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Observations of Transitions Between Stationary States in a Rotating Magnetic Field*
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The stationary states of an atom in a combined static and rotating magnetic held have been investigated
by using two frequency transitions in an atomic-beam machine. Very accurate measurements of a strong rf
magnetic 6eld may be made by inducing transitions between the stationary states with a small "tickling" rf
Geld. The relaxation of the selection rules associated with the s component of angular momentum makes
normally forbidden hyperfIne transitions visible.

I. INTRODUCTION

'WO —FREQUENCY transitions have been ob-
served by several investigators in the past, ' ' and

are usually interpreted as multiple quantum processes
where the energy and angular momentum for a transi-
tion are supplied by two photons. We wish to report on
observations involving two frequencies, where one rf
field may be thought of as defining stationary states,
between which a small secondary rf fieM causes transi-
tions. The steady-state solutions of an atom in a pre-
cessing magnetic field were originally obtained inde-
pendently by Besset et al. ,' Salwen, ' and Hack. ' They
are frequently used to analyze single-frequency transi-
tions between hyperfine sublevels of an atom in a
magnetic field. While algebraic solutions for a three-
level system can be obtained, as was first shown by
81amont and Winter' and more recently by Franzen and
Alam, ' the case for an arbitrary number of levels is
usually treated with perturbation theory. '' In this
work the Hamiltonian matrix in the rotating coordinate
system was diagonalized with an electronic computer to
obtain eigenvectors and eigenvalues for interpretation
of the experimental data. The exact steady-state solu-
tions may be used to solve for the transition probability
in a region of overlapping multiple quantum resonances
where neither the usual perturbation methods' ' for
treating multiple quantum resonances, nor the Majorana
formula' apply.

In this paper we shall think of a strong rf field together
with a static magnetic field as playing the role of the
homogeneous magnetic field in ordinary rf spectroscopy.
Sy causing transitions with a weak secondary rf field
we may investigate the structure of the stationary
states. Very accurate measurements of the primary rf
magnetic-field strength may be made in this manner.
The transitions between stationary states in a precessing

*This work was supported by the U. S. Atomic Energy Com-
Dllsslon.
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Radium 15, 251 (1954).' H. Salwen, Phys. Rev. 99, 1274 (1955).' M. N. Hack, Phys. Rev. 100, 9BA (1955); thesis, Princeton
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magnetic field do not obey the selection rules associated
with states of good s component of angular momentum.
One therefore sees many interesting transitions that are
forbidden in a static magnetic field.

The experiments in this work were performed with the
focusing atomic beams machine built by Lemonick,
Pipkin, and Hamilton. ' K" served as a convenient
isotope for study.

The Hamiltonian of an atom subject to a static mag-
netic field, H„ in the s direction and to several magnetic
fields, H„t', rotating about the s axis may be written in
the form"

HF+g JppJsHc+ g Jtl p

XP H», '(J, cosa&,t+J„since,t) . (1)

The rotating magnetic vectors, B,.~', have been chosen
in phase at t=0 for simplicity. Terms involving the
interaction of the magnetic dipole moment of the
nucleus with external magnetic fields have been neg-
lected. Hp is the Hamiltonian of the hyperfine inter-
action in the absence of external fieMs.

Hp AI J+8——
—,
' (I J) (2I ~ J+1) I(I+1)J(J+—1)

X (2)
2I (2I—1)I(2I—1)

Magnetic octupole and higher order terms have been
neglected in (2).

A transformation to a system of coordinates rotating
with frequency wo may be eGected by means of the
unitary transformation. "

U' —~
t', ESrsl0 t

The transformed Harniltonian is then

W= Wp+Wt= HF+gzll pJ H pppF +gyral p—
Xg H„~'(J, cos(~;—ppp)+J„sin(pp; —~p)t), (4)

A. Lemonick, F. M. Pipkin, and D. R. Hamilton, Rev. Sci.
Instr. 26, 1112 (1955).' H. B. G. Casimir, On the Interaction betvtJeen Atomic Nuclei and
Electrons (W. H. Freeman and Company, San Francisco and
London, 1963)."I.I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys.
26, 167 (1954).
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FIG. 1. Stationary
states in a rotating
coordinate system
for K39, F=2 {sche-
matic). (a) No rf
field. {b) A small
magnetic field, B,o~',
is attached to the x
axis of the rotating
coordinate system.

where hereafter the first three, time-independent terms
will be denoted by 5'0 and the terms representing
rotating magnetic fields will be called 5'~.

If only one rotating magnetic field, H„&', is present
the transformed Hamiltonian W, Eq. (4) becomes time-
independent when co& ——coo. One may think of the rotating
magnetic field as being attached to the x axis of the
rotating coordinate system. S' then assumes the form

W= Wo+ggpoP, .i'J. .

The eigenvalue equation for the Hamilton of Eq. (5) is

(6)

It is instructive at this point to use a perturbation argu-
ment to demonstrate the main features of the solutions
of (6). We shall therefore consider the term ggIJ, oP,.iJ,
in (5) to be a small perturbation on the unperturbed
Hamiltonian 8"0, whose eigenvectors and eigenvaJues
are given by

H'OP(F, m) = (E(F,m) —ma&ok)P(F, m). (7)

The E(F,m) are the usual energies of the hyperfine
sublevels in a magnetic field and the $(F,m) are the
corresponding eigenfunctions. Ii denotes the total angu-
lar momentum of the hyperfine level from which the
eigenvalues evolve with increasing static magnetic field,
and m is the s component of angular momentum of the
eigenfunctions. Figure 1(a) shows a sketch of the
eigenvalues of 8'0 as a function of the frequency, a&0, of
the rotating coordinate system. As an example we have
used the ground state of K", I=-,', J=-', , and only the
sublevels originating from the P=2 level are drawn.

If we now apply the perturbation JI„i' (5) the
eigenvalues of W no longer intersect as in Fig. 1(a), but
repel each other through the interaction caused by
H„,, , giving the situation sketched in Fig. 1(b). The

continuous lines in Fig. 1(b) are labeled a through e in

order of decreasing energy. They are eigenvalues of the
states P, , which also vary continuously with coo. The g,
do not possess a definite s component of angular mo-
mentum, and in fact for small values of H„„' p„'s
dominant m is +2 for coo ——0 and —2 for ~0 very large.
Near the region of intersections @ contains co'nsiderable
admixtures of all magnetic quantum numbers. Two
intersecting levels will repel most strongly when their s
components of angular momentum differ by one unit.
From the point of view of perturbation theory, states
that differ by more than one unit in m repel through
intermediate states so that relatively greater values of
IX„,&' are required to split the intersections.

v& is the frequency of the large rotating magnetic field
which defines the stationary states and v2 is the fre-
quency of the small "tickling" field which causes transi-
tions between the levels without significantly perturbing
the term values. A second rf magnetic field oscillating
along the direction of the static field can cause transi-
tions at the frequency

The former type of transition (8) was used in these
experiments.

Whereas the Bohr frequency condition (8) must hold
for any direct transition, selection rules often further
limit the number of observable transitions. In a static
magnetic field the s component of angular momentum
is a good quantum number and the following selection
rules arise for transitions between states li) and

l j)
caused by a magnetic field rotating with frequency v

about the s axis

(10)

lf pli mj'= 1 ) i =+ (IV,—IV,),
if m, —m, = —1, v= —(W;—W, ) . (12)

Had the states li) and
l j) been eigenstates P of ?V (6),

the preceding selection rules would not apply because
the p's are not in general states of definite s component
of angular momentum. The relaxation of the selection
rules (10), (11),and (12) in a precessing magnetic field

has several interesting consequences. Both senses of

TRANSITION INDUCING RF FIELD

Single-frequency transitions between two hyperfine
levels can occur at the frequency of intersection of the
corresponding asymptotes in Fig. 1(a).' "" One may also
induce transitions between the steady states sketched in
Fig. 1(b) by applying a second rf field, H, „P, rotating
around the static magnetic field. In view of (4) this
second rf field can cause transitions between two levels
i and j of Fig. 1(b) whenever
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rotation, ps —vt=+~W, —WJ~, of the transition in-

ducing fieM can cause transitions between the stationary
states in a precessing magnetic field. The two fre-
quencies, v2' and v2", at which a transition can occur
satisfy the obvious relation )see Eq. (8)j

2.0

ps + ps = 2pt ~ (13)

We have called a pair of lines corresponding to v2' and
v~" mirror lines because of their symmetry on a graph
of v2 versus H„&'. At least one of the mirror lines is
forbidden for small H„,t' where the selection rules (11)
and (12) are still approximately true. Further discussion
of mirror lines will be found in the following sections.

While the perturbation arguments outlined above are
useful in visualizing the solutions to (6), interpretation
of the data obtained in the present experiments requires
an exact solution of the problem. This may be obtained
by diagonalizing the Hamiltonian matrix of W, (5), in a
suitable basis system. As basis vectors we have chosen
the P(F,m) in Eq. (7). The Hamiltonian matrix is then

hW p.„,p (P(F'm')——,WP(F, m) )
= (&(F,m) —~em)&„&„~

+g~IJoH„t'(p(F'm'), J &(F,m)). (14)

When the zero-field hyperfine splitting is not too
small a good approximation is to limit the matrix to one
F level, thereby reducing the dimensionality from
(2I+1)X (25+1) to (2F+1).Although this limitation
is not necessary in principle, for large I and J con-
siderable economy may be obtained without introducing
significant errors. Figure 2 shows eigenvalues obtained
by diagonalizing 8"&., p in the Ii=2 subspace. One
should compare Fig. 2 with the schematic plots on Fig. 1
which were obtained by perturbation arguments. Figure
3 shows the dependence of the term values on the
strength of the rotating magnetic field, H„&', for a fixed
frequency, v&. The Princeton 7090 computer was used
to obtain the wave functions P(F,m) and eigenvalues
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H„ t ( gauss)
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Fro. 3. Calculated term values as a function of the rotating
magnetic-field strength. The inset shows the frequency v& of the
rotating magnetic field with respect to the term value diagram of
Fig. 2.

E(F,m) of (7), to compute the matrix elements W

(14) and to diagonalize W

RADIO FR EQUE NC Y C I RCU IT

III EXPERIMENTAL

Experimental work was performed with a focusing

atomic beams apparatus designed by I emonick, Pipkin,
and Hamilton. ' The beam of K39 normally used to
calibrate the C magnet in studies of radioactive nuclei

provided a convenient isotope for the experiments.

Figure 4 shows a sketch of the rf loops in the C magnet.

4,a

Pro. 4. The region of
the atomic-beam ma-
chine where transitions
occur.
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Fro. 2 Calculated term values (dotted lines) for JJ,=17 G,
I/rot =0 5 G for K, F=2. "W. Happer, thesis, Princeton University, 1964 (unpublished).
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These produce an oscillating rather than a rotating
magnetic field, but since an oscillating field is composed
of two rotating fields of frequencies &v we can use one
of the components and neglect the other. It will be seen
that no significant eGects arise from the opposite sense
of rotation in these experiments. Two Rhode Schwartz
type SMLR signal generators provided rf frequencies v&

and v2. A strong rf signal of frequency v& served to define
the stationary states and was applied to the 10 turn
main loop (Fig. 4) normally used to induce multiple
quantum transitions in studies of radioactive atoms. A
Boonton type 230 A rf amplifier was occasionally used
in conjunction with the Rhode Schwartz to obtain
higher rf powers in the main loop. The rf voltage was
displayed on a calibrated oscilloscope from which
readings of rf field strength could be obtained. The
small "tickling" rf signal, v2, was applied to a pickup
loop which is normally used to monitor the rf 6eM
strength in the main loop. The 6eld strength in the
tickling loop was set to be —,

' optimum for the
m= —1 ~ m= —2 K" transition with no signal present
on the main loop. Moderate variations in the magnetic-
field strength from the tickling loop are unimportant.

Machine optics are such that transitions into the
level m= —2 are visible. ' All of the transitions indicated
in Fig. 5 therefore end on a line that evolves adia-
batically from the —2 asymptote for smoothly in-
creasing H„&'.

Data were obtained by setting the first oscillator at a
given frequency v& and at a given rf field strength H„&'.
The frequency v2 of the "tickling" oscillator was then

N T HE STAT IONA

NG MAGNETIC FI

varied and the resonant frequencies recorded. The posi-
tion of maximum flop was taken to be resonant fre-
quency and this could be read to about &8 kc/sec. All
frequencies were read on the dials of the respective
oscillators and corrected later from calibration curves
obtained with a Hewlett Packard model 5248 signal
counter. The corrected frequencies are probably good to
about &15 kc/sec.

The rapid saturation of linewidths in an atomic
beams apparatus, which arises from the smooth rf
envelope seen by an atom, ' "is a considerable advantage
in these experiments since the linewidths of the single-
frequency transitions do not become broad enough to
overlap even at very high rf fields. Similar experiments
with an optically pumped vapor serving as a detector of
rf transitions would be limited to smaller rf fields since
the adiabatic application of rf power characteristic of a
beams machine does not usually obtain. ' The rectangu-
lar rf envelope seen by optically oriented atoms would
cause multiple quantum transitions to overlap for large
rf fields.

IV. RESULTS

Figure 6 shows the resonances seen when v~ was
varied across the whole region of crossings. A point
indicates that a resonance was observed at that com-
bination of frequencies, vi and v2 given on the axes. The
strength of the rf field, H„t,', varied continuously from

2 Gat v~=11.5 Mc/sec to 0.5 Gat v~=13.8Mc/sec.
The variation in rf field was unintentional. The transi-
tions responsible for the resonances in Fig. 6 are labeled
by the initial and 6nal states involved. For example, the
line ca in the lower right of Fig. 6 reflects a transition
from level c to level a and is represented by the right-
most arrow in Fig. 5. A double line on Fig. 5 indicates an
observed mirror pair of transitions. Positive identifica-
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FIG. 5. Schematic diagram of the transitions which were ob-
served in this work. Double arrows indicate observed mirror
transition frequencies.

Fn. 6. Experimentally observed transitions in the frequency
range of crossing levels. The state to which detectable transitions
can be made is indicated on top of the figure. The single rf field
transition frequencies are denoted 1Q ~ 4Q for the one quantum
through four quantum transitions, respectively.

"P.Kusch, Phys. Rev. 101, 627 (1956).
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tion of the lines in Fig. 6 was obtained from a study of
their dependence on the magnetic-field strength H„~',
although several lines can be identified immediately.
The line that approaches 1Q frequency to the right of
the —1, —2 crossing must arise from the transition ba
since no other visible transition can approach a constant
frequency in that region. We may similarly identify de
on the left of Fig. 6. Mirror lines (see Sec. III) can be
identiGed on Fig. 6 by looking for pairs of lines v2 and
vs such that vs'+ vs" = 2vi. One can thus find the
mirror pairs ba to the right of 1Q, ab between 2Q and
1Q, and ac and bc between 3Q and 2Q. One should note
the discontinuities in the lines on Fig. 6 approximately
at the positions of single frequency resonances with v&.

Reference to Fig. 5 shows that the Gnal state which is
Qopped out changes abruptly from one continuous line
to another when a single-field transition frequency is
crossed. We have indicated the states which are Qopped
out on the top of Fig. 6. The right most discontinuity
does not coincide with 1Q frequency because of a slight
inhomogeneity in the C magnet. " Similar but suc-
cessively smaller shifts of the discontinuity may be seen
at the 2Q and 3Q transition frequencies. The lines de

and ce on the left of Fig. 6 appear to approach and repel
each other. This is understandable from Fig. 5 where we
see c and d repelling at the —1, +2 crossing.

Figures 7(a)—7(i) show plots of transition frequency
v2 for the tickler loop versus rf magnetic field in the
main loop. The solid lines were calculated by the

procedure outlined at the end of Sec. XX and the points
were measured as discussed in Sec. IIX. The solid lines
should not be thought of as a "fit" since all parameters
used in the calculation, the C field strength, the fre-.
quency of the signal on the main loop and the hyperGne
structure constants of K39 were well known. However,
only the relative strength of the rf Geld in the main loop
was known experimentally so the horizontal scale of the
experimental curves was adjusted to match the calcu-
lated lines. The insets in Figs. 7(a)—7 (i) show the loca-
tion of the frequency of the main loop with respect to
the crossing points. Figure 5 is an expanded view of the
insets. v& was set at various frequencies starting from
the —1, +2 crossing to slightly beyond the —2, —1
crossing. The agreement between experimental and
theoretical curves is generally very good, but slight
systematic deviations are visible in several cases. In
Fig. 7(a) the experimental points seem consistently
higher than the calculated curve de. In Fig. 7(b) the
experimental points are systematically above ce and de.
In Fig. 7 (h) the experimental points are above db. These
derivations may have arisen from poor calibration of the
Rhode Schwartz frequency scales, from slight errors in
the measurement of the C Geld, H., or the main fre-
quency v&. They may also reQect the inhuence of the
reverse rotating magnetic Geld from the main loop
(Bloch-Siegert pulling'4) or they may arise from the
F= 1 levels which were neglected in the diagonalization
of the Hamiltonian matrix (14). Symmetrical mirror
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I zc. 7.—Continued on next Page.

'4 F. Bjoch and A. Siegert, Phys. Rev. 57, 522 (1940).
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lines are visible in Figs. 7(d)—7(i). In Fig. 7(e) vi was
set on the 0, —1 crossing so the transitions ud and bd are
degenerate in the static held where they coincide with
the normal one quantum transition. Note that transi-
tions to level d are visible from all of the other levels,
c, b, c, and e. Only ad and bd are allowed in the static
field and the appearance of ed, the mirror pair cd, and

the lower mirror line bd rejects the loss of axial sym-
metry in the stationary states. Similar considerations
hold for the other figures. In Fig. 7 (i) the mirror pair bu

rejects the almost linear splitting of the leve1s b and a
at the —1, —2 crossing. Good agreement could have
been obtained in this case by a perturbation calculation.
The splitting of the levels b and a is the only linear for
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FIG. 7. Transition frequencies as a function of rotating magnetic-
field strength. The solid lines are calculated; the circles are ex-
perimental points. The insets show the frequency v& of the rotating
magnetic field arith respect to the term value diagram of Fig. 2.
Mirror lines are visible in (d) through (i).
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much smaller values of H„»' in Fig. 7(e) because of the
proximity of other levels. The final state d is also rapidly
shifted as is evident from the term value diagram, Fig. 3,
which approximates the situation of Fig. 7(e). Thus a
perturbation calcujation here would be of very limited
value.

The experiments above constitute a measurement of
rf magnetic fields. The same degree of accuracy can be
obtained as is usually obtained in the measurement of
the C field with a calibrating isotope. The uncertainty in
the measurement is determined by the linewidth of the
resonance. For example, the splitting at the —2, —1
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crossing may be calculated by perturbation theory to be
Av= W, W—s 0.7——01H,i Mc/G for H, i small. The un-
certainty in the measured rf field is then 8H, &

= 1.438 (8 v)

G/(Mc/sec). One can determine the center of our Kss

lines to about 1 kc/sec or 8(hv) to about 2 kc/sec which
would give an uncertainty in measured rf 6eld of about
0.003 G. For comparison, optimum power for a one
quantum transition is 0.02 G.

Measurements of rf magnetic fields are sometimes
made relative to optimum power for some transition.
However, determination of the actual rf magnetic field
in gauss which corresponds to optimum power requires a
knowledge of the velocity distribution of the atoms. The
method outlined above is independent of the velocity

distribution of the atoms and may in fact be used in
conjunction with a measurement of optimum power to
determine the velocity of the atoms in an almost
monochromatic beam. The shape of the rf envelopes
should be taken into account in any calculations of rf
magnetic-field strengths.
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Two-Photon P1'ocesses in Complex Atoms*

J. D. Axz, JR.
IB3f watson, Research Center, Yorktozen, Heights, gent York

(Received 15 May 1964)

The oB-diagonal matrix elements of the polarizability operator when operating within an P con6guration
of a complex atom can be approximately written in simple tensor-operator form. The resulting expressions
are discussed in terms of two-photon absorption and the recently observed electronic Raman scattering
in the trivalent rare-earth ions.

I. INTRODUCTION

HE extremely intense light Ruxes available from
optical maser sources have revived interest in

interactions in which atomic matter and two or more
quanta of electromagnetic energy are involved. ' The
most easily observable two-photon effects, Rayleigh and
Raman scattering, were given modern quantum-me-
chanical treatment by Dirac. ' Two-photon absorption
and emission, also predicted by second-order perturba-
tion theory, were 6rst discussed by Goeppert-Mayer. '

Of the recently investigated two photon effects at
optical frequencies, several have occurred in systems
which to a good approximation can be described as free
atoms. Thus, two-photon absorption has been observed

by Kaiser and Garrett' in Eu'+ in a matrix of CaF2, and
in atomic Cd vapor by Abe1.la. ' The first observed
atomic Raman transitions were reported recently by
Hougen and Singh. ' Sorokin and Braslau' have recently

*This research has been supported in part by the U. S. Army
Research OfBce, Durham, North Carolina.

' See, for example, J. A. Armstrong, N. Bloembergen, J.
Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962}.

~P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 143, 710
(1927).

3 M. Goeppert-Mayer, Anw. Physik 9, 273 (1931).
4W. Kaiser and C. G. B. Garrett, Phys. Rev. Letters 7, 229

(1961).
~ I. D. Abella, Phys. Rev. Letters 9, 453 (1962).' J. T. Hougen and S. Singh, Phys. Rev. Letters 10, 406 (1963).
P. P. Sorok111 and N. Braslau, IBM J. Res. Develop. 8, 177

(1964}.

suggested the possibility of producing stimulated two-
photon emission at optical frequencies by triggering
with intense light at the subharmonic frequency. In
view of the possible importance of such processes, the
purpose of the present paper is to examine the second-
order perturbation expansions which determine two-
photon interaction in complex atoms in the hope of
developing approximate expressions more amenable to
both qualitative and quantitative evaluation. The de-
velopment is similar in spirit to the polarizability ap-
proximation introduced by Placzek' and others for
treating vibrational and rotational Raman transitions.

II. FORMULAS AND APPROXIMATIONS

Consider an atomic system in an eigenstate p but
with other allowed eigenstates p', p", etc. , upon which
monochromatic light of frequency co& is incident. The
result of the second-order electric-dipole-interaction
perturbation' can be summarized by attributing to the
atomic system induced-oscillator dipole moments with
(complex) amplitudes of the form

(O'I~( )Ip)=(p'I Ip) &( ),
where 8(ooi) is the electric field associated with the inci-
dent radiation and the oscillator frequencies co~ and m2
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