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Distribution of Magnetic Moment in Hexagonal Cobalt*

R. M. MooNt
Lincoln Laboratory, f Massachusetts Institute of Technology, Lexington, Massachusetts

{Received 4 May 1964)

The magnetic form factor of hexagonal cobalt has been determined by measuring the coherent scattering
of a polarized neutron beam from single-crystal samples. A Fourier inversion of the data indicates a nearly
spherical distribution of positive moment around each atom, decreasing to a negative level in the space be-
tween atoms. A comparison of the results with calculated free-atom form factors shows that the observations
can be accurately described by a model in which the net spin density is given by the sum of a positive free-
atom 3d distribution and a negative constant. In terms of this model, the total moment per atom is com-
posed of the following parts: 3d spin, +1.86~0.07 pg, 3d orbital, +0.13~0.01', constant spin, —0.28
&0.07pg. The form factor showed no dependence on temperature between 78 and 300'K.

INTRODUCTION

'HE periodic distribution of magnetic moment in a
ferromagnet can be determined by precise

measurements of the magnetic scattering amplitude in
neutron diffraction experiments. A polarized neutron-
beam technique' has recently been employed to investi-
gate several metallic ferromagnets. Both the radial and
angular dependence of the spin density have been deter-
mined for Cop g2Fepp8, ' Fe3A1,' and Fe. The present
work extends these measurements to the case of
hexagonal cobalt.

The measurements give the Fourier coefficients in
the series expansion of the periodic magnetic-moment
density; hence, density maps can be prepared from the
data. Also, by comparing the data with calculated form
factors, some idea of the identity of the electrons
responsible for the magnetization may be obtained.
Both of these approaches to the analysis of the data
will be employed.

Knowledge of the spatial distribution of the 3d elec-
trons is fundamental in understanding the properties
of the transition metals. Magnetic form-factor measure-
ments are one of the best methods of gaining such
knowledge. However, the relationship between the
observed magnetic-moment density and the 3d wave
functions is not as direct as might be desired, and it is
well to remember the following points when interpreting
magnetic form factors of ferromagnetic metals. First,
there is a small orbital contribution to the magnetiza-
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tion, and the measurement, s give the sum of the spin
density plus the small orbital moment density. Second,
the spin density itself is different from the charge
density since spin-up electrons do not have the same
radial density as spin-down electrons. This point has
been emphasized in atomic calculations by Wood and
Pratt' and Watson and Freeman. ' Third, when the
band structure of the transition metals is considered,
the interpretation in terms of wave functions becomes
even more complex. Wood' and Stern' have shown that
in Fe a large difference between the radial wave func-
tions at the top and bottom of the 3d band is to be
expected. At the top of the band the wave functions are
slightly contracted relative to the free-atom case, with
small amplitude at half the nearest-neighbor distance.
At the bottom of the band the wave functions are very
diffuse with a large amplitude at half the nearest-
neighbor distance. The observed spin density is associ-
ated with unpaired states near the top of the band plus
a possible contribution from the "paired" electrons in
the remainder of the band, as in the free-atom calcula-
tions of Watson and Freeman. ' Fourth, there may be a
contribution to the spin density from the conduction
band and a very small contribution from the argon
core. Despite these complications, magnetic form-factor
measurements constitute one of the most direct methods
of studying the distribution of 3d electrons in the
transition metals.

EXPERIMENTAL TECHNIQUE

The experimental arrangement was identical to that
described by Nathans et al.' The experiments were
performed on two polarized neutron diGractometers
installed at the MIT Nuclear Reactor. These instru-
ments utilized the (200) reflection from a saturated
Cop. »Fep. p8 crystal to produce the monochromatic
polarized beam. The experiment consists of measuring
the intensity in a Bragg peak when the incident neu-
trons are polarized antiparallel, and then parallel, to

' J. H. Wood and G. W. Pratt, Jr., Phys. Rev. 107, 995 (1957).
6 R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125, 1134

(1960).' J. H. Wood, Phys. Rev. 117, 714 (1960).' F. Stern, Phys. Rev. 116, 1399 (1959).
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the sample magnetization. In an ideal experiment, the
ratio of these two intensity measurements is given by

where v=p/b, the ratio of the magnetic to nuclear
scattering amplitudes. The magnetic scattering ampli-
tude is related to the normalized form factor by

P(~) = (ve'/2m s)nef(&), (2)

where y is the magnetic moment of the neutron in
nuclear magnetons, N~ is the number of Bohr magnetons
per atom in the sample, and f(k) is the form factor.
The assumption is made that the magnetic-moment
distribution may be described in terms of a scalar
density function, g(r) =p(r)X' where Z is a unit vector
in the direction of the bulk magnetization. In practice,
Eq. (1) must be modified to take into account the
operating characteristics of the instrument and various
troublesome crystal sects. These corrections are
brieQy discussed in the following paragraphs: A more
detailed discussion has been published elsewhere. '

Instrlmental corrections. The data must be corrected
for the eGects of imperfect beam polarization, imperfect
spin reversal, and —,X contamination. Limits on the
magnitude of these corrertions were obtained experi-
mentally using an analyzing crystal (v=1) in the test
position. The uncertainty in these experimental correc-
tions constituted the major source of error in the data
for the inner reQections.

Secondary extinction. The secondary extinction effect
was minimized by using thin crystals and small correc-
tions were calculated to remove the residual eGect.
These calculations were based on experimenta1 values
of the mosaic width, determined by observing the shape
of the crystal reQectivity curve in a double-crystal
"parallel position" arrangement with a sharp Ge crystal
in the monochromating position. The calculated extinc-
tion corrections were checked experimentally by varying
the crystal thickness and neutron wavelength.

Simultaneous rejections Closely. allied to secondary
extinction are the e6ects of simultaneous reQections. "
When the crystal is oriented so that more than one
Bragg reQection can occur, the intensity in any single
reQected beam is modified by the presence of the other
reQections. The crystal geometry was usually restricted
to pillar shape to minimize the magnitude of this eGect.
In addition, the data were collected as the crystal was
rotated in azimuth so that the presence of simultaneous
reQections could be detected. Data showing a rapid
variation with azimuth were not included in the
average.

Magnetic anisotropy. One of the basic experimental
requirements is that the sample be magnetized to
saturation in the direction of the neutron polarization.
It is dificult to satisfy this requirement in the case of

' R. M. Moon, MIT Lincoln Laboratory Technical Report No.
312, 1963 (unpublished).

's R. M. Moon and C. G. Shull, Acta Cryst. 17, 805 (1964).

hexagonal cobalt because of the high magnetic anisot-
ropy. This dif5culty was responsible for restricting the
measurements to those reQections for which the
deviation from the desired saturation was small. Kith
the available held strength, saturation could be attained
by magnetizing along the c axis or in the basal plane.
Of the twenty reQections studied, ten experiments were
performed with the applied 6eld along the c axis and
seven with the 6eld in the basal plane. In all these cases,
the beam depolarization was negligible as determined
by polarization transmission experiments. In two of the
remaining three cases, the measured polarization trans-
mission was combined with a calculation of the angle
between the applied 6eld and the magnetization, based
on the known anisotropy constants, to give a small
correction to the data. The remaining reQection showed
zero magnetic scattering and all corrections were
unnecessary.

Sampte purity and preparation A.supply of high-
purity cobalt was obtained through the courtesy of
F.R. Morral of the Cobalt Information Center, Battelle
Memorial Institute. This material was in the form of
polycrystalline cylinders of 99.95% purity. "Two single
crystals were prepared from this material. Small
corrections were applied to the data to remove the eBect
of the major impurities, Ni and Fe. Samples were cut
either in the shape of pillars (approximately
0.1X0.2X1.0 cm) or disks (approximately 1.0 cm in
diameter). The samples were polished on fine (000)
emery paper to reduce the beam depolarization at the
surface. '
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Pro. 1. The magnetic form factor of hexagonal cobalt compared
with the fcc case. The solid line was drawn to emphasize the
smooth decrease in the hexagonal form factor, indicating almost
spherical symmetry.
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Staclsilg fallts It. is well known that hexagonal cobalt
crystals have a strong tendency tovrard faulting. These
faults may be described as an interruption in the normal
hexagonal layer stacking sequence along the c axis by
the inclusion of a local fcc stacking sequence. The local
environment of an atom is such' a faulted region vrould

appear more nearly cubic than hexagonal. Since the
form factors for the two structures differ very little, as
shovrn in Fig. 1, we expect a negligible influence on the
hexagonal form factor due to faulting. Although no
experiments vrere performed to measure the form
factors in crystals which vrere knovrn to have different
degrees of faulting, it is believed that the general repro-
ducibility of the results for different crystals lends
support to the above argument.

Temperctlre sects. Implicit in the interpretation of
the data is the assumption that the outer electrons
follovr the nuclei in their thermal motion; hence the
Debye-Wailer factors for nuclear and magnetic scatter-
ing are equal. Menzinger and Paoletti" have observed
that there is a change in the polarized neutron results
for fcc cobalt when the temperature is changed from
300—873'K. This is taken to be an indication that either
the spin distribution is temperature-dependent or that
the nuclear and magnetic Debye-Wailer factors are not
equal. In the present investigation a comparison of
results on three reflections, the (100), (200), and (300),
was made at room temperature and 77'K. No signi6cant
difference vras observed in the effective form factor at
these tvro temperatures. To interpret their results,
Menzinger and Paoletti suggest that the mean-square
electronic displacement may be smaller than the mean-
square nuclear displacement, (N,s),„=0.37(N„s), . The
present results indicate that (u,s)„=(1&0.15)(e„')„
over the temperature range from 77—300'K. The two
results are not necessarily inconsistent. A more general
relationship may exist, (e,s)„=G(T)(N,„s)„,where G(T)
equals unity at low temperatures and decreases as the
temperature increases. An alternate explanation of the
results of Menzinger and Paoletti has been advocated
by Weiss."He assumes that the spin-up and spin-down
charge densities change with temperature in such a way
that their sum is constant and their difference gives the
Menzinger and Paoletti result. In any event, the
position taken here is that at room temperature the
nuclear and electronic Debye-Wailer factors are equal,
and that the form factor does not change betvreen 300
and 77'K.

To determine the absolute value of the magnetic
scattering amplitudes, it is necessary to know the
nuclear coherent scattering amplitude. Two inde-
pendent determinations of the nuclear amplitude vrere
obtained by measuring neutron-diffraction powder

ALE I. The magnetic form factor of hexagonal cobalt.
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002
011
110
013
020
014
120
030
032
006
220
130
222
116
034
040
224
230
140

sinS/x

0.2304
0.2457
0.2611
0.3991
0.4347
0.4608
0.5428
0.6096
0.6912
0.7336
0.7372
0.7982
0.8307
0.8351
0.8383
0.8481
0.9216
0.9374
1.0043
1.0559

P/&

1.424 &0.010
1.335 &0.014
1.283 &0.014
0.704 +0.005
0.591 +0.005
0.527 ~0.003
0.334 +0.002
0.223 &0.002
0.1297&0.0014
0.0926&0.0007
0.0794&0.0010
0.0519+0.0015
0.0351&0.0014
0.0302+0.0009
0.0306&0.0008

+0.0297&0.0010—0.0030&0.0022
+0.0002&0.0015—0.0110&0.0020—0.0194+0.0014

0.774 a0.010
0.726 &0.010
0.697 &0.011
0.383 ~0.005
0.321 ~0.004
0.286 %0.004
0.182 ~0.002
0.121 ~0.002
0.0705&0.0011
0.0503&0.0006
0.0432&0.0006
0.0282+0.0008
0.0191%0.0008
0.0164&0.0005
0.0166~0.0005

+0.0161&0.0006—0.0016~0.0012
+0.0001+0.0008—0.0060&0.0011—0.0105&0.0008

patterns for pure cobalt metal and Cos04. The average
value for the tvro experiments was b=0.250&0.003
&(10 "cm, in good agreement with the results of Roth. '4

The quoted error in the value of b was based on counting
statistics and internal consistency of the two experi-
ments. In both experiments there vrere possible sources
of systematic error vrhich were dificult to evaluate, but
vrhich might increase the error in 5 to &0.01X10 "cm.
In calculating the magnetic scattering amplitudes from
the measured values of p/b, a 1% error in b has been
assumed. In a later section vre vrill return to this
question, to see whether a larger error in b would have
any important consequences.

The results of the polarized beam experiments are
summarized in Table I. Using the above value for b,
the normalized form factor values were obtained from
Eq. (2) with ts&=1.707.'s The values of sin0/)t were
calculated using @=2.5059 and @=4.0695, as deter-
mined by Morral. "

In Fig. 1 the hexagonal form factor is compared vrith
the results of Nathans and Paolettl on fcc Cop. g2Fep. ps.

There is a small but significant difference in the two
sets of data in the high sine/)t region. It is uncertain to
what extent the iron, which is present in the cubic case,
is responsible for this difference. The aspherical effects,
indicated by departure from a smooth function, are
more pronounced in the cubic case, and this could be
responsible for some difference in the two sets of data.
The radial spin density must be similar in the two cases.

One important conclusion can be reached ilrunediately
by inspection of Fig. 1. The smooth decrease of the
experimental points in the hexagonal case indicates that
the magnetic moment distribution must be almost
spherical.

The rather large number of reflections in the hexa-

"F. Menzinger and A. Paoletti, Phys. Rev. Letters 10, 290
(1963)."R.J. Weiss, Phys. Rev. Letters ll, 264 (1963).

'4 W. L. Roth, Bull. Am. Phys. Soc. 8, 213 (1963).
"H. P. Myers and W, Sucksmith, Proc. Roy. Soc. (London)

A207, 427 (1951).
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FIG. 2. Projection of magnetic moment density on basal plane.
Lower right diagram shows projected position of atoms in ortho-
rhombic unit cell. Dashed lines indicate portion of cell shown in
density map.

gonal case and the difhculties associated with the
magnetic anisotropy precluded the collection of suK-
cient data for an accurate three-dimensional inversion.
However, all reflections of type (hk0) were measured
out to sin8/X = 1.06. These data have been used to make
a Fourier projection of the distribution onto the basal
plane, using the 7090 computer at the MIT Computa-
tion Center.

The projected density is given by

where n~ is the number of Bohr magnetons per atom,
A is the area of the unit cell projection and

I"iio=gg fiio exp(iki„io r;),
where the summation goes over the atomic positions
within the unit cell. For this inversion, the hexagonal
structure was represented in terms of an orthorhombic
cell of dimensions (a, &3a, c) with atoms at (0 i —')3) 4J~

3) .4/) y2s 6) 4) & (2) 6 4) The results are shown in
Fig. 2. The spherical nature of the distribution is
apparent from the fact that the erst six contour lines
s own around each site are actually circles within the
arithmetic round-oG error of the computer program. In
interpreting the outer contour lines, it must be remem-
bered that the two atoms are on different levels,
resulting in the apparent overlap of the distributions.
The true nearest-neighbor distance is greater than the
projected distance by a factor of W3. Of particular
interest is the negative moment in the regions farthest
from any atom. The plot indicates that a nearly con-
stant negative plateau of projected density is reached
at sufhcient distance from the atoms. The suggested
picture is that of almost spherical mountains of positive
moment localized around each atom and partially
immersed in a sea of negative moment.

This negative density ii more apparent in Fig. 3,
which is a plot of the profile of the projected density
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I'IG. 3. Pro6le of projected density along the indicated hne. The
resolution function has been normalizecl to equal the cobalt
projection at 4=0.

along a line parallel to the L100] vector in the hexagonal
reciprocal lattice. In this figure, point C is the center of
a structural hole. It corresponds to position C in the
familiar ABC stacking nomenclature, and is empty in
the hexagonal structure. If the region between atoms is
f1lled with a nearly uniform negative spin density, then

fo
the best value for the magnitude of this density is t biyis o e
ound at point C in the projection. Also shown in Fig. 3

is a resolution function obtained by including the same
number of terms in the series but using a constant form
factor for each reflection. The resolution function shows
the diffraction eGects which would be obtained in
attempting to map a lattice of point atoms with data
from the same set of reRections used in the cobalt
projection. Any detail in the cobalt spin density on a
scale smaller than the width of the central maximum
of the resolution function cannot be resolved. In

of fi
'

examining Figs. 2 and 3 one should not forget the eff t
o nite resolution and the fact that these 6gures
represent the integrated magnetic-moment density
along the direction of the c axis over a distance s=c.
For both of these reasons one should not expect to see
the decrease in 3d spin density near the nuclear sites.

It is believed that the regions of negative density do
not result from experimental errors in the magnetic
amplitudes nor from the series termination error. One
indication of the importance of the series termination
error is in the size of the density oscillations in the
cobalt projection of Fig. 3. Any diffraction rings which
are present are on a smaller scale than the indicated
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The limiting value for pc of —0.085 ttB/2' corre-
sponds to an average magnetic Geld of —2.4 kg. This is
the average Geld in a pillar containing the center of the
unit cell, of dimensions 0.2aX 0.2v3aXc.

What is the origin of this negative magnetic-moment
density? It is tempting to assign it to negative-spin
polarization in the conduction band. However, this
conclusion cannot be justified without prior knowledge
of the spin distribution in the 3d band. Unfortunately,
we have only free-atom calculations available with
which to make a quantitative comparison.

FORM-FACTOR ANALYSIS

-1,0
0.2 0.4 0.6 0.8 1.0

negative level. A more convincing case can be made by
studying the eGect of changing the number of terms
included in the series. The projected density at point C
is given by

pc rtB+ Q Q +AAO )
h A:

where Ii I,~o are the orthorhombic structure factors. Let
us also ask for the average density over a rectangle
centered on point C of size (28aX2&3ha). It is easily
shown that this average density is given by

p(;(fI) = ttBA
—

'(2Trb) —'

Xg g (hh) 'I~st, o sin(2Trhb) sin(2Trhb). (6)

The factor (hh) ' makes the convergence of the series
for the average density much faster than that for the
point density series. "

In calculating the average density we are asking a
less detailed question than in the point density case,
and can get an accurate answer with less input data.
The values of pg and p|.-, with 8=0.1, are shown in
Fig. 4 as a function of the maximum value of sin8/X.
The indicated errors are based on the experimental
errors given in Table I. At high values of (sin8/X)
the point density still shows oscillations of appreciable
magnitude, but p& has converged very nicely. If we take
the amplitude of the oscillations as an indication of the
series termination error, then for pg the error is about
0.04ttB/As, and for pc the error is about 0.002 ttB/2'.
In the latter case the series-termination error is in-
significant compared to the experimental error in the
density. Even in the point-density case, the series
definitely appears to be approaching a negative limit.

"The author is indebted to W. Marshall for suggesting this
approach to the series termination problem.

MAX

FIG. 4, Conversion of Fourier series for projected density at
point C and for average projected density over area around
point C, of size 0.2a)&0.243a(b=0. 1). Successive points were
calculated by increasing the number of terms in the series by one

In comparing experimental and free-atom form
factors, we are testing a model in which a periodic
density function is constructed by superposition of
atomic functions centered at each atomic site,

p'(r) =g, p (r—r,).
Here, p is a normalized free-atom density function,
with form factor

f(k) = p. (r)e"'d. .

The form factor, f'(k), for the periodic function, p'(r),
is nonzero only when k satisfies the Bragg condition.
For this set of scattering vectors, ks», the crystal form
factor is equal to the free-atom form factor,
fAst'= f(kast).

In constructing the free-atom form factor, contribu-
tions to the magnetic moment density from the follow-

ing sources were considered: spin polarization of the
outer electrons, orbital moment of the unquenched 3d
electrons, and spin polarization of the argon core. Each
of these sources may be further divided into spherical
and aspherical parts. We neglect all the aspherical
contributions except that arising from the 3d spin. The
total form factor is written as

2 g—2 2
s s s a

where the subscripts s, 0, and c refer to spin, orbital and
core, and the superscripts s and a refer to spherical and
aspherical. The g factor determines the fraction of the
total moment due to spin polarization and the fraction
due to unquenched orbital motion. Its value for metallic
cobalt is 2.17, based on the magnetomechanical experi-
ments of Scott. '~

In the case of Fe, Shull and Yamada4 found that the
experimental results were in good agreement with a
combination of free-atom 3d and 4s form factors. It was
necessary to assume that the 4s polarization was oppo-
site in direction to the 3d polarization. Ke have seen

"G. G. Scott, in Proceeds'ngs of the Internattonal Conference on
Magnetism urId Crystallography, Kyoto, 1961 (Physical Society of
Japan, 1962).
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that the Fourier inversion of the cobalt data also shows
the presence of a diGuse negative polarization. I et us
therefore build a constant negative-spin polarization
into our model and at the same time increase the 3d
spin contribution to maintain the normalization. The
form factor for a constant density is 8(k), so we rewrite
Eq. (9) as

0.08

0.06
IL
OI-

tt. 004
CL
O
U

C3
0.02

LU

CQ

Qe

~exp
0'

~eg -~~

g
—2 2

+ fo'+f '+—(1+xx)f.ss (10)
g g

Equation (10) describes the model we wish to test
against the experimental data. While the introduction
of the 8 function may seem arbitrary, it is really quite
natural. The Fourier analysis of any periodic function
in a specihed lattice can be resolved into three questions
concerning the shape, scale and average value of the
function. The periodic function can be written as

p(r) =As++ A, exp( —sk,"r),

where the index j runs over all the allowed Bragg
rejections except the (000). The shape of the function
is determined by the relative size of the A;, the scale is
determined by the absolute values of the A;, and the
average value is determined by Ao. Two functions, p
and p~ have the same shape if A; =EA; b, where E is a
constant dehning the relative scale of the two functions.
In the present analysis, we wish to ask whether the
shape of the observed periodic spin density is the same
as that produced by superimposing atomic 3d spin
densities according to Eq. (7). The proper way to ask
this question is to test for proportionality between the
observed and calculated form factors for all rejections
other than (000). From this point of view, the introduc-
tion of the 5 function is merely a convenient way to
separate the questions of shape and scale from that of
the average value. Practically speaking, this treatment
is equivalent to that of Shull and Yamada, because
their 4s atomic form factor almost goes to zero before
the first Bragg reQection.

Asyherical Form Factor

Let us erst examine the experimental data to see if
there is any evidence that the term in f,o is nonzero.
The outer portion of the experimental form factor is
shown on a greatly enlarged scale in Fig. 5. The only
striking departure from a smooth curve is the (006)
point, and the pair of points near f=0 seem out of line,
The data shown in Fig. 5 have been analyzed in terms
of crystalline-Geld effects, following the treatment of
Weiss aa.d Freeman. '8 In the hexagonal case, the

"R.J. Weiss and A. J. Freeman, Phys. Chem. Solids 10, 147
(1959).

-0.02
0.70 0.80 0.90

sin 8
Jt,

3.00 I.)0

FIG. S. EBect of aspherical spin distribution on high-angle results.
Solid points should fall on a smooth curve.

crystalline field splits the 3d electrons into three sub-
states, two doubly degenerate levels with rotational
properties like xy, x'—y' and ys, xs and a single level
like 3s'—r'. The total aspherical form factor is written
as a linear combination of the aspherical form factors
for the three substates,

f„, = (0.4+e)f (Zs,)+ (0.4+ xi)f (Zt,)
+(0 2 e t))f (At ) (12)

The parameters e and q measure the departure from
spherical symmetry. When e= g =0, the three terms on
the right of Eq. (12) add to zero. The work of Weiss
and Freeman" and Watson and Freeman" allow the
calculation of the f' for each substate, based on free-
atom wave functions. It was possible to obtain values
of e and g from the experimental data without using
any calculated spherical form factors. Details of this
analysis are given in Appendix A. The best values are
e= —0.006 and g=0.016. An experimental spherical
form factor was then obtained by subtracting the small
aspherical contribution from the experimental data.
This spherical form factor is shown in Fig. 5 as the
solid circles. If the analysis is valid, these points should
lie on a smooth curve. This analysis gives a reasonably
consistent interpretation in terms of crystal-field effects,
but the very small departure from spherical symmetry
implies a small crystalline-field splitting in comparison
to the 3d bandwidth.

It is worth noting that the calculated form factors
are quite sensitive to changes in the population', that is,
the form factors for the substates are widely difterent.
For example, for the (006) reflection f'(E )=s+0.238,
f'(E )=t—0.255, and f'(A )=x+0.034; while the
observed f,o is only —0.006.

The implications of this analysis may be better
visualized with the help of Fig. 6. The whole analysis

~s R. E. Watson and A. J. Freeman, Acta Cryst 14, 27, 231.
(1961).
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is based on the assumption that the wave function can
be separated into a radial and an angular part. Shown
in Fig. 6 is the 0 dependence of the square of the angular
part of the wave function for each substate and for the
sum of the three substates, weighted by the indicated
population. The largest eBect is in the c direction where
the distribution deviates from the spherical case by
about 6%.

Radial Form Factor

The contribution of the core polarization term of
Kq. (10) was estimated from. unpublished calculations
of Watson and Freeman for iron. It is quite small, the
largest contribution for any of the rejections being
only 0.003.

Three different calculations by Freeman and Watson
were considered in estimating the spherical part of the
spin and orbital contributions of the 3d electrons. Two
of these were restricted Hartree-Fock calculations for
an outer electron configuration of 3d~4s' and 3d'4s'. The
other was a spin polarized Hartree-Fock calculation
for a 3d74s' con6guration. The spin form factors for the
two restricted calculations have been published, " and
the remainder of the calculated results were privately
communicated. Hy subtracting the orbital, core, and
aspherical contributions from the experimental form
factor, and then testing the resulting experimental spin
form factor for proportionality with the calculated spin
form factors, it was possible to judge whether the
calculated-3d spin density had the same shape as the
observed density distribution. It was quickly apparent
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that the spin-polarized 3d"4s' calculation is the best,
and it is very good indeed. The comparison between the
calculated and experimental form factors is illustrated
in Fig. 7. The points are the experimental values minus
the small aspherical contribution and the solid line is
given by the first four terms of Eq. (10) with n=0. 18.

The remarkable agreement illustrated in Fig. 7 shows
that the shape of the periodic spin distribution is
accurately given by the proposed model. Let us return
to the question of the e6ect of uncertainty in the nuclear
scattering amplitude. The conclusion about the shape
of the distribution is independent of the nuclear ampli-
tude, because this conclusion rests only on the relative
sizes of the fz». A large error in b will only introduce an
uncertainty in the proportionality factor (1+a). The
most pessimistic view of the error in b is 4%, whereas b

would need to be 18% lower to avoid introducing the
negative spin density. In terms of our model, and assign-
ing a 4% error in (1+a), the net magnetic moment per
atom is distributed as follows:

Fzo. 7. Comparison of experimental results for hexagonal cobalt
with free-atom calculation when ex=0.18. The free-atom form
factor is based on a 3d'4s' spin-polarized Hartree-Fock calculation
by Watson and Freeman.

3d spin +1.86+0.07 p~,
constant spin —0.28&0.07 pii,
3d orbital +0.13&0.01 pg.

uE (e) u„(e) 2
(p

FIG. 6. Angular dependence of the spin density in hexagonal
cobalt. Dashed circle is for spherical symmetry, solid figure is for
IN(» I*=o »4I~(&2.& I'+o 4t61N(~~.& I*+o »ol~(~~~& I'

It is interesting to compare the value of the constant
polarization introduced in the form-factor analysis with
the level of the negative density seen in the Fourier
inversion. A constant spin density of —0.28 pii/atom
corresponds to a projected density onto the basal plane
of —0.10 @ii/A2, in good agreement with the level
indicated in Fig. 3.
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SUMMARY AND DISCUSSION

The Fourier inversion has shown that the magnetic
moment in cobalt looks like an almost spherical distri-
bution of positive moment localized around each atomic
site, decreasing to a negative level in the region between
atoms. The purpose of the form-factor analysis was to
see if this distribution could be described in terms of
some more familiar atomic distribution. It was found
that the spin distribution can be accurately represented
as the sum of two parts; one looks like a superposition
of calculated atomic-3d-density functions located at
each atomic site and the other is a negative constant.
One should be cautious in ascribing significance to the
form-factor analysis beyond the fact that it is a con-
venient way to describe the observed spin distribution.
In particular, we cannot claim that this analysis proves
the existence of a constant negative polarization in the
conduction band or that the spin density in the 3d band
is just like that calculated for the free atom. All that
can be said with certainty is that the sum of the polar-
ization in the 3d and conduction bands has the spatial
dependence described by the model.

The appearance of a contribution to the spin polariza-
tion which is similar in shape to the calculated free-atom
distribution is not surprising. On the basis of the band
theory calculations' ' for Fe, the unpaired spin distribu-
tion, which is derived from a group of states near the
top of the band, is expected to be similar to the calcu-
lated free-atom distribution. The diffuse negative
polarization is more difficult to understand, although
the theoretical approach of Anderson" seems promising.
The contribution of the paired electrons near the bottom
of the 3d band should also be considered in relation to
the disuse negative spin density. The unrestricted
Hartree-Fock calculations for free atoms' ' show that
the paired 3d electrons produce a negative spin density
at large radii. The combination of this eBect and the
disuse wave functions near the bottom of the 3d band
might help in understanding these results.
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APPENDIX: ASYMMETRY ANALYSIS

The separation of the experimental form factor into
spherical and aspherical parts is not quite so straight-

~ P. W. Anderson, Phys. Rev. 124, 41 (1961l.

forward as in the cubic case, where there are a number
of diGerent pairs of reQections occurring at the same
value of sin8/X. Such pairs occur in the hexagonal case
only if the structure is perfectly close packed. Since
cobalt is almost a perfect close-packed structure, there
are pairs of reQections at almost the same value of
sin8/X. Substituting (12) into (10) and grouping the
spherical parts in a single term, the total form factor is

f=f'+'Lf (&ss) f (~—~.)j
+~'Lf (~rs) f (~—~.)3 (A1)

where e'= (2/g) (1+n)e and g'= (2/g) (1+n)r1. The dif-
ference between the form factors for a pair of refiections
at nearly the same value of sin8/X is

df' (sin8)
Af= Al I+"ACf'(&s.)—f (~r,)3

d(sin8/X) E X )
+n'ALf (&r.)—f'(~ r.)j (A2)

Because the experimental data showed such a small
aspherical contribution, the slope of the spherical part
could be accurately estimated from the data by drawing
a smooth curve through the points. In the above
equation, bf is the observed form-factor difference
between two reAections, the first term on the right was
estimated from the data, and the form factors in the
last two terms were calculated as outlined below. Thus,
each such pair of rejections gives a linear equation in
~' and q'. Seven pairs of rejections in the high-angle
region were considered and the best values of e' and q'
were selected to satisfy all seven equations simul-
taneously. For the selected values of e' and g', the
calculated and observed values of Af were in reasonable
agreement in six of the seven cases.

Based on the work of Weiss and Freeman, " the
following expressions for the coefIicients of e' and q'
were obtained:

10
f'(&.) f (~ .)= ———(1—3 os'P)(j )

7

15——(3—30 cos'P+35 cos'P)( j4), (A3)
56

5
f'(&.)—f'(~ .)=—(1—3 c»'P)(j )

14

15——(3—30 cos'P+35 cos'P) (j4) . (A4)
28

p, the angle between the normal to the reflecting planes
and the c axis, is determined by

cos'p=
,' (c/a)'(hs+hfs+ks)—+P

The functions (js) and (j4) were taken from the work
of Watson and Freeman, ' based on a restricted Hartree-
Fock calculation for a 3d' configuration,


