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Excitation energies for the 1s—2p and 1s—2s transitions of a hydrogen atom as a substitutional impurity in
solid argon have been calculated as a function of nearest-neighbor distance. A tight-binding treatment using
Schmidt-orthogonaljzed wave functions is used to obtain the Qrsf-order shift from the atomic absorptiotn
energies. Overlap of atomic wave functions is taken into account through terms of second order, and three-
center contributions are evaluated explicitly. The additional changes in the energies due to van der Kaals
interactions are obtained by a variational technique. Excitation energies for the 1s-2p and 1s-2s transitions
are found to be 10.6+0.2 and 12.3&0.2 eV, respectively, for a nearest-neighbor distance of 7.0uo. The former
gives good agreement with recent experimental observations.

I. INTRODUCTION

'HE higher excited states of excitons' and im-
purities' in solid rare-gas crystals seem to be well

understood in terms of the familiar hydrogenic ef7ective-
mass model. One expects this model to be less useful
for the lowest exciton states, and indeed experimental
evidence seems to confirm this suspicion. Xo wholly
satisfactory theory yet exists for the description of these
lowest excitations in the relatively "tightly-bound"
systems, or for the similar problem of low-lying im-

purity states. The present paper presents a Heitler-
London calculation for the lowest excited states of
atomic hydrogen as a substitutional impurity in solid
argon. The first-order energy is computed with the help
of a Schmidt orthogonalization procedure as discussed
by Gold. ' The van der %aals energy is evaluated using
a variational technique due to Buckingham. 4 Very good
agreement between the 1s—2p excitation energy, com-
puted for plausible values of the nearest-neighbor
separation, and the experimental work of Baldini, '
strongly supports the validity of the tight-binding
model as applied to the description of low-lying states
of impurities and excitons in the crystalline noble gases.

II. THEORY

Following Ref. 3, the total electronic wave functions
for the system, consisting of a single hydrogen atom in
an argon crystal, in the ground and excited states,
respectively, are taken to be

ground-state one-electron function for the ith electron
centered at the Ith argon nucleus. 6, is the usual
antisymmetrization operator. The excited-state hydro-
gen function is denoted by Prr and is given by

O'H= (4H —Z 5'H, rgr, )LI—Q (&H, r;)'j "'. (2)

In (2) pH is the free-atom hydrogen wave function for
the excited state, and the SH, Ii are the overlap integrals

SEx,ref AHA'rid& bHr' (3)

Hence, fH is orthogonal to the Pr;, and the total wave
function (1b) is normalized. The essential assumption
made is that overlap of the ground-state impurity wave
function with the host wave functions, and also "host-
host" overlaps, make a negligible contribution to the
excitation energy. Numerical estimates confirm this
expectation. The assumptions and approximations
involved in this procedure are more fully discussed in
Ref. 3.

In the following, fH is always taken to be the atomic
1s hydrogen function and the fr;, the solutions of the
atomic Hartree-Fock equations for the ground state of
the free argon atom. '

The first-order excitation energy is given (through
terms of second order in overlap quantities) by'

+s= +PH(rn, ~H) II II Pr;(rr;, ~r,);
IQH i where

~~=&.t+&o+&x+&r, (4a)

e= eltrr(rH, err) g g4'r'(rr„rrr ).
IQH i

Here ltn(rir, orr) is the ground-state one-electron func-
tion for the hydrogen electron, lt r, (rr„or,) is the

E.,= (1/N)EH —EH —(1/X) p Q ($„„)sE„,
IHH

IQH
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Er= ——P Q SH, r;

g r~H

g2

xl c»+ lgr, d r .(4e)

l.0

7)

with

(,„=—Q Q {(R')&P(R')sP/l (R')lg+(R )&/]}, (6)

+(~~l, lRp)s~(Ral. lza) j. (7)

In Eqs. (4) E,& is an atomic excitation energy plus a
correction term due to overlap. N= L1—Pr, (SH,r;)sj;
EH and EH are, respectively, the excited and ground-

state energies of the hydrogen atom, and E~; the one-

electron Hartree-Fock eigenvalues for the host electrons.
Eg is the so-called "Coulomb overlap" energy. CH is the
classical electrostatic potential in the crystal with the
hydrogen atom removed, CH~ is that with the impurity
and the Ith host atom gone, and RH and rH are the
coordinates of the hydrogen nucleus and electron,
respectively. Ex is the exchange contribution, and the
matrix elements appearing are the usual exchange
integrals containing excited or ground-state hydrogen
functions as dictated by the presence or absence of a
bar. Ez is a "three-center" term, and, like the others,
is more completely discussed in Ref. 3.

The dipole-dipole part of the second order, or van
der Waals, energy between a pair of atoms is given
(neglecting interatomic exchange and overlap) by'

Eg g= —C&2/~i2',
where

4
R

5 6

I'rG. 1. Plot of r times the radial wave function
for Ar 3s and H 2p.

In (5) Rts is the internuclear separation of the pair,
and in the matrix elements of (7) r, x, y, and s retain
their usual meaning as coordinates measured from the
nucleus of atom K. This expression is summed over the
crystal for hydrogen in its ground and excited states to
obtain the van der Waals contribution to the excitation
energy in a manner previously described. ' Neglect of
overlap and exchange in the second-order contributions
is a minor approximation since the second-order energy
is already only 5—10%of DE, and overlap and exchange
effects give at most a 10% change in the second-order
terms.

III. RESULTS AND DISCUSSION

Numerical computations for the 1s—2p and 1s—2s
excitation energies of Ar: H have been carried out with
the aid of Fortran programs written for the University
of Rochester IBM-7074 computer. All two- and three-
center integrals were evaluated numerically using
I.owdin's alpha-function technique. ' Calculations were
carried through for nearest-neighbor distances of 6.0,
7.0, and 8.0ep.

The normal lattice constant of argon at absolute zero
is 7.1as. Because of the smallness and relative "softness"

QA33LE I. Hydrogen-argon overlap integrals. Separations are in a0, and the interatomic axis is taken as the 2 direction.
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and 2s functions and the argon functions for a variety
of interatomic distances. It also contains the values of
S for the Ar: H system at 6.0, 7.0, and 8.0uo to empha-
size the degree of nonorthogonality for the excited
states. Figure 2 gives a plot of the H 2p-Ar 3s and
H 2p-Ar 3p overlaps.

Table II details the results of the computation of the
1s-2p energy at three nearest-neighbor distances. The
errors quoted for each of the contributions of Eqs. (4)

I
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Fzt . 2. Typical hydrogen-argon overlap integrals.
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TABLE II. Contributions to Ar: H is—2p excitation energy as a
function of nearest-neighbor distance. Numbers without explicitly
quoted error are correct to the number of significant figures given.

Term

Nearest-neighbor distance (ap)

6.0 7.0 8.0

+at
+c
+X
Er
&~ a

43.3—20.1—21.6
11.5&0.5 eV

—1.1&0.1 eV
12.0+0.6 eV

21.5—6.7—7.5
3.7&0.2 eV—0.5

10.6&0.2 eV

15.0—3.6—3.3
1.4&0.1 eV—0.2
9.4&0.1 eV

of hydrogen in its ground state and because of the close-

packed nature of the lattice, it would be expected that
the relaxation about the hydrogen atom in its ground
state will be about the same as the relaxation about a
vacancy. According to Kanzaki, "the nearest rieighbors

about a vacancy in solid argon will move inward the
order of 1% of the lattice constant. Thus 7.0as is likely
a rather good estimate of the nearest-neighbor distance
for Ar: H, and excitation energies calculated at that
value should be regarded as those theoretically "pre-
dicted. " In any event, the 6nal result is relatively
insensitive to small variations of distance in this region.

Figure 1 shows a plot of r times the radial wave func-

tion for an argon 3s function centered at 8=0, and a
hydrogen 2p function centered at R=7.0. Table I lists
the values of the overlap integrals for the hydrogen 2p

~~ l3.0—
K
lal

o I2.0K

I-
i~

0
x~ l10

IO.O—

9.0
5.0

l I

6.0 7.0 S.O
NEAREST NEIGHBOR DISTANCE ~0

FiG. 3. Hydrogen 2s and 2p excitation energies as a
function of nearest-neighbor distance.

TABLE IV. Excitation energies and blue shifts for the
nearest-neighbor distance of 7.0u0.

Excited state
2$

are computational errors arising from the expansions
and numerical integration techniques employed. The
van der Waais result is taken to give about 10%%u~

accuracy for the second-order terms. Table III gives
the same information for the is—2s energy diR'erence.
The contents of Tables II and III are summarized in
Fig. 3, where the total excitation energies are plotted
as a function of the nearest-neighbor distance. Table
IV summarizes the results obtained for a nearest-

TmLE III. H 2s exciation energy. Contributions to Ar: H is-2g
excitation energy as a function of nearest-neighbor distance.
Numbers without explicitly quoted error are correct to the number
of significant figures given.

jy
Shift

10.6+0.2 eV
0.4&0.2 eV

12.3+0.4 eV
2.1&0.4 eV

Term 6.0
Nearest-neighbor distance (ap)

7.0 8.0

~at
+c
~X
jv~
g(~

51.8—21.6—19.3
9.9a0.5 eV

--5.6+0.5 eV
15.4&1.0 eV

26.8—8.2—7.7
3.8~0.2 eV
2.2~0.2 eV

12.3~0.4 eV

17.7—3.7—3.6
1.6&0.1 eV
1;0%0,1 eV

10.9&0.2 eV

pp H. Kanzaki, Phys. Chem. Solids 2, 24 (195'I).

neighbor distance of 7.0ao. The shifts of the absorptions
with respect to those of the free hydrogen atom, at
10.2 eV, are also included for reference. The value of
10.6~0.2 eV agrees closely with Baldini's' observed
value of 10.56 eV for the erst absorption in Ar:H.
There is little doubt of the identification of this band as
the hydrogen 1s-2p transition, and hence the present
tight-binding model seems clearly confirmed as an
accurate quantitative picture of the absorption process.


