the incoming waves. The energy Qux for each incoming primary wave is

'V CO

p 2(n .K) (o)2 or 2)1/2

8% GOg Gag

The diGerential cross sections for transverse and longitudinal scattered waves represent the average power of light
and sound type scattered per-unit-solid angle:

//do. ( ' Vp'o) '(o) '—or ')//c ' (1—e ') '(1—e ') 'e.p

kdQ T ~„(Srr) p( c klr e (n„' K )+ (vp„/vp ) e (Il ' K )
(51)

(
or~) (I I )

dna „,„
(1—e') '(1—e ') )e.p„2~ 2(~ 2 o) 2)

=2 p 2~ S, «I) ~2 cos'(r)
(Srl ) p c e (n„4K )+ 4(pp~/vp4) ~e( nq K~)

Vp(or '—or ')r (1—e ') '(1—e ')—'e p+ pp„'( S,p„( )
j~
T,p„( '

~
cose,p„cc cos(t),p cc. (52)

(Srr)pp("I)' e, (n„ /(, )+ (vp. /vp, )2e„(n„K„)

The conversion cross section (da./dQ)T, p„(~~) is important in interpretations of the theory of radio outbursts
from the sun. The generation of plasma waves in the isotropic chromosphere and corona is of interest in connection
with sporadic solar radio emission, only when these longitudinal waves can be efficiently transformed into trans-
verse (radio) waves. In a homogeneous plasma (where the first-order perturbation equations are valid), this
transformation occurs only through scattering of longitudinal waves from the plasma medium. However, in an
inhomogeneous plasma, the eKciency of the transformation is increased, due to interactions between plasma
waves.

Case II. Transverse-Transverse Primary Waves

In the formulations, T,p„disappears because of vanishing r/I. and 2/1 . The radiation intensities have the following
forms:

where

V 2(~ ~~ )2(~ 2 ~ 2) Ir) 2

—
~

(1—e')(1—e ')e,p (P. v )'1() 'v() '~ S,~~(TT) ~'cos'8
c2 (Srr)pp(p)2)'"

2 2) 1/2

5 ('T'=
~ ~

K.W(1—8. )K,
(Ott Gag

Uppo), 2 (or,2—or 2)
(TT) (1 e 2) (1 e 2)e (p . p )2p 2p 2~ S (TT) ~2 sin28 (TT)

(Srr)4p")c'
(53)
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2w 1/2 ~ 2w 1/2~co, ')
p&P&2p&,,p& 1— 1——

~

1——

~

=-0,
~pi ~„p)

(56)

These expressions assume that scattering resonance conditions are satisfied. Similar expressions to Kqs. (47) and
(48) can be written to define angles of interactions &pi, „&vr& and pr „&rr& for a given set of plasma parameters.

If the primary waves are plane polarized, and if they interact with polarization planes at right angles to each other

(v, »„=0), there will be no scattering radiation, even though resonance conditions are realised Th. is is the celebrated
optical theorem of Fresnel-Arago, generalized for a plasma held. Indeed, Fresnel and Arago investigated the
interference of polarized rays of light and found that two rays polarized at right angles to each other never interfere
(from which they concluded that light vibrations must be transverse). "

Now, assuming that linearly polarized primary waves are not at right angles to each other and are traveling in
the same direction, the resonance conditions can be satisfied, and light- and sound-type emission are obtained by
satisfying

v& p v ) & v't' ~ p &tie ~ pyi/i

+( +~ ~ )
c) c'E ) c'& ~P k ~.'i

(57)

respectively. It is furthermore to be noted, that when the two primary waves are propagating with the same frequencies
(p&.=p&„), there will be no light type em-issions, since Kq. (56) becomes meaningless. However, for the same condition,
a sound-type emission is possible.

When the primary waves are interacting with propagation vectors at right angles to each other, there can be no
light-type emission.

The energy Aux carried by an incoming primary wave is (c/16&r)rpP(n, &t)(p&P —p&P)"'. The differential cross
sections are written in a similar fashion to the previous case:

l'do)& v& V'pp'(p&' —p&') (1—p')(1 —p ')p,~.(» &p )'

EdQ) rq~~ (8&r) p c Ea(np K8)+ E~(& p~/ppa) (np K~)

t
do &"& Vp'(~, +~.)'(~.'—~.')(v ' (1—p.')(1—p.') p.+ (o ~ )'

EdQ r, ~„(8l)&p v ~c Eg(np' Ka)+ pn(pp~/vpa) (np' &tn)

(58)

(59)

Special cases, such as interacting electromagnetic and transverse plasma waves, or two electromagnetic waves in a
plasma medium, can be obtained from the above general expressions.

Case III. Longitudinal-Transverse Primary Waves

Assuming that s and sz indices associate with longitudinal and transverse primary waves, respectively, the in-

tensity expressions for radiating fields become:

V 2~ 2(~ 2 ~ 2) (v
—2

I„ {I,r&
~

„ P„ P
~
S il. r&

~

P Pe il, r&

(8n-)4p& c'P&~c

Vp'(p&, w p& )'(cpP —p&,')
p,p„& 'v '~S,p.&cr&~'cos'tl

2 (8ir)'p&P&v'

(60)

where

Vp(p&P p&P)r-
+ p,~,„& 'vp '~ S,~ &~ &~'cost&,p ' v& cosg ' r& (61)

2 (8&r)'p &P& v'

(d 8 Gart, COgS, &"&= 2v.y—(o, v.) ~ ~ ~

—~a.~(1—b.")u,
p& ~ —4 Q&~

—p& 8 I
(62)

w(1-b, ") —~(o, r.) u, .
cp~r

(63)

Again, one can substitute in Kqs. (47) and (48) the propagation vectors of the primary waves of this plane polarized
to their relative positions. Light- and sound-type radiation will be generated, provided that other radiation condi-

/

&4A, Fresnel, Ann. Chim. Phys. 2, 1 (1816), 23M Oeuvers, Vol, 1, 39-.139,
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tions are realized. The primary waves propagate in the same direction; light- and sound-type radiations are
possible if

Mz 1—
G08 %2CO&GDrt, —— 1— =0,

l -) ««'+(I ——)«.'T2«. . 1—-(1——
) (1—.—.). =0, (65)

are satisfied, respectively. In contrast to the previous case, primary waves propagating in the same direction with
equal fi.equencies will interact and generate the two types of emissions.

Repeating the same procedures as in the previous cases, differential cross sections for the longitudinal-transverse
primary waves are written as follows:

)do '~r' V '(u '(to '—(v ') v &8+ n

&dQ r.r.„(8v)'p "&c' c (v/c) c,(n„ lt)+, e (vp /v„o)',(nu, )„
(a~ «» VO2(~~~ )~(~2—~~) .)
&0 r,„. (8v)'pto'v' cj (v/c)e, (n„.rt, )+e„(po„/po, )'(n„.g„)

vo(toP —~,')r v &8+n

(8~)'p&"v' c (v/c)e, (n„u,)+e.(po„/po, )'(n„ lt„)

(66)

&&vo '( S ~ &~v&~~T,~ &~r&~coso~ &~r& cos@,~ &~"& (67)

V. SUMMARY AND DISCUSSIONS

We have investigated light- and sound-type emissions
from nonlinear fluctuations of an electron plasma, and
related some of the results with the well-k. nown results
of classical electromagnetic and hydrodynamic theories
in the limiting cases. The analysis is performed for
second-order perturbations which contain radiations of
quadrupole type as well as radiations of lower orders.
It should be kept in mind that the second-approxima-
tion effects are small when compared with those of the
first approximation.

Mean energies emitted per unit time from the plasma
field can be looked upon as radiating energies of light
and sound waves. Therefore, intensity expressions refer
only to the energies which actually escape as sound and
light, and to their directional distributions. Due to the
three diferent possible interactions, six types of intensity
expressions are in order; three of these radiations are
sound, and the other three are light-type radiations.
We have brieRy referred to transverse and longitudinal
components of radiation intensities as light and sound.

The intensity expressions of scattered light and sound
are proportional to the same form

(volume)' (frequency)' (source term)'
(68)

(equilibrium density)' (characteristic velocity)'

where frequency, source, and velocity parameters de-
pend on the type of interacting primary waves. In the
sound radiation 6eld, a dipole-like radiation term enters
into the expressions. In the general expression of (68),

amplitude terms vp, pp„' are absorbed into the source
term to make it dimensionally equivalent to that of a
stress term.

In these six types of radiation expressions, the ve-
locity for pure sound radiation is the adiabatic sound
velocity v; foi a pure light radiation, it is the velocity
of light c. Intermediate types of radiation will contain
(v/c), (v/c)', , etc. , as multipliers of the expression
of the pure light radiation. Here, we use the term "pure"
for cases where only one type of velocity enters into
the expressions.

Similar studies have been done in the held of
acoustics, of quadrupole sound radiation. Case III is
particularly interesting in this sense, since it yields the
above-mentioned acoustic solutions as a special case.
It is evident from Eq. (1) to (5), that when the elec
tronic charge vanishes, the hydrodynamic fidd becomes
uncoupled from Maxwell's field. If the electronic charge
now goes to zero in the intensity expression of the
scattered longitudinal wave, one obtains:

Vo co+ (coa&G0~)I, „&~»—
~

„p,„S, „&~»~ sin'8
(8~)4p (Ol v 5

Vpa), 'r
+ ) vo, vo.S,~.'~» )'

2 (87r)'p &'&v'

&(cos0,~ '~» cosp,p. &~r' (69)

which can be compared with known acoustic results. "
"M. J. Lighthill, Proc. Roy. Soc. (London) A211, 564 (1952).
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Indeed, the first term on the right-hand side of the last
equation is comparable to acoustic quadrupole radia-
tion, whereas the second term represents a dipole-like
radiation. The main difference between this result and
that of the earlier acoustic work is the appearance here
of combination frequencies.

We have formulated all possible radiations resulting
from the three types of interactions. Some useful con-
clusions can be drawn from these results:

(1) It is seen that in some cases, depending on the
nature of interacting primary waves, sound and light
emissions become prohibitive if they interact at right
angles to each other (the interaction angle is to be
understood as the angle between the propagation vec-
tors of the primary waves).

(a) When (both) primary waves are longitudinal,
no sound-type radiation is possible but a light-type
emission will be possible. This theorem is general and
is true for polarized, unpolarized primary vraves.

(b) If the two transverse primary plasma waves are
interacting at right angles to each other, the light-type
emission is prohibited but sound emission is possible.
Obviously this excludes the case vrherein the plane
polarized primary waves interact with the polarization
planes at right angles to each other.

(c) When primary waves are longitudinal and trans-
verse both sound- and light-type emissions are possible.

Furthermore, one can say that the above statements
are true for primary waves having different or equal
frequencies.

(2) From general expressions of resonance scattering
equa, tions (47), (48), we are able to determine radiation
conditions for the primary waves traveling on the same
direction.

(a) When both primary waves are longitudinal,
sound- and light-type emissions are possible. If they
have the same frequencies, sound emission is impossible.

(b) If primary waves are transverse waves, both
sound- and light-type emissions are possible. When

they have the same frequencies there is no light-type
emission, and a sound-type emission is possible (again
for the interaction of plane polarized primary waves

with polarization planes at right angles, the two types
of radiations are impossible).

(c) If primary waves are longitudinal and transverse,
both sound- and light-type emissions are possible for
different and equal frequencies.

(3) Generally, if primary waves are interacting with
an arbitrary angle (other than 0' and 90') both sound-
and light-type emissions are possible for different and
equal frequencies.

(4) Limiting cases to the general results, such as
interacting sound waves, interacting sound and electro-
magnetic waves, or interacting electromagnetic-electro-
magnetic waves in a plasma medium can be obtained
simply by converting primary plasma vraves into ordi-

nary electromagnetic and sound waves. This can be
done easily by equating Langmuir electron frequency
~, to zero in the primary vrave numbers K„, K .

(5) We find in the second-order perturbations that
oscillations with frequencies or, %co„enter into the
radiation expressions. ~,,%co„ type combination fre-
quencies include self-interaction frequencies (double
frequencies) 2Mi, 2cu2 as well as interaction frequencies

cubi
—co2, co,+cv2. In higher approximations (for instance

x=3) combination frequencies will appear as the sums
and differences of more than two initial frequencies 3'&,
3&F2, 2a&i+(o2, (oi—2cv2, (um

—2(ui, &vi+2(u2. However, the
combination frequencies will include some terms which
coincide with the original frequencies cup —Q1$+M2 (02,

~2= o&~+coi —~i. Carrying this to higher approximations,
combination frequencies for an eth order will be in the
form of

co& ) =4)galcv2,

where 0 and l are integral numbers, N=k+/. Another
important aspect of the problem can be developed by
investigating the interaction of an arbitrary number of
primary waves. That is to say, Eq. {25) must be re-

considered in the form

which includes sz arbitrary interacting primary waves.


