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Theory of Electromagnetic Field Measurement and Photoelectron Counting
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A theory of electromagnetic field measurement by means of photoionization is developed and applied to
photoelectron counting. A probability theory involving multitime joint probability functions for a sequence
of photoionizations is formulated. A general quantum-theory definition is proposed for the nonexclusive
probability function which occurs in the probability theory. Approximations are then introduced to derive
expressions for this probability function which involve correlation functions of the photoionization detector
and the electromagnetic field-plus-source. The general theoryis used to derive quantities of interest in photo-
ionization counting experiments. Expressions are derived for (1) the probability P (f, t+T) that n photo-
ionizations are observed in the time interval t to t+ T, and (2) quantities related to P (t, t+T), such as its
generating function and various moments. E {t, t+T) is found to be a compound Poisson distribution de-
termined by the density operator of the field when the latter is expressed in Glauber's I' representation.
Using this result, the character of P„(t, i+ T) is examined for several speci6c density operators. These cor-
respond to a coherent state, various fields with the mode phases distributed independently of the mode
amplitudes, and a "spread-out" coherent state.

I. INTRODUCTION

HE recent advent of nearly coherent sources of
electromagnetic radiation in the region of optical

frequencies has led to the possibility of observing cor-
relations between photoionization events which reRect
correlations in the electromagnetic field of a nearly
coherent source. Experiments to measure photoelectron
correlations using coherent sources have been performed
in a number of laboratories. For example, the power
spectrum' ' and photocounting statistics' of a helium-
neon laser have been studied. These experiments can be
related to the time-correlation measurements of Han-
bury Brown and Twiss, ' ' which were carried out on an
incoherent source. The feasibility of such experiments
on nearly coherent sources has led to a renewed interest
in how the dynamical state of the electromagnetic field
is related to photoionization information.

The theory of photomeasurement has until recently
been developed almost entirely for the measurement of
the field of an incoherent source. This theory, which has
been comprehensively reviewed recently, ' involves a
semiclassical treatment of photoionization processes.
An expression for E„(t,l+T), the probability that ss

photoelectrons are observed in the time interval t to
t+T, is derived for use in connection with a particular
measuring technique —photoelectron counting. The
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derivation" is based on the assumption that the prob-
abilities of photoionization in diferent, small time in-
tervals are statistically independent. In addition, the
latter probabilities are assumed to be proportional to the
light intensity which may depend on time. These as-
sumptions lead to a simple Poisson distribution for
I'„(f, t+T). Time or ensemble averaging is then per-
formed to obtain a compound Poisson distribution. In
the ensemble averaging the real and imaginary parts of
the complex field amplitudes are treated as Gaussian
random variables.

The desirability of using a thorough quantum treat-
ment as the basis of the theory of measurement of the
electromagnetic field and of avoiding the Gaussian
random variable assumption for a coherent source was
clearly emphasized in recent work of Glauber. "Glauber
has given an appropriate definition of a coherent state"
and has developed" the formal properties of electro-.
magnetic 6,eld correlation functions using quantum
electrodynamics. For incoherent fields the second-order
correlation function determines all the higher order
correlation functions. This is no longer true in general
for partly coherent fields, such as can be expected from a
laser. Glauber" introduces what he calls the I' repre-
sentation, a representation diagonal with respect to
coherent states. Use of the I' representation allows field-
correlation functions to be expressed in a manner
formally very similar to the usual classical expressions.
This formulation also facilitates making the transition
to the classical limit. Sudarshan" "has shown that an
arbitrary density operator of the electromagnetic field
can be represented formally in Glauber's I' represen-
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tation provided one allows for the possibility of a
highly singular distribution for the P function.

The present. .development is cog.cerned with a general
formulatiog. .of the problem of photomeasurement by
photoionization. In most experiments multiple measure-
ments of the electromagnetic 6eld are made by the
photomeasuring apparatus. In Sec. II the probability
theory of nonindependent photoionization events in
various microscopic time intervals is developed to
provide for the subsequent treatment of a general
starting point involving a minimum of assumptions.
Joint probabilities are given for

(1) exclusive probabilities, for photoioniza, tions oc-

curring in a certain set of such subintervals and not
occurring in others, and for

(2) nonexclusive probabilities, for photoionizations
occurring at least in a certain set of subintervals.

In Sec. III the joint probabilities of Sec. II are used
to obtain quantities related to experiment, in particular,
the probability P„(t, t+T) of u photoionizations in the
time interval t to t+T. It is shown that P (t, t+T)
depends on all the nonexclusive joint probabilities of
order &e, without regard to the detailed structure of
the field-detector system. On the other hand, the mth
factorial moment of P„(t, t+T) depends only on the
nonexclusive joint probabilities of order m.

Section IV has a quantum-mechanical derivation of
formulas for the nonexclusive joint probabilities of Sec.
II. The resulting formulas involve correlation functions
of the detector and the field-plus-source. The joint
probabilities are calculated using the repeated random-

phase assumption for the detector. It is assumed that
at the beginning of each subinterva, l the detector can be
considered to a sufficient approximation to have re-

turned to its ground state or thermal equilibrium state.
In addition, the electromagnetic 6eld is assumed to
develop independently of the detector between sub-

intervals. The coupling of the detector to the field is
considered weak enough so that the time development
of the 6eld can be assumed to depend only on its inter-
action with the source. In this restricted sense, we may
think of the measurements made on the field as not
disturbing it appreciably. Using this approximation the
photoionization correlations in time are determined by
the dynamical development of the 6eld plus its sources.
In order to make contact with the work of Glauber, " "
Sudarshan, '4 "and others, the full correlation functions
are related to the correlation functions of the field alone.
This approximation involves effectively treating the
6eld as a closed dynamical system.

In Sec. V the results of Sec. IV are used to express
P (t, t+T) and related quantities as averages with re-

spect to the density operator of the field and its sources.
The quantity averaged is a function of 6eld operators
and a detector-correlation function. The result for
P (t, t+T) shows a clear formal resemblance to a
Poisson distribution.

If the time dependence of the 6eld operators is deter-
mined solely by the field Hamiltonian, as assumed by
others, " " the results can be expressed in terms of
Gla, uber's coherent states. Use of the P representation
of Glauber then shows that P„(t, t+T) is a compound
Poisson distribution. Using this result, the character of

P„(t, t+T) is examined for several specific density
operators. These correspond to a coherent state, various
fields with the mode phases distributed independently
of the mode amplitudes, and a "spread-out" coherent
state.

Finally, in Sec. VI a brief discussion is given of the
implications of the free 6eld motion assumption and of
the applicability of the compound Poisson distribution
to experiment.

~ii&(yi&y2»' ' 'yN) &
(2.1)

where y;, a random variable, is a coordinate for the ith
time interval. For L photoemissive surfaces in the de-

tector system, y;=(y;i,y 2, ,y;r, ) is an L-component

vector, each component of which can take on one of the
two values: 0 and 1.'H ~ incorporates all the information

about the system of electromagnetic field in interaction

with L photoemissive surfaces that can be obtained by
observing when photoemission processes occur on each

of the L surfaces during the interval t to t+T. For
simplicity, the formalism will be developed for a single

photoemissive surface. When each member of the set

(y;} of y's is assigned a value, O&.N is interpreted as the
probability that one photoionization process occurs in

II. PROBABILITY FUNCTIONS

D8h+0118

To deal with a large class of photomeasurement ex-

periments in a uni6ed way, we introduce hierarchies of
distribution functions depending on time coordinates.
These functions are related to the rate at which photo-
ionization occurs at various times on various photo-
emissive surfaces, as a consequence of the presence of an
electromagnetic field. The distribution functions are
used as a basic ingredient in evaluating systematically
various statistical quantities of experimental interest,
discussed in Sec. III. The present development has the
advantage of allowing one to obtain directly quantities
of interest in photomeasurement experiments in terms
of joint photoionization probabilities without making

any assumptions concerning the nature of the inter-
action of the electromagnetic 6eld with the detector or
of introducing unnecessary statistical assumptions. In
this section, the %~, (P~, m~, and (P~' functions are
defined and their properties and interrelations are
discussed.

The distribution functions are introduced as follows.

The time interval t to t+ T is divided into X small sub-

intervals. Eventually, one can go to the limit of large E.
The basic distribution function is
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each interval with y= 1 and no photoionization process
occurs in each interval with y=0. More than one photo-
ionization process in a subinterval of length. ht is pre-
cluded by making S su6iciently large, so that only two
values of a coordinate y; are needed. In other words,
At((.R ', where E is the photoionization rate. Implica-
tions of the above condition together with the limitation
on the size of lD required by the quantum-mechanical
development are discussed in Sec. IV. In terms of %'~,
one can define a set of L1V!/E!(X—E)!j 'tt(2x's:

'9(2~6',y'. , ,y* )—=Z'i(2 b,y, y ), (2.2)

where the sum is over the values of the set jy;) except

y;„y;„,y;~. Clearly, 0&E&E, and by conservation
of probability, % s

——1. '|ti&'x(y,;„y;„.,y;~) corresponds
for a discrete random series to the W)c(yltl, yst2 ' ' ' yKtx)
discussed by Wang and Uhlenbeck" for a continuous
random process; see also Middleton. '~

Various quantities of physical interest are defined as
a mean ( )l„,.l with respect to %i&) of a function

5(y;„y;„,y; ) of the y's:

(~b' y', ,y' ))i.;l

~(y)»3 »& ';y&'x)~N(yl&y2& ' ' ' )yet)
I tt'i }=0

5(y', y'. ,
" y' )

&&~~(y',y', y'a) (2 3)

Note that in the particular choices for the f function
used in this section the y for each subinterval occurs at
D~ost linearly. Thus in any of the products of y's used
subsequently, the y for a given subinterval appears only
once if at all. In this manner, one can introduce the
product moment function

In Sec. III it is shown that various quantities of ex-
perimental interest are expressed. naturally in terms of
the (P~'s or the m~'s. General quantum-mechanical
expressions for wx(tl, ts, ,tx) are derived in Sec. IV.

One might expect that wtr(t, ,ts, ,tI;) can be repre-
sented in the form

wry ——P Xrc(n)Grc(n), (2.6)

=(II y'. II (l—y'&))l„i
k=1 L=K+1

(2.7a)

=~~(y»y2 ' ' y&) I
ls l=o o pe 2' =2',=" =2 -i. (2.7b)

(Pic (i&,is, ,iz) is the probability that one photoioniza-
tion process occurs in each of the intervals i~, i~, , i ~
and no photoionization processes occur in any of the
remaining E—II; intervals. The events whose proba-
bilities are given by the 5'z "sare mutually exclusive and
altogether comprise all possible 2~ events. The events
whose probabilities are given by the (P~'s are, in con-
trast, not mutually exclusive. This makes the 5'z"s
useful in various derivations and calculations, although
final results are ordinarily more appropriately expressed
in terms of the (P~'s than in terms of the (P~"s.

of a sum of products of a function Xrc(o.) depending only
on coordinates of the detector and a function Grc(n) of
the coordinates of the electromagnetic field and its
source. The quantum-mechanical derivation in Sec. IV
does, indeed, yield this form, where the sum over o.

becomes a 2E coordinate integration.
Another probability function (P~' can be de6ned con-

veniently as

(PZ (21 i2 ' ' ' 2X)

tp (, ,", )=—b' y', " y' )i.;l (2.4a) Relations Among Probability Functions

=~x(y' y' ",y'z) I. ,=.',=" =-.' =l

(2.4b)

which is the probability that a photoionization event
occurs at least in each of the intervals i~, i2, , iE..
Note that in% ~ and (P~, distinct arguments never refer
to the same subinterval,

The quantity w~(tl, t 2t, ~), which is the mean
probability per (unit time) that photoionizations occur
in the intervals tl to t,,+t&t&, t2 to t2+Ats, .

, tran to
trc+dta, is defined by

(PQ( i)$2)2' ')sr')=wlr(ti)ts) ' ' ')tie)ktldt2' ' ' At+ ~ (2.5)

B(»&2t» ' 2t&)»&2)»' ' )'&2'&)

X=O
t iy, ig, ~ ~ ~, i+ }

(pic'(i„i , s,i )rr

&III*. II 2") (28a)
k=1 E=K+1

Some further relations among the functions VP~, (P~,
and 6'~', which have been introduced in this section,
will now be discussed. A generating function for the
6'z"s is given by

Use of this quantity facilitates passage to the continuous
limit.

= (II b.~~+(l —y')~'3) l„l. (2.8b)

"M. C. Wang and G. E. Uhlenheck, Rev. Mod. Phys. 17, 323 The right, -hand summation in (2.8a) is over all distinct
(1945). 0

'7 D. Mid//eton, ge IN]roglction to $(0]z'sg~cc$ Qommunicagon SetS Of K interValS ChOSen frOm the Ã interValS. If I; iS
'I'heory (McGraw-Hill Book Company, Inc. , New York, 1960). replaced by st;+2&.;, one obtains a generating function
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K=Q {i1,im, ~ ~ ~, ig}
(PK(ZZ, Z , ,iK)

for the O'K's

g(ZZi+&2, ZZ2+~2, , ZZN+(i'; ~i&~2, PN)
N

=(II(y.~'+~'))». » (2.9a)

m=K {cl»,'+1 ~ ~ ~ F22» }

6' '(ii, i2, ,iK,iK+„,i. ) (2.14a)

in (2.4a), one obtains the expressions

(PK(Z»Z2) ' ' PK)

XII,. n „. (2.9b)
k=1 L-K+1

m=K (ZZZ
—E)!

x (P '(ii, i2, ,iK,iK+„,i ), (2.14b)

K=O {iq,i2, ~ ~ ~, iJ»,.}
(PK'(Zi, Z2, ,ZK)

XII y;, II (1—y;,) (2.10a)
k=1 L=K+1

=B(yby2)' ' ')y&i y» y» ' ' '~ y&)

Sy using the expansion

N

L K+1 {i'd+I ",i~} L=K+1

in (2.7a), one obtains directly the expressions

(PK (Zi)22)' ' ' )ZK)

%'N can be represented in terms of the (PK"s as

(t» N(yi, y2, ',yK)

4++12 ' ~, impel

for (PK(ii,i2, ,2K) in terms of the P "swith E(ziz(E.
The last product in (2.13) includes all 1V —m, intervals
not in the set il, i2, , iK, iK+1, - . , i„,. the sums in
(2.13) and (2.14a) are as in (2.11) and (2.12a), and the
sums in (2.14b) are as in (2.12b).

One can also express '%N in terms of the O'K's by using
(2.12) to substitute for (PK' in (2.10a). The resulting
relation together with (2.10a), (2.4b), (2.14), (2.7b), and
(2.12) constitute six relations among the probability
functions of the three types AN, (PK, O'K'. A probability
function of one type can be represented separately in
terms of probabilitv functions of each of the remaining
two types.

III. PROBABILITY THEORY OF COUNTING
STATISTICS

( 1)m—K

/ ~

(Pm(21&Z2, ,ZKpZK+1, ' ' ',Zm) (2.12a)

The output of an instrument for measuring the state
of an electromagnetic field by means of photoionization
processes is a signal current due to the photoionizations
which occur as a function of time. We assume this signal
can be represented as

ir ( 1)m K

m=K (ZZZ
—E)!

5(t)= Q F;(t—t;)y;, (3.1)

X
iK+1, ~ ~ ~, im=l

+m(Zi)Z27 ' ' PKPK+&2 ' ' ' |Zm) (2 12b)

1= II [y'i+(1—y'i)j
L K+1

II y' II (1—y„) (2.»)
re- E»ip t », ~ ~ ~, tr12} L~K-t" I

for (PK'(ii,i 2, ,iK) in terms of the (P 's with E&222& E.
The prime on the summation symbol in (2.11) and in
(2.12a) indicates that the sum is over distinct sets
fiK+i, iK+Z, ,i ) of 22z

—E intervals containing none of
the intervals il, i2, , iK. In the corresponding sum in
(2.12b), no two of the intervals iK+i, , i in a term
are the same, otherwise i K+1, . , i,„each run from 1 to
Ã excluding the intervals il, i~, . . .

, iK. Similarly, by
using the expansion

where y; is the random variable defined in Sec. II, and
F;(t t~) is a funct—ion defining the distribution in time
of the signal pulse contributed by a photoionization
event at time t; in interval i. Although F,(t—t;) can also
be treated as a random variable, for present purposes we
will assume it is a fixed function. The sum in (3.1)
extends over the whole time axis. [If the instrument has
I output signals, associated with different regions of the
electromagnetic field, 5(t) is an J.-dimensional vector].

Quantities of statistical interest which can be meas-
ured with the instrument are in general functionals of
S(t). A class of interesting random quantities can be
represented in terms of linear functions of products of
the signals of the type

f(t»t2, )t )

X5(ti)5(t2) . 5(t„)dtidt2 .dt.„, (3,2).
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V&=Q A;y;, (3.3a)

Vs=2' A'~y'yt+2 A'yt (3.3b)

Vs= Z' A;,sy;y;yi

where f is a suitable function of ti, ts, , t .For example,
the integrated signal JI+rS(t')tlt' and its products
fall in this class, as do various time-correlation func-
tions and Fourier transforms, such as J'S(t')S(t'+r)dt',
J'J'e'"'S(t')S(t'+ ~)dt'dr, and their generalizations.
The function f represents an operation applied to the
signal to extract from it information such as the number
of photoionizations within a time interval, the correla-
tions between photoionizations at different times, or the
power spectrum of the signal. Thus, f could represent
the eQ'ect on the signal of a photocounting circuit, a
delay line and coincidence circuit, or a spectrum
analyzer. Using the idempotent property y =yi of y;,
we find for s= 1 2 and 3

&I i &2~ ' ' '
s Sm=&

3'iIyi2' ' 'yim ~ (3.7)

where the prime indicates that terms with ~j, i ~, , i
not all distinct are omitted. The result (3.7) is evident
from (3.3) for ttt=1, 2, and 3 when (3.4) is specialized,
and is readily proved for general m by induction. Only
products of degree nt occur in (3.7). This simplifying
feature does not hold in general. For example, the
generalization of tt(" =tt(tt —1) is, from (3.3),

V.-V.=Z A;;y;y,+Z(A';-A )y;. (3.g)

single rectangular pulse function is unity inside the
interva, l l. to t+T and zero outside. When the signal
pulse is then represented by a delta function, F;(t—l;)
= 8(t t;—), it follows that (3.4) yields (3.5). A function of
tt(t, t+T) which has a relatively simple form when ex-
pressed in terms of the y s is the tnth factorial moment" "
of tt= (l, t+T), the random variable ts( l=—ts(ts —1)
X (tt —hatt+ 1). It becomes

+Q'(Ai j+iA,ji+A ji,)y,yj+2 Ai, iyi, (3 3c)

where the sums are over all intervals, the primes denote
that only terms with no summation indices alike are
included, and

$]$2i ~ ~ $~A. .

XF;,(ti' —t;,)F; (ts' —t;,)

XF,„(t„'—t;„)dt,'dt, ' . dt„'. (3.4)

It is apparent from (3.3) that the mean of any V with
respect to the distribution of the y s, given by (2.3), is
expressible as a linear combination of the (Px's of (2.4)
with X=1, 2 . n.

In the rest of this section, we con6ne our attention to
a model for an idealized photoelectrots cogttter obtained
when the values of the A's of (3.4) are given by

Prob(Vi) = (5(Vi—g A,y;))(„,.». (3 9)

For the idealized photoelectron counter case, where
Vi ——n(t, l+T), the probability Prob(Vi)=—P„(t, t+T)
becomes, according to (3.6) and (3.9),

In (3.8), A;;—A; does not vanish in general.
It may be worthwhile noting that when F;(t—t;)

= 8(i—l;), the signal integrated over the ith interval is
simply the random variable y;. This allows the definition
(2.4) of the basic probability (P„(ii, ,i„) to be inter-
preted as a mean value of a product of e integrated
signals, one over each of the intervals i~, i2, , i .

So far, the discussion in this section has been mainly
in terms of random variables. We now consider averages
with respect to the y's of functions of the V„'s in order
to represent observable quantities. For our purposes, it
is sufhcient to 6nd the probability function for V& of
(3.3a) which is given formally by

il&2" 'inA
0

t&t,„t;„,t;„&t+T,

otherwise.
(3.5)

P.(t, t+T)=(8., p y;)(„,l

(P„'(ii,is, ,i~)

The tlth power of ts(t, t+T), the number of photoelec-
tron emission events in the interval t to t+T, is then
given by U,„, so that V& yields

( tl ~s2s ~ ~ ~ |ass(

Z'
~I g1 g2 ~ ~ ~

(P„'(ii,is, ,i ), (3.10)

tt(t, t+T)= P y;. (3.6)

Time delays are neglected as a consequence of the choice
(3.5). The choice (3.5) for A;„;...;„can be realized, for
example, as follows. The mth power of the integrated
signal Jti+r S(t')Ck' is given by U when f is a product
of m rectangular pulse functions, one for each t; in f; a

which is the probability of exactly e photoionizations in
the interval t to t+T. Note that the natural definition
of P (t, t+T) is in terms of the exclusive probability
function (2.7) rather than in terms of the nonexclusive

"M. G. Kendall and A. Stuart, The Ad7Jenced Theory of
Statistics (C. GrifBn and Company, Ltd. , London, 1958)."S. S. Wilks, Mathematt'cat Stattstics (John Wiley 8z Sons, Inc. ,
New York, 1962).
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(P„(ig,z), ,i )(u —1)"
m=0 fsI, s2, ~ )szzsJ

t+T t+T

zo (t),t), ,t )

(u —1)"
&&dtgdtz . dt~ —, (3.11)

m!

derived from (2.8): G(u) = g(u, u, ,u; 1,1, ,1)
expression involving (P follows directly on expanding

II L1+y'(u —1)]
t=—1

probability function (2.4).It has the generating function
N

G(u)= P P.(t, t+T)u"

(3.12) is just (n& ~)!„,.!.The counterpart for (n&~~)~„,!of
the fact discussed following (3.7), that nt"' contains
only products of degree m, is that (n&"')t„,.} contains
only wz(t&, tz, .,t&)'s with E=m. This is to be con-
trasted with the fact that in (3.12) P„(t, t+T) depends
on all wx(t~, tz, ,tx)'s with K&n and that in (3.13),
(n'"')(„,.} depends on all P (t, t+T)'s with n&m.

Thus, it has been shown how expressions for quantities
of experimental interest such as (n™){„,.

~ may be given
very simply in terms of joint photoionization proba-
bilities. The use of joint photoionization probabilities
has avoided any unnecessary statistical assumptions
and the introduction of any physical approximations.
In Sec. V the approximations used in Sec. IV to relate
the joint photoionization probabilities to correlation
functions of the electromagnetic field are applied to the
results of this section. It is to be noted, however, that
the results of this section are general enough so that
they can be applied to situations where the approxima-
tions of Sec. IV break down.

( 1))))—))

—+ —p
n! =o (m —n)!

t+T

t+T t+T

w~(t~)t)) )t~)dt~dt2 dl~. (3.12)
t

This result is also obtained by substituting (2.12b) into

(3.1p). An expression for the mean with respect to the
y's of the mth factorial moment (3.7) can be derived

as follows using G(u):

(nt"~)fy. ) = Q P„(t t+T).=0 (n —nz)!

=(did )"G( )I =~

in powers of I—1. The arrow indicates passage to
the continuous limit. The last expression yields im-

mediately an expression for P (t, t+T) in terms of the

zo)))(t))tz) ' ' ')t)))) s

d )))
P„(t., t+ T)= —

I
G( )—I. o

n! du)

IV QUANTUM THEORY EXPRESSION FOR
W& (t)) t)) ' ' '

)tK)

We will now obtain a quantum-mechanical expression
for the joint probability wz(t&, tz, ,t&)At&At) At&
that photoionization events occur in the intervals t~ to
t)+t))t), tz to tz+ At), and trr to trr+t) ter. Here, all the
At's are positive and t,&t; )+At; ~', we order the times
for convenience in the derivation. First we introduce a
formal expression for this probability.

For the single time interval t, , t,+ t) t;, we shall assume
that the probability for a photoionization to the lth
(measurable) photoionization state of a detector when
the system at time t, is in state

I t;) is just the absolute
value squared of the amplitude

(4.1)

for the compound event that the 1th photoionization
state is unoccupied at time t; and occupied at time
t,+At;, that is, that the lth photoionization state becomes

occupied in the interval t;, t;+At;. In (4.1)

A,)=P)U '(t;+At;, t,)(1—P(). (4.2)

Here I'~ is the projection operator for the lth photo-
ionization state, and with 5= 1,

f sI)&2) . ) smJ l=l
U-~(t', t) = exp L

—ice(t' —t)] (4 3)

&& II (y',u+1 —y'.))~.'~ I-=~

f s1)s2) ') san)

(P„(ig,iz, ,i )

t+T t+T t+T

'WN)(tl)t2) ' ' ' )t))))

)(dtzdtz dt . (3.13)

Alternatively, (3.13) follows immediately on averaging

(3.7) with respect to the y's. Note that- the integral in

is the time evolution operator for the system between
the times t and t', where K is the Hamiltonian of the
total system of detector, electromagnetic 6eld, and
sources. An extension can be made to take account of
the probability f& that, if the detector is in the lth
photoionization state at time t;+At;, the photoionization
is actually measured. This could be done simply by in-

serting the factor f)) in (4.2).
The amplitude analogous to (4.1) for the multitime

probability, corresponding to a sequence of such com-
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n;(t=—Q A;tenet',
I,

(4.7)

where 0 is an arbitrary operator. This allows us to
express the relation between p(tc) and p(t;+At;+) as

p(t'+At'+) = (t'p(t'), (4.8)

taking into account transitions to all measurable photo-
ionization states. In a similar manner, to replace 8;, we
introduce a superoperator ;. This operator relates
p(t; i+At.; i+) and p(t;) in the following way:

p(t;) =S;p(t;,+at, ). (4.9)

Introduction of the superoperator ; is done for more
than reasons of formal simplicity; we are going to intro-
duce an approximation for (9; which cannot be simply
expressed as an approximation in terms of 8;.A formal
expression for the multitime probability for transitions
to all measurable photoionization states is then

B)K(tl)t2) ' ' ' )tK)AtlAt2 ' ' ' AtK
=Tr SKSK SsSiSip(0) . (4.10)

We now make the following assumptions concerning
the nature of S;. (1) The density operator for the total
system of detector and electromagnetic field together
with its sources (by sources we mean here all systems
other than the detector which interact with the field)
is assumed to be given at time t; by

P(t') =Pn(0)PK+s(t ') . (4.11)

In other words, just before the interval of interest, we
assume that the density operator of the total system is
a product of the density operator pD(0) of the detector
and the density operator ps+a(t;) of the electromagnetic
field together with its sources. (2) The density operator
pcs(t;) is assumed to be given by

p~+s(t') = exp( s&K+sft' —(t +~t-—i)&)
XTrD p(t i+Dt,+), (4.12)

where ZF+8 is the Liouville operator for the electro-
magnetic field plus sources and Tr~ indicates trace with
respect to the detector variables. This amounts to the

pound events, is then given by

~
tK+AtK+) =~KtK&K ~slsfl2~1l)fl1

~
o) ) (44)

where 8; is the time evolution operator which relates
~t; i+At; i+) to ~t;) and where fori=1, ~t; i+At~i+)
= ~0), the state at time t=0

The multitime probability is now expressed in terms
of a trace of a density operator as follows:

wK(till)tsls) ' ')tKlK)AtlAts ' t-)tK

= Trp(tK+i) tK+), (4.5)

where the density operator p(tK+htK+) is given for the
amplitude (4.4) by

p(tK+AtK+) = ItK+AtK+)(tK+AtK+I. (4.6)

We also introduce in place of A, ~ a "superoperator"
g; given by the following identity:

assumption that the time development of the density
operator of the electromagnetic field plus sources be-
tween intervals t; to t;+At, takes place independently
of the detector. In other words, the detector has a
negligible eGect on the temporal character of the Geld
compared with the e6'ect of the sources. The assump-
tions (1) and (2) are equivalent to assuming that

S;=pn(0) expL —iZF+s(t; —t; i—At; i)] Trn. (4.13)

Two other simplifying assumptions are also introduced.
(a) The density operator of the detector pD(0) is assumed
to be one corresponding to some equilibrium ensemble,
and in particular, an ensemble in which the probability
of photoionization states is negligible. (b) It is furthei
assumed that the initial density operator of the system
can be written as

p(to+~to=o) =ps~(0) pK+s(0), (4.14)

where pcs(0) is an appropriately chosen initial density
operator for the field plus sources.

Before proceeding further, it is worthwhile to mention
that assumption (1) and the assumption that pn(0) is
an equilibrium ensemble density operator are familiar
ones in the statistical theory of the time development of
large systems. Pauli" was one of the first to use these
statistical assumptions when he introduced the re-
peated-ran. dom-phase assumption (rrpa) in deriving the
master equation. Wangsness and Bloch" modified the
rrpa to apply to interacting systems, a problem analo-
gous to the present problem. These assumptions have
been found to be justiGed under certain conditions by
approximating the correct dynamical equations. This
justification has been given by Van Hove" for the
master equation and by Argyres" and Argyres and
Kelley'4 for the system studied by Wangsness and
Bloch. It is not the aim of the present paper to justify
these assumptions for the problem studied here, but
only to appeal to their physical reasonableness.

With regard to assumption (2), our treatment does
not explicitly take account of modiGcation of the Geld
distribution engendered by the presence of the detector,
particularly in the region of the detector where, for
example, one may expect attenuation by the detector.
We assume that this modiGcation can be adequately
approximated by selecting an appropriate "effective
volume" of the detector within which the action of the
unmodified field is confined. This "effective volume" is
related to the damping length of the fieM inside the
detector. It should be noted that the modification of the
spatial dependence of the field in the region of the de-
tector does not contradict the assumption that the Geld

"W. Pauli, Festschrift sam 60 Gebnrtstage A. Sommerfelds
(S. Hirzel Verlag, Leipzig, 1928), p. 30."R.K. Wangsness and F. Bloch, Phys. Rev. 89, t28 (1933).~1.Van Hove, Physica 23, 441 (1957)."P. N. Argyres, Proceedings of the Eindhoven Conference on
Magnetic and Etectric Resonance and Retaxation) edited by J.
Smidt (North-Holland Publishing Company, Amsterdam, 1963),
p. 555.

n P. N. Argyres and P. L. Keiiey, Phys. Rev. 134, A98 (1964).
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just outside the detector is determined to a high degree
of approximation by the sources alone.

As a consequence of assumption (a), the second P) in
the definition (4.2) of A, i drops out, since it acts on

pz&(0). Using this fact and (4.11), we rewrite (4.10) in

the form

wzr(ti, tp, ,tzr) Atilt p where

3Ci(t) =Xz'+&(t)+Xz& &(t), (4»)

Here Zp ——Zz&+ZF+s is the I.iouville operator corre-
sponding to BCO. ZD is the detector part of Zo and ZF+8
is the field-plus-source part. Furthermore, we write for
the part of Xz(t) which is linear in the fields

=Tr + T[g TrD(RS(t, +At;, t;)pD(0) Xz&+&(t) =Q drC„&+&(r, t)A„&+&(r,t). (4.24)

(Ro= Q P)OP), (4.16)

S(t' t)0= U-'(t' t)t&U(t', t), (4.17)

8 being an arbitrary operator. In (4.15), TrF+s indicates
a trace with respect to the field-plus-source variables,
and T indicates time ordering with later times to the left.

The time development of the total system during the
intervals t; to t,+At, is now approximated. It is assumed
that the interaction between the 6eld and the detector
contains only terms linear in the creation or annihilation
of photoionizations. The time development operators
are expanded as a power series in the interaction Hamil-

tonian, and only the linear terms in the interaction
Hamiltonian are retained, the higher order terms being
neglected and the zeroth-order term vanishing when the
projection operator (R is applied, because the time de-

velopment operator to zeroth order does not produce
photoionizations. On expanding U+'(t', t) to first order,
the following is obtained:

U*'(t', t) = U,+'(t', t)+ U,+'(t', t),
where

Up+'(t' t) = exp [mix p(t' —t)];

(4.18)

(4.19)

and

Ui+'(t', t) = i exp( —iXpt)F(t', t) exp(iXpt'), (4.20a)

Ui '(t', t) = —i exp( —iXpt')F(t', t) exp(iXpt) . (4.20b)

Here 3C=3Cp+3Cz, where Xp is the total Hamiltonian

except for the interaction term between the field and the
detector, and 3CI is the interaction Hamiltonian. The
sources are assumed not to interact with the detector.
Also, F(t', t) is given by

F(t', t) = d~3Cz(~), (4.21)

where

Xz(~) = [exp(iZp~) Xz]
=exp(iXp7)Xz exp( —iXp7) . (4.22)

Xexp( iZ—F+s(t' (t—-i+~t; i) })]pF+s(0)~ (4 15)

Here we have expressed 8; in terms of R and the super
time evolution operator S(t', t) defined by

C&+) and C& ' are detector operators which create a
particle in one state and annihilate it in another. A &+)

and A& ' are, respectively, the positive and negative
frequency parts of the vector potential operator.

Substituting (4.20a) and (4.20b) into (4.15), we obtain

wzr(ti, tp, . ,tzr)dtiAtp

TrF~s Trz&(P')~F(tzr+ Dtzr, tzr) pz&(0)
l1, l2, ~ ~ ~ , LK

XTrD . [P),F(tp+lU2, tp)pz&(0)

XTrz& {P&,F(ti+t) t), ti) pz&(0)pF+s(0)

XF(t,+t) t„ t, )P„}P(t,+at„ t,)P„]
XF(tzr+Dtzr, tzr)P) iz. (4.25)

The integral denoted by F(t+dd, t) becomes on
integration

( -exP(i(Zz&+ Z F+s)At) 1-—
Fp+la, p=~ —— — Kr(p). (4.26)

z(ZD+ ZF~s)

The dominant contributions to the multitime proba-
bility come from singularities in the P's associated with
vanishing energy denominators.

To separate the field-plus-source variables from the
detector variables so that the traces can be taken inde-

pendently, we introduce the following approximations
with the eventual result that the square bracket in
(4.26) depends only on detector variables. We replace
ZF+s by ZF in the square bracket term of (4.26), in
other words, approximating ZF+g to zeroth order in the
interaction between the field and the sources. The pro-
jection operator Pi operating to the left of F, and pD(0)
operating to the right give rise to positive matrix ele-

ments of the Z~ operator in the square bracket term.
In other words, when matrix elements are taken, ZD
becomes the energy of the detector in a photoionization
state minus the energy in a nonphotoionized state, a
positive quantity. ln order for P to give rise to a singu-
larity in energy, the matrix elements of its argument
20 must vanish. For Zo to vanish, the matrix elements
of ZF must be negative since ZD is positive. This will

occur only when the term in square brackets operates
on the positive frequency part of the vector potential
operator in the interaction Hamiltonian. We further
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replace Zp by —coo, oro being the average frequency of
the radiation field. This is the approximation that the
radiation field frequencies appearing in the terms in-
volving detector variables can be replaced by some
average frequency of the radiation field. Since the
interval ht will be of the order of the electronic correla-
tion time r, of the detector, the approximation of re-
placing Zp by —oro is valid provided herr, «1, where her

is the bandwidth of the field. Using the above approxi-

mations, we obtain

PgF(t+At, t) =P dr'A „&+&(r',t)

(-exp(i(Z» —cop) Dt) —1-
XP&i

i(Zg& —Mo)

and using similar arguments

t' exp-(i(Zr)+coo) t& t) 1-—
F(t+t&.t, t)P&=P dr~

)) ~ z(cCD+Mp)
(4.28)

Substituting (4.27) and (4.28) into (4.25) and disentangling the field operators from the detector operators, we
obtain for the multitirne transition rate

WX(tl)t2) ' ' ')t&r) =
K

dr) drxdr&' dry'(g X„,.„,. (r;,r ))

where

)))" ))x,)))""))x'(rdl ' ' ' rx4'r& t) ' ' rz' t'x), (4.29)

x X
G& '„,...„„,. .„(r,t.. .r t; r, 't, , ,r 't )=Trr+s{pr+s(0)Q A„,&&(r;,t;)7. g A„,.(+&(r,t;)}, (4.30)

t' -exp(i(Z» —a)0)At) —1-
X„„(r,r') =—(ht) —'P Tr» P&~

I, i(g» —(go)

exp(i(Zg)+a&0) LU) —1-
Xps&(0)

Z(Z&&+(00)

In (4.30) T indicates time ordering with later times to
the right in the 6rst product and later times to the left
in the second product. Note that with the introduction
of time ordering we may drop the restriction on mg that
|!;(t;+1.Ke have used the fact that the detector time
development operator exp( —iXDt) commutes with

p»(0), 2», and the P's to eliminate the time dependence
from the C operators in obtaining (4.31).The multitime
transition rate has here been expressed as integrals of
products of detector terms and a term due to the 6eld;
it has the form suggested in Sec. II, (2.6). G(x& is the
Green's function or correlation function for the field
and its sources.

The multitime transition rate can be expressed alter-
natively as

(4.30). Also, OR(t) is given by

drdr'X» (r, r')

XA„~-&(r,t)A„&+&( ', t) (4.33).
The correlation function X».(r, r') is Hermitian and

OR(t) is non-negative, facts used in Sec. V. The Hermi-
ticity property, X» (r, r') = X„„(r',r)*, is seen to follow
d&rectly from (4.31) when the trace is written in the form

Trr&(~ '(r )P )tp (0)(J (r)P ) (4.34)

where

( exp(i(Zr)+(vo)t&t) 1—
z(zD+~, )

(4.36)

WK(t1)t2) ' ' ')tx)
=Trz+spp+s(0).V{OR(ti) OR(t2) ' ' OR(t&r) } (4.32)

Also, the operator OR(t) can be written in the form
by rearranging 4.29. Here E indicates the normal
product where all the A( 's lie to the left of all the »r ««)P)'p (0)(O"(t)P),
2(+)'s and, in addition, the time ordering occurring in
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where

X(t)=Q drJ„(r)A„& &—(r,t) . (4.37)

Consequently, BR(t) is non-negative in the sense that it
is a non-negative number if A ' &(r,t) is regarded as an
arbitrary complex field function; also TrF+spr~sKi(t) &0.

- In Sec. V and Appendix 8, use is also made of the
assumed lattice translational symmetry property,
X» (r+R, r'+R ) =X» (r, r'), in case the photo-
emissive surface is a crystal and R is one of its primitive
lattice translation vectors.

Finally, as a consequence of assumption (a), we may
rewrite {4.31) as

sin((Zi&+coo) ~id')
X» (r,r') =g Tr» p»(0)

~

At C.' '(r) lP« '+'(r')
{2t&+Mp) 2 L& t

=2s'Q Tr»(pD(0)(b(Zi&+o)o)C„' —
&(r))P&C„.+'(r')),

(4.3S)

(4.39)

where we have assumed in the second expression that

siil((Zi&+No) 2 Dt)

(CD+coo) ',At-~ 2~t&(zI&-&&-(uo), (4.40)

r (K)G p&r pi px (riti rxtx r] t], ' ' fx tx)~ ~ ~

=Trppp(0) g A„~ &(r;,t,)g A„; '~+&(r,t,), (4.42)

making use of the assumption that At& 7. We now recall
that the condition of Sec.II that, at most, a single count
occurs in a subinterval was expressed by the inequality
At((R ', where R is the counting rate. Thus, for the
derivation of Sec. II and the present quantum-mechani-
cal derivation to be valid, the inequality .R ))r, must
be satisfied. This inequality is generally not difficult to
satisfy in practice.

Thus, we have seen that the multitime transition
probabilities can be related to correlation functions of
the positive and negative frequency parts of the electro-
magnetic field. We note that these correlation functions
are expectation values taken in the system of 6eld and
its sources, since the 6eM operators A &+~ and A & ' evolve

according to the dynamics of the interacting system.
We now discuss an assumption made implicitly by

other authors and which is of far reaching consequence.
The time evolution of the 6eld operators under the full

Hamiltonian of 6eld-plus-sources is replaced by the
evolution under the field Hamiltonian alone. In other
words, we make the replacement

A„&+&(r,t) = exp(i&Fyst)AI, '+ (r)
—+exp(inert)A „'+'(r)=A„"+'(r,t) . (4,41)

The correlation function G&x& of (4.29) is then replaced

by one of the same form

since LA'&+&(r;, t,),A'"&(r, ,t,))=0. Similarly, (4.32) is
replaced by an expression of the same form in which
A„~ &(r,t) and A „&+&(r', t) in the definition of SZ(t) are re-
placed by A „'& &(r,t) and A „'&+&(r',t), and in which pp~s
is replaced by pp and Trp+& is replaced by Trp. There
thus results a description of the multitime transition
probabilities in terms of field-correlation functions (4.42)
involving the free development of the electromagnetic
6eld. The correlation functions used by Glauber, '
Sudarshan, ""and others are of this type. A question
which remains unanswered is under what circumstances
and how this simplification can be justified.

The discussion up to this point has concerned the
calculation of photoionization probabilities for a single
interval t to t+ T. The result can be extended to include
the average photoionization probabilities for a number
of intervals of length T by appropriately redefining
pF+s(0) to be the average of the initial density operators
of the intervals. In the case of a nonstationary density
operator the average density operator will be, in general,
different from the density operator at any one time.
This point is discussed further in Sec. V.

V. QUANTUM THEORY OF COUNTING STATISTICS

We proceed now to evaluate (3.12), {3.11),and (3.13)
for P (t, t+ T), G(u), and (n ' &) [„,.& in terms of an explicit
quantum-mechanical expression for u„&,(t it ,2, t),
namely, (4.32). Then (3.13) becomes

(u' ') -+»F~spr+stl& (K"), (5.1)

where the subscript {y,) has been suppressed, and the
argument of p F+s has been dropped for simplicity; (3.11)
becomes

~m(u ])m
G(u) —+ Trz+spi+sX

in which the A&+'s are replaced by A'+)'s, pF+s is
replaced by pp which does not depend on source
variables, and Trp+& is replaced by Trp. The time
ordering operator 'I' of (4.30) is.no longer necessary

-Trrpspr+s&{expL(u —1)X)), (5.2)

(53)

and (3.12) becomes

P.(t, t+2")~ »r+sps+sN((Ot"jn!) exp( —X)),
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where

+=X(t t+2')= 5K(t')dt', (5.4)
k, k'

= ÃR&r

kk' k 0'k' ) (5.10b)

(5.10c)

and ~(t) is given by (4.33). The quite general expres-
sions (5.1), (5.2), and (5.3) have an appealing simplicity.
The quantity in braces in (5.3) is an operator with the
form of the Poisson probability distribution for e counts
in the interval (t, t+T), with the operator X represent-
ing the mean number of counts in the interval. The
quantity in braces in (5.2) is the corresponding Poisson
distribution generating function operator.

These expressions can be evaluated further most
simply by using the "coherent state" representation of
the Geld (see Ref. 13, particularly Sec. IX).To proceed,
we make use of the simplifying assumption (4.41) re-
garding the time evolution of the 6eld operators. Then
pp+8 is replaced by pF and Trz;+& is replaced by Trr, as
in (4.42). For simphcity of notation we shall, however,
henceforth drop both the prime on A„'&+i(r, t) of (4.41)
and the subscript I' on pp and Try. Expressed in the
coherent state representation, p has the form

II( -'d' d'P.)l{ j)({ }lpl{P})({P}I

where the coherent state I{n}) is an eigenstate of
A&+&(r, t)

with

8@i.'= 2Ac (&0p&0y ) dt' d1'dr'

X Q X (r I')Qi (r)*gi ~ (r')e'&"~""'i' (5 11)

On using the mode expansion (5.8) in (5.10a), one ob-
tains (5.10b) which is written in matrix notation in
(5.10c). The matrix g is Hermitian and non-negative
definite, as a consequence of the Hermiticity of X» (r, r')
and the non-negativity of OR(t) proved in Sec. IV. One
sees that the time integral in (5.11) can be evaluated
immediately, and that the diagonal elements of Q are
proportional to T.

Assuming 6&d/a&o«1, where &00 is a central frequency
and A&a is the bandwidth of the field I see the discussion
after (4.26)), we can approximate (~irui, ) '" in
(5.11) by (~&~i, )'i'/&eo'. In this way, Ke can be
expressed in terms of eigenvalues 8({n},r, t) of the
positive frequency part of the electric Geld operator
8&+i(r,t)=c '(8/Bt)A&+)(r, t)

A'+'(r, t)l{ j)=+{},r,t)l{ j)
({ }IA' '( t)=@({}, ,t)*({}I.

In terms of the mode expansion for A&+ (r,t)

(5.6a) &t& = (c'/~0')

(5.6b)

dt' drdr' P X„„(r,r')

&& $„({P},r,t')*h„({n},r', t') (5.12)

P„~ i/2

A&+~(r, t) =Q aalu~(r)e ' "
207k

the eigenvalue

yi,c'y 'n
&({o},r, t) =2

I
~~ui, (r)e '""

(5.7)

(5.8)

rather than in terms of the $({n},r, t)'s.
Equations (5.1), (5.2), and (5.3) yield special cases of

(5.9), with f(x) =x, e'" "*,and x"e */e!, respectively.
If, in the coherent-state representation, p is repre-

sented entirely by diagonal matrix elements

({ }Ipl{p})=({}I I{ })II&"'( —p) (5.13 )

is given by replacing each mode annihilation operator
ak by its eigenvalue, the mode coordinate ek. The set
{n} of all mode coordinates thus characterizes the then
coherent state

I {n})and the eigenvalue (5.8).
In the coherent-state representation, we then have

=&({~})II~'~"'(~~—p.), (5.13b)

&({~})l{~})({~}III d'~a. (5.14)

TrplV{ f(BZ)}= II(~ 'd'oid'P )

where f(x) is some function of x and

The representation (5.14), in which p is expressed as
an incoherent superposition of coherent states, is called

{p})({p}I { j)f(~ ) (5 9) the I representation by Glauber. " Sudarshan has
shown" "that any p can be represented formally in the
p representation. However, this requires in some cases
that the P({n})in (5.14) be highly singular. In particu-
lar, this is clearly the case when the number of photons

l4r represented by p is bounded, for then the sums in Eq (6).
of Sudarshan" are finite, and E({n})involves deriva-

Xg ({p}r ti)sg, ({~}p t~) (5 10a) tjves of ti functions. Such highly singular P({a})'shave



f(u) W(v) dv, (5.154)

where

W(v) = 5(v —dI .)P({n))gd'n„(5.16)

and (5.3), (5.2), and (5.1) simplify correspondingly to

P.(t, t+ T)= e "W(v—)dv-,
p S ~

(5.17)

no classical analogs, "and p may then be more usefully
described in the more general coherent state representa-
tion of (5.5).

On using (5.14), (5.9) reduces to

surface. This correlation function deals with two prop-
erties of the detector not treated in the earlier deriva-
tion' of the compound Poisson distribution. It takes
account of spatial correlations in the detector, which

may be characterized conveniently by a detector cor-
relation length. Also, it takes account of the region in
the detector in which the 6eld effectively acts. These
properties are examined in some detail in Appendix B.
In the form given by (5.12), X reduces ton Jt'+r I(t')dt'
for small enough detector correlation length and small
enough effective detector volume so that 8, given by
(32), is expressed by (812) and is effectively a constant.
Here nj +r I(t')dt', in the notation of Ref. 9, denotes
the intensity at the detector surface integrated over the
interval t to t+T multiplied by n, the quantum sensi-

tivity of the photodetector.
We now examine properties of P„(t, t+T) for some

particular P({n})'s.
Coherent field. If p represents a pure coherent state

~ {n)), generated perhaps by a single coherent source,
then

e'" ""W(v)dv (5.18) P({n'))=$1 5"'(ni' —ng) (5.20)

(n [m] )— v W(v)dv. (5.19)
W(v) = 6(v —".R ), (5.21)

The probability P„(t, t+ T) is thus a compouttd Poissott
distnbutioe, ""some general properties of which are
summarized in Appendix A.

The case of a field generated by a prescribed source is
treated by Glauber. " Equations (5.15)—(5.19) apply
also in this case provided K is replaced by X . The
latter is obtained from BT, , as given by (5.10a), by re-
placing n& by n&+n&(t'), where n&(t) is a function of time
determined by the electric current distribution source,
and is given by Eq. (9.21) of Ref. 13.Thus, P„(t, t+T)
is a compound Poisson distribution when the Geld is
generated by a prescribed source, as well as when the
field moves freely, the latter having been assumed in
deriving (5.17)—(5.19).

The compound Poisson distribution has been obtained
by Mande19'0 for the photocounting problem using
other methods described in the Introduction. Note that
it is not simply ensemble averaging which gives rise to
the compound Poisson distribution. Even in the absence
of ensemble averaging, P (t, t+T) is not a simple
Poisson distribution unless the nonstatistical state is
also a coherent state. An example of such a noncoherent
state is an eigenstate of the number operator of the field.

The variable K, with respect to which averaging
occurs in the compound Poisson distribution (5.17),
contains the correlation function of the photoemissive

"See Ref. 13, footnotes 11 and 15.
"W. Feller, An Intvodgction to I'~obcbility Theory end Its

Apptications (John Wiley tk Sons, Inc. , New York, 1957), 2nd ed.
s'Emanuel Parzen, Stochastic Processes (Holden-Day, Inc. ,

San Francisco, 1962).

and P,„(t,, t+ T) becomes simply the Poisson distribution

P„(t, t+T) =v"e "/rt! (5.22)

with v=K
A coherent state is a special case of a pure (non-

statistical) quantum state of the field ~). It is note-
worthy that the distribution P„(t, t+T) does not have

any simple form, such as the form (5.22), when p repre-
sents a general pure state of the field p=

~ ) (~. This can
be seen by using p=

~ )(~ in (5.9).
Equation (5.20) is an appropriate choice for the

density operator of a coherent field when the initial
state is known. It is unnecessary to include explicitly
the distribution of over-all phase, since the distribution
of over-all phase does not affect the Beld-correlation
functions. "For many types of experiments in particular,
for a typical photoelectron counting experiment, the
measurements are not performed by repeatedly return-

ing the system to a known initial state (apart from the
arbitrary over-all phase fa,ctor). A coherent field evolves

with time from one coherent state to another. Which of
these coherent states the 6eld happens to be in at the
initial time of any counting interval is unknown in the
ordinary counting experiment. Consequently, an ap-
propriate density operator for such an experiment on a
coherent field is not a coherent-state density operator,
but rather some average of the coherent-state density
operators through which the IIield evolves with time.

Field with ampHtudes irtdepertdertt of phases (the product

"See Ref. 13, Sec. X.



= g C22,e 4(4—8—48)
k, k'

(5.28)

obtained from (5.10) by inserting n3=
I
a3

I

e'4'. In (527)

(5 23) and (5.28),~({ })=Q({
I I })~({4}),

I' c(lse). A density operator for the field with mode Here we have used
amplitudes distributed independently of the phases may
be useful in describing experiments involving randomi-
zation of the phases. For such a field E({n})has the
product form

with (5.29)

(5.24b)

The remaining amplitude average, determined by
Q({l(2I }),affects only the products of C's.

On assuming the product form (5.25) for E({p}),the
phase average becomes a product of phase averages of
the type

(ei(4& (5.30)
If, in addition, the mode phases are mutually inde-
pendent, then

where l is an integer. If fq is real, then 88(l)*=82(—(').

(5 25) In case f2 is given by (5.26), 8 becomes the Fourier
transform of g, assuming now that J'„"g(p)d$=1:

where the function fq is normalized according to
J32" f2((t))dp= 1. The function fq can be defined as B(l)= e"eg((t))dij) (5.31)

f2(&)= 2 g2(& 2~~)— glhen 2)8= 1, (5.27) becomes

k1,kg, ~ ~ ~ ,k23r3

t k1k~+Ick2k~+2 Ckmk2~

X(e i(ea,+48,+-" +48 48 +;48 +;"—48—2 )) (5 27)

in terms of a function g(p) defined for —~ (p( ~.
The properties (5.23) and (5.25) yield a simplification

in the expression for (n(")&, but do not appear to lead
to any significant simplification of the expressions for
G(N) and E„(t, t+ T).

To evaluate the moments (5.19) let us first calculate
the phase average of X

12

C12(e (A 42)&&++ Cll
12 1

=Q' C»81(—1)82(1)+Q Cll, (5.32a)
12

where, for clarity and simplicity of notation, a subscript
k; has been abbreviated to i. The first summ. ation of
(5.32a) has been decomposed into summations in which

no two indices are alike, indicated by a prime on the
summation symbol. The same procedure is used for
m& 1.We 6nd for the phase averaged part of the second
and third moments

(K~,')e Q' C18C——2481(—1)82(—1)88(1)84(1)
1234

+Q {(2CllC28+ 2C13C21)82( 1)88(1)+LC12C1381( 2)82(1)83(1)+H c j}
123

+p' {C11C22+C12C21+C12'81(—2)82(2)+L2C()C1281(—1)82(1)+H.c.j}+gCll', (5.32b)
12

123456 12345 1234 123 12
(+ )4 E ~3+ Z ~8+ 2 ~4+2 ~3+2 P2+2 ~1

1
(5.32c)

(5.33a)P3——C14C28C8381(—1)82(—1)88(—1)84(1)83(1)88(1),
Ii8= (3C11C24C33+6C14C21C38)82( 1)83(—1)84(1)83(1)

+(3C13C14C2381(—2)82(—1)88(1)84(1)83(1)+H.c.), (5.33b)
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&4—
I (3C]8C]4C2]+6C]]C]8C24)8](—1)82(—1)88(1)84(1)+C]2C]8C]481(—3)82(1)88(1)84(1)
+ (3C]8C]4C22+6C]2C]8C24)81(—2)88(1)84(1)+H.c.)+(3C]8'C24+6C]8C]4C28)81(—2)82(—1)88(2)84(1)

+ (3C„C„C,4+3C„C„C,4+6C„C,4C„+6C„C„C„)8,(—1)84(1), (5.33c)

F8 (3C——]] C28+ 6C]]C]8C2])82(—1)88(1)+C]]C22C88+ 2C]2C28C8]+ 3C]]C28C82

+ (3C]8 C22+6C]2C]8C28)81( 2)88(2)+L3C]]C]2C]88]( 2)82(1)88(1)
+(6C]]C]2C']"+6C]2C2]C]8+6C]]C]8C22)81( 1)88(1)+ (3C]8 C21+6C]]C]8C28)81( 1)82( 1)88(2)

+3C]2 C]881( 3)82(2)88(1)+H.c.), (5.33d)

I' 2 I
3C]1'——C1281(—1)82(1)+3C»C»'81( —2)82 (2)+H.c.)

+3C]1 C22+6C]]C12C21+C]2 81(—3)82(3)+(3C]2 C21+6C]]C]2C22)81( 1)82(1) (5 33e)

(5.33f)

where H.c. denotes the Hermitian conjugate.
Consider the case in which the f8(p') are speci6ed by

using the Gaussian functions

g8(y') = (2~~/'2) ]/zo kH&
'—44) /—~4)'—

in (5.26), Then (5.31) yields

(5.34)

A coherent state results as a special case if

Q({ I
'I })=II ]1(l]28'I —l]28 I) l488'I

Correspondingly, (X ',"")=K . The other limiting
case is the following.

Stationary fzeld The P({n}.) representing a stationary
density operator diagonal in the number representation
depends only on the mode amplitudes, " the mode
phases being distributed at random This case results
when all the f8 1/2n. . I——t is obtained in particular when
all the o 8 —& ~ in (5.34). In this case (5.25) becomes

~({4})=II(2~)

and. (5.23) becomes

&({G})=Q({ I
zz

I })II(1/2]r) (5.36)

88(l) = e"4'" '""'=8 (—t)* (5 35)

Two limiting cases are of particular interest. If all the
rj —& 0, then

~({~'})-rr ~(~. -~.) .

On using (5.15a) with f(X )=K and using the
multinomial expansion for X with K given by
(5.10b), the expression (5.19) for the mth factorial
moment of E„(t,t+T), which is also the mth power
moment of W(v), can be reduced to

(e&"))™g (g(m]2!)-]R, "2)
(~12} 1,2

&&(Q 5(p m2]] g m]2) In]I', ») ] (5.37)
1 2 2

where the sum is over all sets of (non-negative)
m8]8,™]2such that p m]2 m, w——here the h is a
Kronecker 8, and where ( ) denotes the average

" Q({ I
]21 })IId'428/2]r

It is convenient to express these results in terms of the
cumulants K, of W(]') Lsee (A1)). The cumulant Kl is
simply the mean of the distribution W(]/), while K2 is

the variance and ~3 is the third moment about the mean.
The cumulants K,

' of P„(t, t+T) are given in terms of
the cumulants K, by (A5) ~ In particular, Kl =Kl,

K2 =Kl+K2, and Kz =K]+3K2+K8. We note that Kl' ——(zz),
the mean of the distribution P„(t, t+ T), K2' = ((zz—(zz))2),
the variance, and K8' ——((zz —(zz))'), the third moment.
We have for the first three cumulants, introducing

+i p 0i= Ofi

Kl =Q $]]G]
1

E {+]1%22((c] Gl)(C2 G2))+%]2%2](a]C2)}++%11 ((al Gl) ),
12

(5.38a)

(5.38b)

8 Q {K]%22%88((a] G])(c2 G2) (C8 G8))+2%12%2894](c]azc8)+3%]]%28%82((a]=G])(czcz (czcz)) )}
123

+3 2 {~]]~22((cl Gl) (c2 G2))+2+]]%]2%2]((c] Gl)(alaz (a]a2)))}++5»'((a]—tt])'), (5.38c)
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where a prime on a summation symbol indicates as
before that no two indices are equal. Equation (5.38)
can be obtained alternatively using (5.32) and (5.35)
with all oq ~~ in (5.35) so that all B(l)=0, l/0. One
sees from (5.32) that additional types of amplitude
averages appear in general if P= QE is not stationary.

%hen the mode amplitudes are independently dis-
tributed the amplitude averages break up into factors,
and the cumulants (5.38) for a stationary field simplify
further to

«1 +lliii
I

+12+21~ii~il+Zi $11 ((iii iii) ) r

12 1

(5.39a)

(5.39b)

«3 2 Q %12%9'8%3iQ'iQ'&Q'
123

+6 2 %11+12%21((iii iii) )ii2

+Q gii'((ai —ni)') . (5.39c)

Q({lnl))=/2(u ) 'e ~ "~"&""& (5.40a)

= exp( ——',ntso)g 2(ni) ', (5.40b)

Ideally incoherent geld. An important special case of a
stationary field with independently distributed ampli-
tudes is an ideally incoherent state, generated say by a
"completely chaotic" source. " In this case, P({n)) is
given by (5.36) in which Q is given by the Gaussian
expression

=2(e)'. However, as shown in Appendix C, where a
more detailed discussion of this case is given, the general
expression

«,= (q
—1). P (u, )(n2). (n,)%i,Rg, S,i, (5.43)

i2 ~ ~ o q

for the curnulants of W(v) can be derived by evaluating
the characteristic function for W(v).

Gaussian squared ampl-itudegeld. We consider another
special case of a stationary field with independently
distributed mode amplitudes. A Gaussian squared-
arnplitude Geld is specified by

(«~2 —1/2

Q({l~'I)) =III

xexpL —l((l ~'I' —l~. l')/ )'1, (5.44)

with moments in (5.39) given by g =
I
n

I
', ((a—g)') =0',

and ((a—n)')=0. The approximation of extending the
range of integration for lni, 'I from 0&Ini, 'I &~ to
—~ & ln~'I & ~ hasbeenmadeto obtainthenormaliza-
tion in (5.44) and the moment expressions above. The
error is small if O.j,((In~ I'. Equation (5.44) reduces to
the case of fixed amplitudes when the cTk —+ 0. Note that
in this limit the cumulants (5.39) have the same form as
the corresponding ones given by (5.43) for the ideally
incoherent 6eld except that no diagonal elements of R
occur in (5.39).

As a simple illustration, for a field with only a single
mode excited (vi=0 when h/1) the mean number of
photoionizations and the mean-square deviation in the
number of photoionizations for the case (5.44) are,
according to (5.39), given by

where (rsi, ) is the mean number of photons in the hth
mode, and 8 is a diagonal matrix, Si,& =28i& ((ni)) '.
In the photon-number representation, p is given by its and
diagonal elements

n = iy Qi (5.45)

( ')—(u)'= (u){1+(I)( !I I')') (5 46)
ng "~

({u)lpl{~))=II—
((u )+1)no+i

In this distribution the mode photon numbers are inde-
pendently distributed, each with a geometric. disA ibltion
(see Appendix A). In thermal equilibrium, (ni, ) is given
by (n&) = Lexp(hcui/h&T) —1j ', corresponding to black-
body radiation.

The averages of (5.39) can be evaluated in this case
using

op '"= mng

Note that (u) may be larger than ( I
ni

I

'a i ')' despite the
condition lail'oi ')1. In this case a significant de-
parture from Poisson statistics may occur with only a
small uncertainty in the amplitude of a single mode.

Spread out coherent -state As a final exa. mple we con-
sider a simple nonstationary distribution of the mode
coordinates which can be used to represent a state of the
field in which noise is superposed on a field in the
coherent state

I {u)).It is given by

P({~'))=ll(«") '«pL —I(«' —~.)/~~l'j (547)

since the modes are independent for the P({n)) given
by (5.40). The first three cumulants are then given by
(5.39), with a= (n) ((a—a)') = (n)', and ((a—a)') «q = K q, jg 0+«g (G), (5.48)

It reduces to the coherent state field of (5.20) when the
0 & ~ 0 and to the ideally incoherent field of (5.40) when
oq' ——(ui, ) and the ei, -+ 0. Its cumulants can be found
by an extension of the derivation in Appendix C. They
are given by
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where ~, ; „ the entire contribution when all o.I, ——0, is
just the cumulant (5.43) for the ideally incoherent field
with (qst) replaced by ol, '. The additional contribution
arising when not all nI, ——0 is given by

q (o.') = qt Q (o'qo's o q)
]pe «. q+j

Xrrt %128~2'8 ' ' '+q, q+1&q+1 ~ (5 49)

Ke note finally that the examples of field density
operators discussed in this section in connection with
photoelectron counting experiments may be useful in
the theory of other types of photodetection experiments.

VI. DISCUSSION

The assumption was made in Sec. IV that free field
motion given by (4.41) together with a statistical model
of the initial field density operator can adequately
simulate the dynamical effects of a held interacting with
its sources. Concerning the statistical description, not
only do we use the choice of a nonpure case density
operator (pQ ~) (~) to represent in the customary way
our ignorance about the initial state of the system, but
we also trv to take into account in our choice of density
operator dynamical eR'ects which would otherwise be
neglected as a consequence of the free field approxima-
tion. The statistical description also might be used in
this way if the approximation of free field motion were
replaced by the less restrictive approximation, discussed
in Sec. V, that the field evolves in time according to a
prescribed current source which may be a random
variable.

The justification of the above assumption has not
been undertaken here. Justification might be given in
terms of a derivation of an appropriate set of equations
of motion of the field coupled to its sources. For example,
for the case of a maser source this approach has been
used by Grivet and Blaquiere, "Haus, ' and Lamb";
however, there does not appear to be an adequate fully
quantum-mechanical treatment of the equation of
motion problem including nonlinear effects, in particu-
lar, one which can, in general, be used to justify the
assumption used in the present paper. The assumption
of a free 6eld together with a statistical model can, of
course, be alternatively justified by its usefulness in
describing the results of experiment.

A classic application of the statistical method men-
tioned above employs the relatively simple, ideally in-
coherent field description L(5.40) in our fonnalismf to
simulate the very complicated dynamical description of
the fieM generated by a large number of uncorrelated
sources. The ideally incoherent field has been used
almost exclusively to describe fields from available
sources until recent years when laser sources became
available.

A laser field, because of its supposed high degree of
coherence, might well be represented by a coherent
state (5.20) or, more generally, by a coherent state with
"noise" (5.47). Use of a coherent-state density operator
implies that we know what pure state the 6eld is in
initially (aside from the unknown over-all phase) and
that the effect of the sources is to leave the field moving
as though unperturbed by sources. To the extent that
use of (5.47) for a laser is to represent effects of coupling
of the field to sources rather than ignorance of the initial
state, it might be assumed for a counting experiment
that the parameters of this distribution depend on the
duration T of the counting interval. Thus, (5.47) with
the a.l, 's depending on T could represent "diffusion"
away from a coherent state. If we use the Gaussian
function (5.34) in (5.26), then the distribution (5.23)
together with (5.25) and (5.26) could similarly represent
diffusion of the mode phases. This approach could be
used also if the field evolves according to prescribed
current sources rather than as if in the absence of
sources.

For an ordinary counting experiment, the discussion
of the preceding paragraph unfortunately does not
apply. This is because in an ordinary counting experi-
ment the initial state of the field is not known to the
extent that (5.20) and (5.47) would represent suitable
density operators Lsee comments after (5.22)7. More
appropriate density operators for an ordinary counting
experiment on a laser would be obtained by phase
averaging (5.20) and (5.47).Alternatively, the Gaussian-
squared amplitude random-phase choice (5.44) could
be useful.

In view of the foregoing discussion it is clear that
more detailed information could be obtained about the
held from more re6ned photocounting experiments in
which the state of the field at the beginning of the count-
ing interval is better known than it is in an ordinary
counting experiment.

APPENDIX A: PROPERTIES OF THE COMPOUND
POISSON DISTRIBUTION

The generating function G(N) for P„(t, /+ T) is given
in terms of the characteristic function

Q(s) = exp(isv) W(v) dv, (A1a)

exp(is%„)P((n))g d'rri, (A1b)

ACKNOWLEDGMENT

The authors would like to express their appreciation
to Professor H. A. Haus for a number of illuminating
discussions and for his critical comments on the present
work.

I' P. Grivet and A. Blaquiere, Ref. 15, p. 69.
~H. A. Haus, Quarterly Progress Report No. 72, Research

Laboratory of Electronics, MIT, p. 53, 1964 (unpublished).
"W. E. Lamb (to be published).

(is)'
=exp

q~l
(Aic)
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and the cumulants ii, of W(v) by

G(u) =y(i(1—u)),

(u-1) '-
=exp Q Kq

q=»

(A2a)

(A2b)

and the generating function

1
G(u)=- —

i i
1—-- u

i

1+ti) k 1+@, )
(A12)

generates a negative binomial distribution for P (t, t+ T)

It is apparent from P„(t, t+T)=(d/du)"G(u)
f

=o/n!
that. each P„(t, t+T) is a nonlinear function of all the
ii, 's. According to (5.19), the mth factorial moment of
P„(t, t+T) is just the mth power moment of W(v),
given by

r+n 1 1 p
(t t+T)

I I I
I

' (A13)
n ) 1+ti %1+tJ,)

When r= 1, W(v) is an exponentiat distribution

QO

r d th

v"W(v) dv =
i @(s)i, ,

0 kd(zs)

W(v) = ti 'e "'v

and P„(t, t+T) is a geometric distribution

(A14)

Expressions for the mth power moment of a distribution
as a linear combination of the mth and lower cumulants
of the distribution are tabulated by Kendall and Stuart. "

On the other hand, the characteristic function of
P„(t, t+T) is given by

P„(t, t+T)=
(ti+ 1)n+i

APPENDIX 8: DETECTOR CORRELATIONS

(is)'
y'(s) =G(e")= exp

q=» q~

uk, i,(r) = V-'"ek exp(ik. r)
in terms of G and the cumulants ii, ' of P (t, t+T). Con-
sequently, using (A2b) for G(u), we obtain an expression
for ~q' as a linear combination of the first q ~ s

To get some insight into the signi6cance of the matrix
Q of (5.11), let us consider the spatial integral part of

(A4) Rkk in the case of plane-wave modes

(dl'.,'= ~

—
~

in''( —iv)
kdv)

q

=Z G~t~~
j'=»

(AS)

Xvvv(riir2)

Xexp[i(k' ~ r2 —k. ri) jdridrk

where, in general,

1 d)'i
C„=——

~

(e"—1)'j! dv)

( 1)j-m
m~, (A6)

~=0 m-i m!(j—m) I

and, in particular, Cq» ——C« ——1. This is in contrast to
the dependence of P„(t, t+ T) on all the k, 's. This is also
in contrast to the nonlinear dependence of P„(t, t+T)
and (n' ') on the ii, 's. The C„'s for q&4 can be found
in Ref. 9.

We give for reference the first three factorial moments
(n& ') in terms of the cumulants k, ."

L(R, r) exp[i(k' —k) R]

R=-', (ri+r~), r= r2—ri (&3)

and the function I (R,r) defined by

rk'+k)
Xexp il

~

r dRdr, (32)
2 )

where we have introduced the center of mass and rela-
tive coordinates

(n&'~) = (n) =iii,

(n&'&) = (n') —(n) = iim+iii2

(A7)

(Ag) Also,

L,(R,r) = V ' P X„„(ri,r2)e„*e„.

(n&'~) = (n') 3(n')+2(—n) = rk+3ii2Ki+iii' (A9). Rkk' —2AC (MkMk') Skk' dt&ei(cuk uk~) t' (g3)-
W()=( I'()) '(/ )-' "'" (A10)

As a formal example, suppose v is distributed accord-
ing to a gamma distributiom Assuming now that the region where photoemissions

occur is crystalline with primitive lattice translations
R„and reciprocal lattice translations x;/2v, we observe
that

4(s)=(1—est) ', (A11) X„„(ri+R„,r2+R„)=X„„(ri,rg),
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and consequently that L is periodic in R

L(R+R„, r) =L(R,r) =g M(x;, r) exp(ix; R). (37)

.V(v.;,21) = M(v/, r) exp(iq r)dr. (88)

The last expression is a Fourier series representation of
L with respect to R. The crystalline nature of the d.e-
tector is manifested by the R dependence of L(R,r). We
also introduce the Fourier transforms

propriate dimension of the effective photoemissive
volume is much less than the differences in wavelengths
involved.

The finite spread in 0 is necessary for the observation
of beats in photodetection. B 6 were actually a Dirac
delta function, % would be diagonal, and the interfer-
ence terms between modes would vanish. The interfer-
ence terms arise because of the presence of spatial as
well as temporal beats. These spatial beats would
average to zero if the effective photodetector length
were much larger than ik —k'i

Assuming that the correlation length for M(x, ,r), the
dimension of the region about r=0 where M(x;, r) is
appreciable, is small compared to the dimensions of the
effective photoemissive volume, we may, without signi-
6cant error extend to inhnity the limits of integration
in the definition of /V(x, ,tl). Equation (32) can then be
written in the alternative forms

611i=Q M(x&, r)

(s)=-
expL —-',nt(8 —2isg) nj II d2n/,

expt 2'et8—nl II d2n,

(Ci)

APPENDIX C: IDEALLY INCOHERENT FIELD

In this case the characteristic function for W(1 ) can
be evaluated further. From (A1b), (5.10c), and (5.40b),
we have

(k'+k)
Xexp ii

—

i
«r~(~;—k+k'), (89a)

2 j

(89b)

%e next make two changes of variables: First, a change
of scale, n' =8'"n, so that the exponent of the numerator
becomes —(1/2)n't(1 —2is8 '"Q8 '/')e' and that of
the denominator becomes —(1/2)n'tn'; the second,
n'=Qn", is a unitary transformation, Q '=1V, which
diagonalizes the Hermitian and non-negative matrix

where

a(k) = exp(ik R)dR

with

(810)
so that

2=8 "%8 '",

~- =-'((N. )(N ))'"~

(C2a)

(C2b)

is a function peaked about k= 0 with range of the order
of the reciprocal dimensions of the effective photo-
emissive volume; it approaches (22r) 26(k) in the limit of
large effective photoemissive volume.

For the photodetection problem of interest here k,
k'&10'cm ', while~j~10'cm 'unless xj 0 Therefore,
only the x;=0 term contributes to the series, and (89)
reduces to

@(s)=
exp[ ——,'n'"(1 —2isZ)) e"jII d'n1"

l

exp( ——,'n"tn")II d2n/"

Q-1+/ —Q
—18—1/2+8 —1/2Q

(C3)

(C4)

—
t k'+k

S/, 1 = M(0, r) exp ii r dry(k' —k) (Biia)
2

= SLO, (k'+k)/2)a(k' —k). (81lb)

In (811) the R dependence of L does not enter, so that
the detector behaves as a continuum.

When the correlation length of M(0, r) is small
compared to the wavelengths of the 6eld, as when a
photoemission involves only an atomic volume, then
E(0, (k+k')/2) —E(0,0) and (811b) reduces to

Q1,/,
——il/(0, 0)a(k' —k) . (312)

This is practically independent of k' —k if the ap-

is diagonal, real, and non-negative. For both changes of
variables, the Jacobian for the change in volume element
is independent of the variables, and therefore cancels
between numerator and denominator. The method used
here is an extension of a method" "often used in other
contexts corresponding to the case when % is real.
Evaluating the integrals then yields

@(s)=II(1—2isr, )-, (Csa)

= fdet(1 2isZ)) $
—'—, (C5b)

=Ldet(1 —2isZ)g ', (C5c)

"U. Grenander, H. O. Pollak, and D. Slepian, J. Soc. Ind.
Appl. Math. ?, 374 (1959).



P. L. KELLER AND %. H. KLEI NER.

tr~ 2—e(t7 1) t g pts (C6a)

the Rem~" integral and the Imo. ~" integral each con-
tributing a factor (1—2isZ)t) ' '. The cumulants of
W(t) are then found from (A1c) and (C5) to be

tion (A14) for W(t) and the geometric distribution
(A15) for P„(t, t+T); p in these equations is given by

tM
= trr ——2X)r ——&nr)err.
If just two modes 1 and 2 are excited, carrying out

the convolution integral yields

(C6b)
W()=(-"- - ~-)r(~,-"), (C7)

X &tst:,)%~,~,'Rt„i„%t,,~„. (C6c)

It is apparent that W(v) and P (t, 1+T) do not depend
on the matrix P in its full generality, but rather only on
its eigenvalues.

In caseS is a diagonal, so is g, with gt, a ~r&Nt, )Rt, t,

Also, Z)=Z if we choose 0=1. The expression (C6c)
then simpli6es to a,= (q —1)!Qt, (&tst, )%rt,)'.

The characteristic function p(s) of (C5a) is a product
of characteristic functions (A11) for exponential dis-
tributions (r=1), so that W(t) is the convolution of
these exponential distributions with mean I(:~ and vari-
ance Ks. Similarly, G(N) is a product of generating func-
tions (A12) for geometric distributions, so that
P„(t, t+T) is the convolution of these distributions
with, according to (A5), mean ar' ——ar and variance
Ks =Kr+Ks. These expressions for W(v) and P (t, t+T)
could become asymptotically normal with increasing
number of modes excited, according to the central limit
theorem" but only if ~2~~.

On the other hand, when few modes are excited, one
can more readily exhibit the results explicitly for W(v)
and P„(t, f+T). Thus, the case of a single-mode excited
((et,)=0, k/1) yields simply the exponential distribu-

"Reference 19, p. 257.

where the pt =22' with /= 1, 2 determine the component
exponential distributions. The two roots Z)r and Ps of
the determinantal equation det(Z —X)=0, are, of
course, easily expressed in terms of the invariant
quantities TrZ and det&, or in terms of the invariant
quantities from (C6)

Kr =2(&i+Ps) = &ter)R»+ &~s)%ss,

as ——4(Zrs+pss)
(Cga)

) n+1

1+(1,!tas)l
(w —~s) (C9)

A detailed examination'4 "of the special case in which
the two modes represent orthogonal modes of linear
polarization of a plane-wave beam gives the results (C7)
and (C9) with pr ———,'(1+P)n and ps=-,'(1—P)n, where
n is the mean number of counts, and I' is the degree of
polarization in the notation of Ref. 34.

34 L. Mandel, Proc. Phys. Soc. (London) 81, 1104 (1963)."L.Mandel and K. Wolf, J. Opt. Soc. Atn. SB, 1313 (1963).

&Nl)%11 + (@2) Sss +2&et)&'tss)%12%sr ~ (C&b)

Corresponding to W(t) of (C7) is


