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The paramagnetic-resonance spectra of Fe'+ and Gd'+ in yttrium orthoaluminate were measured as part
of an effort directed at understanding the isomorphic orthoferrites. The low symmetry of the ion sites and
the complicated nature of the spectra necessitated the development of a special method of analysis for ob-
taining the relevant spin Hamiltonians. The method consisted of constructing directly from the angular de-
pendence of the data "anisotropy surfaces, " classical counterparts of the spin Hamiltonian, from which the
spin Hamiltonian itself could be extracted by the method of operator equivalents. The predominant term in
both Fe'+ and Gd'+ Hamiltonians was quadratic in the spin components. The fourth-order term of the Fe'+
Hamiltonian manifested very nearly cubic symmetry with the biquadratic coeKcient u negative, contrary to
general expectations. The Gd'+ spin Hamiltonian displayed no visible cubicity in the fourth-order terms. The
"preferred" spin directions as determined in the orthoaluminate were compared with the observed spin
configurations in the orthoferrites, and with the predictions of crystal-field calculations based on the ion
position parameters of GdFe03. Correlation was very poor in both instances. No conclusive explanation of
the discrepancies is at present available; the most likely explanation involved differences in the local crystal
distortions between the orthoaluminate and the orthoferrite.

I. INTRODUCTION
' 'N recent years a great deal of progress has been made
- - in understanding the magnetic properties of several
classes of magnetic insulators on an atomic basis.
Among experimental tools, paramagnetic resonance has
been the chief instrument for investigating the indi-
vidual magnetic ions (as opposed to the collective be-
havior observed in macroscopic studies), such studies
being made, as a rule, in dilutely doped isomorphic non-
magnetic crystals, where the single-ion interactions can
be observed separately from exchange.

Yttrium orthoaluminate, a nonmagnetic crystal, is of
particular interest as a host for para, magnetic ions be-
cause of its crystallographic similarity to the important

*The investigation reported here was performed for the greatest
art at the Palo Alto Laboratories of the General Telephone and
lectronics Corporation and was sponsored in part by the U. S.

Air Force Cambridge Research Laboratories, Once of Aerospace
Research, under contract No. AF 19(628)-387.

and relatively poorly understood class of magnetic
materials —the orthoferrites. These are a family of
mixed oxides of composition ABO3 which crystallize
in a slightly distorted perovskite form. ' ' A is typically
a trivalent rare earth and 8 a trivalent transition metal,
though variations (involving, say, Ca or Ba substitutes)
have been studied. ' "The magnetic sites in the ortho-
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cedure, described in Sec. IV, resulted in an accurate and
detailed determination of the magnetocrystalline anisot-

ropy for both Fe'+ and Gd~ ions.

Fxe. 1. Unit cell
of the orthorhombic
orthoferrite, showing
idealized oxygen and
iron sites. In actual
crystal oxygen ions
are slightly dis-
placed from positions
shown.

OXYGEN

ferrites (and the corresponding sites in yttrium ortho-
aluminate) are distinguished by their low symmetry,
which makes the theoretical treatment of the paramag-
netic spectrum rather difficult. On the other hand, as
first pointed out by Dzialoshinski, 4 it is this low sym-
metry which accounts for the manifestation on a macro-
scopic scale of the more interesting peculiarities of the
orthoferrites such as canting, residual magnetism, and
the spontaneous spin Ripping at low temperature from
one magnetic configuration into a different one."

The over-all magnetic behavior of the orthoferrites is
a composite result of single-ion mechanisms and ex-
change interactions. "The purpose of the present para-
magnetic resonance measurements was the separate
study of the magnetic environment of the single ion
and in particular the crystalline anisotropy in these
types of ion sites. The host crystal, yttrium ortho-
aluminate, was chosen in order to conform as closely
as possible to the orthoferrite structure. Attempts to
synthesize yttrium orthogalliate which was believed to
afford a closer correspondence failed, and there is evi-
dence that the compound does not exist. 4 The magnetic
ions studied, both having as their ground state an L=0
(S) state, were Fe'+ substituting for Alt+ and Gd. '+ sub-
stituting for Y'+.

The analysis of the spectra presented unusual diffi-
culties because of the lack of symmetry. It became evi-
dent that the customary procedure of fitting by trial
and error to a spin Hamiltonian with adjustable param-
eters was impracticable in this case. The method which
was eventually evolved consists in deriving so-called
"anisotropy surfaces" directly from the data by em-

ploying certain sum rules based on a second-order
perturbation formalism. The surfaces are fitted to po-
tential functions which, in turn, yield the spin Hamil-
tonian by the method of operator equivalents. The pro-

"1.Dzialoshinski, Phys. Chem. Solids 4, 241 (1958)."R.M. Bozorth, Phys. Rev. Letters 1, 362 (1958).
'6 D. Treves, Phys. Rev. 125, 1843 (1962).

III. EXPERIMENTAL PROCEDURES

The paramagnetic-resonance data were taken on a 35
kMc/sec superheterodyne magnetic-resonance spec-
trometer. Most of the data were taken at liquid-
nitrogen temperatures, but some data were taken at
4.2'K, primarily to determine the sign of various
Hamiltonian parameters. The sample crystals, approxi-
mately 1 mm on a side, and containing approximately
0.5 at.%%uoof th emagneti c ion, wer emounte d in th ede-

)4
FIG. 2. Unit cell

of the orthorhombic
orthoferrite showing
idealized positions of
rare-earth ion sites.

RARE EARTH

II. THE CRYSTAL STRUCTURE

The rare-earth orthoferrites and most of the rare-
earth orthoaluminates, orthogalliates, orthochromites,
etc., crystallize in an orthorhombically distorted pe-
rovskite structure. These compounds have been studied
in considerable detail by Geller' ~ and associates in thip

country and by Bertaut' and associates in France. Ke
have unit cell dimensions for a wide range of A—8
combinations but, at present, detailed information,
e.g., exact oxygen positions, only for gadolinium
orthoferrite. '

These materials belong to the orthorhombic space
group D2~"—Ebem. There are four distorted perovskite
pseudocells in an orthorhombic unit cell, giving four
distinct iron (aluminum) sites and four distinct rare-
earth sites per unit cell. There are excellent visual pres-
entations in the literature' ' and for our purposes a few
schematic diagrams will suffice. The orthorhombic unit
cell is drawn in Fig. j.. The rare-earth ions have been
omitted from Fig. 1 to simplify the picture. They are
shown separately in Fig. 2. The iron positions are special
positions (st,0,0; —,',O, ts; O, ts,0; O, st, z), but all oxygen and
rare-earth ions are displaced by as much as a few tenths
of an angstrom from the idealized sites of Figs. 1 and 2.
The iron site has only the inversion symmetry; the rare-
earth site has mirror plane symmetry in the c planes.
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sired orientation on a 6xed probe and the electrorn. agnet
rotated to give the spectra in a plane.

A. The Fe'+ Spectra

The Fe'+ ion has S=~, and therefore gives rise to
five transitions (of dM, = 1 type) per ion. Since there
are four magnetically inequivalent sites the spectrum
consists of 20 absorptions for a general orientation of
the external magnetic field H. For H in the principal
planes of the crystal (e.g., the e replan—e) the number of

magnetically inequivalent sites is reduced to two, and
for H along the u, b or c directions, to one.

The low symmetry (inversion only) of the Fe'+ site
gives us no a priori information as to the orientation of
the principal axes of the crystal-field distortions, and
indeed no guarantee that there will be any simple rela-
tionships between the principal axes of the quadratic
potential and those of the biquadratic (fourth-power)
potential. We are forced to determine these parameters
entirely from the data.

The paramagnetic-resonance absorption spectrum of
the Fe'+ ion in YA103 was first recorded for B in the
a—b plane and for H in the b—c plane. These data are
presented in Pigs. 3 and 4. It is not obvious from these
data that any principal axes of the anisotropy surface
were intercepted. However, the extremal spacings of the
outermost transitions at about 25' from the b axis in the
a—b plane, and the near symmetry in the spacings of a
group of five lines at this orientation (the five transitions
identified as belonging to sites 1 and 2 in Fig. 3), sug-
gested that this direction was nearly a principal direc-
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FIG. 4. Paramagnetic resonance absorption spectrum
of Fe'+ in YAl03, with H in the b—c plane.

tion of the dominant perturbation. We expected the
dominant perturbation to be quadratic in the spin com-
ponents, as is usually the case for the Fe'+ spectrum. We
therefore took data with B in a plane containing the
c axis and the extremum in the a—b plane. These data
showed that the extremum was located in, or within
two or three degrees of, the u—b plane. Concluding then
that this direction, 25' from b in the a—b plane, was a
principal axis of the quadratic energy tensor, we took
data with B in the plane perpendicular to this direction
(henceforth called the "special plane" ) and obtained the
spectrum shown in Fig. 5.
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FIG. 3. Parama, gnetic resonance absorption spectrums
of Fe'+ irI. YAlQ3, with II in the g—b plane.

i

B. The Gd'+ Spectra

The rare-earth ion site in the orthoferrite is in a mirror
plane perpendicular to the c axis. Therefore one principal
axis of the relevant potential will always be the c axis,
and the other axes are confined to the a—b plane. Further,
the rare-earth sites are coupled in pairs by an inversion
through the iron sites, so there are only two magnetically
inequivalent rare-earth sites for any orientation of H.
For H in the b—c or a—c planes the four sites are all mag-
netically equivalent. The Gd'+ spectrum is therefore
relatively more simple than the Fe'+ spectrum, even
though there is a larger number of transitions per site
(seven transitions of BM,=&1) because of the larger
spin, S=~7, of the Gd'+ ion.

The paramagnetic-resonance absorption spectrum of
Gd'+ with B in the a—b plane is plotted in Fig. 6. The
absorption spectrum vrith H in the b—c plane is plotted
in Fig. 7. All necessary information is contained in
these two spectra.
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FIG. 5. Paramagnetic resonance absorption spectrum of Fe'+
in YA103, with H in special plane (see text).

IV. METHOD OF ANALYSIS OF THE SPECTRA

The paramagnetic spectrum is described in terms of a
spin Hamiltonian of the general form

X=gPH. S+X.(S). (&)

The erst term is the Zeeman energy of interaction with
an external Beld. Since both Fe'+ and Gd'+ are in a
ground S state, the g factor can be assumed isotropic
(the method described below can, however, be general-
ized to treat anisotropic g factors, too). X, represents
the anisotropy energy and is usually in the form of a
polynomial in the components of S.

The 6tting of the spin Hamiltonian for a spin —,
' or —,

'
ion to experimental data for a low-symmetry site pre-
sents a formidable problem. The most general form of a
spin Hamiltonian for Fe'+ ions contains 14 adjustable
parameters, that for Gd'+, 1S. Each guess at these
parameters leads to a 6&6 or 8)&8 matrix respectively,
for each value and orientation of H. Even with the use
of perturbation methods the required labor is prohibitive.

The method to be described below bypasses these
difhculties by deriving an approximate form for the
Hamiltonian directly from the resonance data. This is
accomplished by extensive use of the following well-
known properties of "operator equivalents"'

(1) For a given value of S, one can assign to any
classical potential (harmonic) function a corresponding
operator equivalent. Conversely, an operator X,(S) can
always be written in the form of the operator equivalent
of a classical counterpart X,(n), which is the form that
X,(S) would take in the correspondence limit that
S-+~ and becomes a classical vector which can be de-
scribed entirely by its direction cosines. This classical
potential X (e) represents the dependence of the en-

ergy of the system upon the orientation of the mag-
netization, and appears regularly in ferromagnetic
problems as an "anisotropy energy surface. "

(2) Linear relations and transformation laws among
operator equivalents are the same as among the classical
counterparts.

Our approach will consist in determining the angular
dependence of this classical potential X,(«) directly
from the spectrum. The form of the spin Hamiltonian
can then be determined by replacing each term in
the classical potential by its appropriate operator
equivalent.

The extraction of Xo(e) from the data proceeds by
utilizing two facts:

(1) The angular dependence of the diagonal elements
of the spin Hamiltonian contains all the information re-
quired in order to determine the complete form of the
potential.

(2) The experimental data can be processed in such a
way as to obtain a direct determination (to 2nd order
in perturbation theory) of the diagonal elements of the
spin Hamiltonian.
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FIG. 6. Paramagnetic resonance absorption spectrum
of Gd'+ in YAl03& with H in the a—b plane.
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Consider 6rst the diagonal termj5 4 4

I
i i
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(M, [X.[M,)=gP P(M, [ Vg(S) [M,).14—

-?/2 ~-5/2~
I3—I -5/2 ~-3/2

"-3/2 ~-I/2~
C9
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hC

X

To determine this element we 6rst expand the cor-
responding "classical" potential at the ion site Vi(n)
in terms of spherical harmonics defined relative to the
(x,y,z) system:

-I/2~ I/2

/2

Vi(e) = g Ai"(h) Yi (x,y,z),
5/2~?/2

10—
where x, y, z are the components of e in the (x,y, z)
frame, and h=H/[H[ is a unit vector specifying the
direction of H (and z) in the (1,2,3) coordinate frame.
The functions Yi are defined by

f~] [bl

ANGLE IN DEGREES BETWEEN H AND $c] AXIS
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FIG. 7. Paramagnetic resonance absorption spectrum
of Gd'+ in YA103, with H in the b-c plane.

Yi+" Ei (x+i——y) "(d"/dz")Pi(z),

where P& is a Legendre polynomial, X& is a normaliza-
tion factor, and m&0. The coefficients A~ depend,
apart from a phase factor, only on the orientation of H.
The "operator equivalent" of the classical potential
(5) is given by

We start by expanding K, in the form

se.(S)=gp P V,(s„S„s,.),
l

where the coordinate axes denoted (1,2,3) are fixed
with respect to a given site, and where summation is
over even values of / for 2&l&2S. Each term Vi(S) is a
polynomial of order / in the spin components S&, S&, S&
and is the operator equivalent (in the following we shall
consistently use bars to denote operator equivalents)
of some classical potential Vi(ni, ns, ns) which is a har-
monic polynomial of order I in the components (direc-
tion cosines) of the unit vector n. Thus Vi(e) is one
component of the "classical" K,(n) to which we alluded
above. Each "anisotropy surface" Vi(e) can be written
as some linear combination of the 21+1 spherical har-
monics (or Kubic harmonics) of order /; and each Vi(n)
therefore contains 2l+1 expansion coefficients which
are the parameters to be determined from the data.

The analysis relating the Vi(e) to the data proceeds
initially along conventional lines. We first introduce a
new coordinate system (x,y,z) with z along H. Next, we
quantize the system with respect to the s direction,
and, regarding X',, as a perturbation, write the energies
of the system correct up to the 2nd-order terms in K,.

Vi(S)= Q Ai (h)F&"(S„S„,S,).

The operator equivalents of the Y& have been tabu-
lated" "for /&6, as have many of the matrix elements
(M, ' [ Yi~(S) [M,), and in particular we know that

(M, '[Yi (S)[M,)=0, (7)
if m/0,

i.e., that we have diagonal elements only if m=0. To
evaluate the diagonal element (4) we need, then, retain
only the m=0 term in the summation over m of (6) and

(M, [ Vi(S) [M,)=A i'(h)(M, [ Yi'(S) [M,)
=%oA is(h)P, (M,), (g)

where Pi(M, ) is the operator equivalent of Pi(z), with
M, substituted for z."We may obtain XisA&'(h) by
reference to the classical potential V&(e) of Eq. (5) for
the special case n=h We note t.hat the components of
h in the (x,y, z) frame are, by definition, (0,0,1) and that
the Yi (x,y,z) have the propertyW(M, )=gPHM, +(M, [K,[M,)

Yi"(0,0,1)=0,
if m/0.

[(M, [se.[M,') [

(3)~"~sr. gPH, (M, M,')—
We can therefore write

where M, represents, as usual, the eigenvalues of S,.
Equation (3) differs slightly from the standard form in
that He(=hv/gP, where v is the fixed operating fre-
quency) has been substituted for H in the denominator
of the 2nd-order term. It can be shown that this change
in fact represents a slight improvement in the approxi-
Ination when we are required to fit data from the usual
6xed frequency —variable magnetic-field resonance
experiment.

Vi(h) = A i'(h) Yi'(0,0,1)
=A is(h)EisPi(1) =Ais(h)Xis, (9)

since Pi(1)=1 for all /. Substituting (9) into (8) we
obtain

(M, [ Vi(S) [M,)=Pi(M, ) Vi(h). (10)

P& is related to the commonly used unnormalized operators
04 as follows: 02'=2P2, 04'= 8P4, 04'= 16P4 (see Ref. 23).

PARAMAGNETIC RESONANCE OF Fe'+ AND Gd'+
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=H( M, ——+ (—M,+1))
—H((M, —1) —+ M, j, (12)

where H f ) represents the magnetic field for which the
transition indicated inside the brackets will occur at the
fixed operating frequency v. There is one such equation
for each value of 3f„1&35,&S.The number of equa-
tions exactly equals the number of diRerent l. Equa-
tion (12) can therefore always be solved to give the po-
tentials U& directly in terms of the measured resonance
fields. Solutions of Eq. (12) for S= 5 and S=—,

' are given
below in Eqs. (13) and (18), respectively.

The complete procedure can now be summarized as
follows. For a given orientation h, the resonance fields
are determined for the various transitions. The values
of these fields are introduced into the solutions of Eq.
(12) [e.g. , Eqs. (13) and (18) below), yielding experi-
mental values of V~(e) for n=h Vi(n) .is then plotted
as a function of magnetic-field orientation and the
curves are fitted to an analytic expression having the
form of a harmonic polynomial of order / in n~, ng, n~.
The method of operator equivalents then allows one

FIG. 8. Plot of the potential U2 as a function of angle for Fe+
in YA103. The curves can be regarded as cuts of the quadratic
anisotropy surface at the indicated planes. The angle is measured
from the b, b, and c axes in the a—b, b—c and special planes,
respectively.
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The diagonal element of V~ is therefore a product of
two terms: the first, Pi(M, ), is a function solely of the
quantum number M„ is fixed for a given IS, M, )
state, and is not a function of orientation. The second,
Vi(h), contains the angular variation of the element,
and is none other than the classical equivalent of Vi(S).
The functional form of Vi(h) can therefore be com-
pletely determined from the angular dependence of
(M,

I
V, (S) IM, ).

In order to extract (M, IViIM, ) from the experi-
mental data one must first eliminate the contribution
from oR-diagonal terms. If one reverses the signs of M,
and M, ' in (3) one finds

W( M, )= qPHM. +—(M, I
se.—

I
M, )

-10

- l5

-20

10

10

-Io

-l5

-20

(11)~. -~. WHO(M, —M.')

and hence the sum W(M, )+W(—M, ) is to first order
independent of the oR-diagonal terms. In practice,
since H is varied while v is kept constant, this ehmina-
tion is accomplished by subtracting from each other
equations relating to opposite transitions, e.g. , (—,

' ~ —,')

- IO

"20

60 90 120

ANGLE IN OEGREES

I

I 50 l80

FIG. 9. Plot of the potential U4 as a function of angle for Fe'+
in YA103. The angle is measured from the b, b, and c axes in the
a—b, b—c and special cuts, respectively.
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to determine uniquely the form of the operators Vr(S)
and thus the complete form of the spin Hamiltonian.

e2.e3.

—0.570 0.231 0.788 e
0.730 —0.295 0.616 X eb, (15)
0.375 0.927 0 . .e,~

where the e, represent unit vectors along the axes speci-
6ed. The fit is excellent.

The term in the spin Hamiltonian which is quadratic
in the spin is thus given (in kilooersted) by

Vs(S) = —1.45[Ss'—-'S(S+1)]+0.30[S '—Ss']

relative to principal axes given by (15).
The fourth-order surface V4(e) is represented in Fig.

9. In general, the theoretical surface would contain 9
adjustable parameters. However, since the environ-
ment of the Fe'+ retains, in spite of some distortions, a
high degree of octahedral symmetry, it was decided to
attempt a fit to an octahedral potential of the form

V4(e) =—s'a[nt'+n„'+nr' ——,'].
A best fit was obtained for u= -350 Oe, and principal
axes defined by

e~ ' 0.808 —0.574 0.122 ~e '.

e„= 0.565 0.819 0.122 X eb, . (16).e~, —0.174 —0.052 0.985. e, )

The 6.t, while not perfect, indicates that V4 is still by and
large octahedral in character. The term in the Hamil-
tonian which is 4th order in the spin, is accordingly, in
oersteds,

Vs(S)=—(350/6) [St4+S,4+Sr4

——,'S(S+1)(3S'+3S—1)].
The negative value of u is in contradiction with the

V. THE Fe'+ SPECTRUM

There are 6ve first-order allowed transitions, namely
(—-'~s), (—s~ —s), (—s~s), (s~5), and(s~s),
and we shall denote the corresponding resonance field by
Ht, Hs, FIs, H4, and Hs, in the given order. Equation (12)
can be solved for V2 and V4, to give

Vs(e) = (1/84) [5(Ht —Hs)+4(Hs —H4)], (13)

V4(e) = (1/210) [(Ht —Hs) —2(Hs —H4)]. (14)

Empirical values of Vs(e) derived from Figs. 3, 4,
and 5 are plotted in Pig. 8: the theoretical curves repre-
sent a surface of the form

Vs(e) =D(ns' ——s,)+E(nt' —n, '),
where D, E and the orientation of the (1,2,3) axes were
chosen for best fit. The assigned values are D= —1.45
kOe and 8=0.30 kOe. The orientation of the principal
axes is given by the transformation

general conclusions of Watanabe" and of Geschwind"
on the sign of u for Fe'+ in octahedral coordination, but
the experimental evidence seems conclusive in this case.

It is interesting to compare the axes of the octahedral
potential with the radius vectors of the ligating oxygens.
The orthogonal (rotational) part of the transformation
relating the oxygen ligand system for a particular Fe'+
site to the crystalline frame is given by the matrix

0.781 —0.614 0.122
0.580 0.796 0.174

.—0.203 —0.064 0.982.
(17)

The deviation between the two frames is less than 3'.
This provides unambiguous site identification in the
spectrum.

Because of the magnitude of the anisotropy energy
the g factor can be determined only to an accuracy of
about 1.5/~. Within these limits there is no indication of
ani. sotropy or of deviation from the g value for a free
electron.

The spectra of Pigs. 6 and 7 were processed to yield the
angular forms of V2, V4, and Vs. The magnitude of V6

was below experimental scatter, and its information
could not be regarded as meaningful. V~ and V4 are
represented in Figs. 10 and 11.The gadolinium site has
reflection symmetry about the (a—b) plane. The crystal-
line c axis is therefore a principal axis for V2 as well as
for U4. V2 is fit to

where
V,= D(n, .

' —-')+Z(n '—n '),

a=100 Oe,
E= —350 Oe,

and where the (1,2) axes are obtained from the (a b)—
axes by a clockwise rotation of 28' about the +c
direction. This set of axes bears no obvious relation-
ship to the rather severe local distortions at the rare-
earth site.

"H. Watanahe, Progr. Theoret. Phys. (Kyoto) 18, 405 (1957)."S.Geschwind, Phys. Rev. 121, 363 (1961).

VI. THE Gd'+ SPECTRUM

There are seven first-order allowed transitions, namely

(—', —+ —,'), (-', —+ ss), and (—', —+ s). We denote the cor-
responding resonance fields by H~, II2, II3, II4, II5, II6,
and Hp in the given order. Equation (12) can be solved
for V2, V4, and V6 to give

Vs(e) = (1/252) [7(H,—H&)+8(Hs —Hs)+5(Hs —Hs)],
V4(e) = (1/4620) [7(II,—H, )

—6(Hs —Hs) —9(Hs —IIs)],
Vs(e) = (1/20 790)[(Ht —Hp)

—4(Hs —Hs)+5(Hs —Hs)]. (18)
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Fxo. 10. Plot of the potential V2 as a function of angle for Gd'+
in YAl03. The angle is measured from the e and c axes in the u—b
and b—c planes, respectively.

The most general form for V4 is

Vg(n) =a(35n,4 30n, '+ 3—)
+4b(n 2—aP)(7a '—1)+8cn ap(7a 2 —1)

+ 2d(n, 4+n t
4—6n. 'nP)+8en. no(n. '—n t 2),

with the operator equivalent

U4(5) =a5355.'—30S(S+1)5.'+25S.'
—6S(5+1)+35'(5+1)'$
+b((5+'+5 ') $75-,' S(5+1)—5j+H c—}..

icf(5 '——S ')L75 '—S(S+1)—5)—H.c.}
+d(S+4+5 4) —ie(5+'—5 '),

where S+=S ~iSb, and where H.c. represents the
Hermitian conjugate of the preceding expression. The
coeKcients u, b, c, d, and e are adjustable constants.

ln the u-b plane

V4(n) =3a—4b cos2$ 4c sin2&—+2d cosQ+2e sin+,

The fit is fair or good, but not excellent. Since V4
represents a very small contribution to the present spec-
trum and is obtained by subtraction of large, nearly
equal, magnitudes, this is not unexpected.

One may note that in a site of cubic symmetry one
would expect b=c=0 and a=-'(d'+e')'". lt is obvious
that these relations do not hold even approximately.
This indicates that the rare-earth site in the ortho-
aluminate is so severely distorted from the cubic pro-
totype that no visible cubicity remains. Calculation of
the crystal-field eGects based on a cubic approximation
would appear invalid.

A comparison of the gadolinium spin Hamiltonian
with that of iron, shows that (a) in the former the pre-
ponderance of the quadratic term is much more pro-
nounced and (b) the cubic symmetry of the fourth-order
term is no longer apparent. This behavior is consistent
with the character of the local distortion of the oxygen
atoms. A substantial component of this distortion con-
sists of a rigid rotation of the oxygen octahedron about
the iron sites. The nonrotational part of the distortion is
much more severe at the rare-earth site and in fact re-
duces the coordination number from 12 in the ideal
perovskite to an eBective coordination number 9.'

VII. DISCUSSION: RELATION TO CRYSTAL FIELDS
AND TO THE ORTHOFERRITE PROBLEM

The state of crystal-field theory is not advanced to the
point where the magnetic properties of a given ion can
be completely calculated from the crystal structure.
This is especially true of S-state ions, where in order to
account for the magnetocrystalline anisotropy it is
necessary to invoke. e high-order compound mechanisms
involving joint action of the crystal field and the spin-
orbit interaction. There are nonetheless certain cor-
relations we may expect between the crystal field
present at an ion and the spin Hamiltonian. First, they
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where @is the angle between P and. the a axis, and in the
b-c plane

V4= ,'(3a 4b+2d)+-s'(Sa—4b 2d)— —
)&cos28+g(35a+28b+2d) cos48,

where 8 is the angle between H and the c axis. A best
fit is obtained for
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Fxo. 11, Plot of the potential V4 as a function of angle for Gd'+
in YA103. The angle is measured from the a and c axes in the s-b
and b—c planes, respectively.
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must have the same symmetry. Secondly, we may ex-
pect the crystal Geld and the anisotropy surfaces V&(e)
of Sec. IV to have certain topological similarities.

The dominant term in K,(S) for S-state ions is usually
that quadratic in the spin coordinates. Such a quadratic
form can always be diagonalized, that is, a coordinate
frame e~, e2, e3 can be found such that

Vg(S)= Q D„S„'.

The D„are the principal values of the quadratic form.
For Fe'+ in YA103 the orientation of the e„ is not pre-
scribed by symmetry considerations and must be de-
termined from the data. This was done in Sec. V and
the direction cosines of e~, e2, and e3 in the crystal unit
cell frame are given by the rows of the transformation
matrix of Eq. (15) of that section. The associated princi-
pal values of the D„are D~ ——0.78, D2=0.10, and
D3———0.97 kOe.

Let us now calculate the portion of the electrostatic
crystal-field potential at the Fe'+ ion which is quadratic
in the coordinates Pand hence corresponds in some way
to V2(n)1. Unfortunately, we do not have the detailed
ion position parameters for VA103, we do, however,
have them for the structurally similar GdFe03. ' Using
the ion position parameters for GdFeO.;, and including
the eBects of nearest-neighbor oxygens, and of next-
nearest Fe'+ (or A13+) and Gd'+ (or Y'+) ions, we
obtain the potential, in unit cell frame coordinates

V, ,2
——V2O( —5.17+'+0.13y'+ 5.03s'

—4.20xy —0.40ys+5.60xs),

where various constants have been lumped into V20,
whose exact definition is immaterial since we are inter-
ested primarily in the topology of the quadratic form.
The quadratic form is diagonalized by the coordinate
transformation

e~ t 0.886 0.283 —0.334 e.
e2 = —0.246 0.953 0.149 e~.ea, . 0.387 —0.128 0.910, .c..

with the principal values X~———6.45, X~=0.08, and
) 3=5.77.

Though the principal values show a superficial similar-
ity there is essentially no correlation of the spatial
orientation of the ellipse corresponding to Vm(S) that
corresponding to V.,2. It seems exceedingly unlikely that
any combination of physical processes could cause the
observed V2(S) to result from the above calculated
crystal ield. It is known that Vm(S) depends sensitively
on the local distortions of the host lattice from a cubic
prototype, and that the distortions in YA103 are dif-
ferent from those of GdFe03 (based on x-ray unit-cell
dimensions). Moreover, the substitution of the some-
what large Fe'+ for an A13+ ion must create additional
distortions. Therefore, it is most probable that the
crystal-6eld calculation above fails to correlate with
the spin-resonance data because inappropriate ion posi-
tion parameters have been used in the calculation. In the
absence of more accurate and appropriate ion position
parameters there appears to be no profit in pursuing
further the crystal-field calculations of either Fe'+
or Gd'+.

The correlation with magnetic behavior in the ortho-
ferrites is equally poor. Assuming that the magnetic
environment of the Fe'+ ion is similar in orthoferrite
and orthoaluminate one would on the basis of the
paramagnetic-resonance data, expect the ansiotropy in
the former to be described by an e6ective field of ap-
proximately 6000 Oe along a direction close to the b axis,
with a small component in the c direction. In fact, how-
ever, the iron spins are aligned in antiferromagnetic
order along the a axis with slight canting towards the c
axis. This suggests that the crystal 6elds operative in
the two cases are signi6cantly diferent or that the eBec-
tive anisotropy in the orthoferrite is strongly exchange-
dependent. In any event, the magnitude of the anisot-
ropy interaction corrohorates the conclusion of
Treves" that one must invoke anisotropic exchange to
explain the canting of the iron sublattices, since single-
ion anisotropies cannot give effective canting fields large
enough ( 10' Oe) to produce the observed magnitude
of canting.
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